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Abstract: The many functions of phosphoinositides in cytosolic signaling were extensively studied;
however, their activities in the cell nucleus are much less clear. In this review, we summarize data about
their nuclear localization and metabolism, and review the available literature on their involvements in
chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms
via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2),
modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I
activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich
compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the
phosphoinositide–protein complexes on nuclear organization and genome functions is only now
emerging and deserves further thorough studies.
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1. Introduction

Phosphatidylinositol (PI) is a negatively charged glycerol-based phospholipid with a hydrophobic
acyl tail and a hydrophilic inositol head. The hydrophobic acyl tail composition depends on the
organism, as well as the tissue. In animals, the characteristic feature is a high content of stearic and
arachidonic acids. All the stearic acid is linked to position sn-1, and all the arachidonic acid is linked
to position sn-2. In plants, the main tail composition is of palmitic acid, which is the main saturated
fatty acid in position sn-1, while linoleic and linolenic acids are the main unsaturated components in
position sn-2. Similarly in yeast, palmitic acid is in position sn-1, with oleic and palmitoleic acids in
position sn-2 [1,2].

The inositol ring, or cyclohexane-1,2,3,4,5,6-hexol, can be reversibly phosphorylated at the 3′, 4′,
and 5′ positions, generating seven different phosphorylated phosphoinositides—phosphatidylinositol
3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P), phosphatidylinositol 5-phosphate
(PI(5)P), phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), phosphatidylinositol 3,5-bisphosphate
(PI(3,5)P2), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and phosphatidylinositol
3,4,5-trisphosphate (PI(3,4,5)P3). The importance of phosphoinositides in the regulation of
important cytoplasmic processes, such as cell proliferation and cell death, regulation of microtubules
and microfilaments, membrane dynamics, cell architecture, and motility or modulation of ion channels
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and transporters, is well established and was reviewed elsewhere [3–12]. Studies describing the
nuclear localization of phosphoinositides and enzymes that synthesize them opened new horizons
in the field of cell biology. However, we still lack the knowledge to answer some basic questions.
Are nuclear phosphoinositides synthesized within the nucleus or transported to this compartment
from the cytoplasm? How are these highly hydrophobic molecules retained within the nucleus,
which is devoid of membranous structures? What is the mechanism of their action? In this review,
we address these questions with a special emphasis on PI(4,5)P2, which was identified as an important
regulator of a wide range of nuclear processes.

2. Transport of Phosphoinositides into the Nucleus

To answer the question about the origin of intranuclear phosphoinositides, one could consider that
cytoplasmic phosphoinositides translocate to the nucleus just before the nuclear envelope reassembles
during telophase, and then become enclosed by the newly formed nuclear envelope. For example,
it was shown that nucleolar PI(4,5)P2 remains bound to nucleolar organizing regions (NORs) during
mitosis [13]. On the other hand, the PI(4,5)P2 pool from nuclear speckles translocates to the cytoplasm
and accumulates in mitotic interchromatin granules (MIGs). MIGs remain cytoplasmic even after
the formation of the nuclear envelope in daughter cells [14] and their components enter the nuclei
sequentially in late telophase [15]. So far, there is no evidence of specialized nuclear transporters for
phosphorylated forms of PI. However, two isoforms of phosphatidylinositol transfer proteins (PITPs)
which mediate cytoplasmic transport of PI were found in the nucleus [16–18].

We may speculate that PI is imported to the nucleus, where it is subsequently phosphorylated.
Indeed, many enzymes involved in phosphoinositide metabolism—kinases, phosphatases, and
phospholipases—are present in the nucleus (Figure 1).
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3. Metabolic Pathways for Nuclear Phosphoinositides 

Figure 1. Known pathways of nuclear phosphatidylinositol and phosphoinositides. Depicted known
phosphatidylinositol kinases in black and phosphatases in green, as well as their substrates (red). Black
arrows indicate phosphorylation or dephosphorylation catalyzed by the known nuclear enzymes. Gray
arrows show other potential pathways which might occur in the nucleus, but responsible nuclear
enzymes are not yet confirmed. The scheme summarizes published data described in the text.

3. Metabolic Pathways for Nuclear Phosphoinositides

Due to the lack of tools for in vivo visualization of phosphoinositide synthesis, researchers
demonstrated the intranuclear metabolism of phosphoinositides using in vitro studies. Smith and
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Wells [19] observed the enzymatic activity and incorporation of [γ32P]-ATP into PI(4,5)P2 in isolated
nuclear membranes from rat liver cells. Cocco et al. [20] showed that phosphoinositides can also be
formed within the nucleus regardless of membranous structures. They observed the incorporation of
radiolabeled phosphate into phosphatidylinositol mono- and bisphosphate, the latter one presumably
being PI(4,5)P2 [20]. Further observations made with the addition of exogenous substrates, PI, PI(4)P, and
1,2-diacylglycerol (DAG), to membrane-depleted nuclei and radiolabeled ATP showed reconstitution of
the majority of lipid phosphorylations [21]. Payrastre and collaborators showed that nuclear matrices
isolated from NIH 3T3 fibroblasts or rat liver cells contain PI 4-kinase, PI(4)P 5-kinase, DAG kinase,
and PLC activities [22]. In addition, there is a dynamic metabolism of phosphoinositides in the nucleus,
which is regulated during progression of the cell cycle [23–26]. It was shown that the amount of
nuclear PI(4,5)P2 in synchronized HeLa cells decreases by 66% during the synthesis (S) phase [23].
In opposition to this, another study using synchronized murine erythroleukemia cells showed that the
overall nuclear PI(4,5)P2 level does not change upon entry into the S phase, while the incorporation
of radioactive phosphate into PI(4,5)P2 increased six-fold indicating a rapid metabolic turnover of
PI(4,5)P2 within the nucleus [24]. This is consistent with the observation that retinoblastoma protein
(pRb), which regulates the progression from the gap 1 (G1) to S phase, stimulates PIP5KIα activity and,
therefore, also formation of PI(4,5)P2 in vitro [27,28], thereby regulating PI(4,5)P2 levels during the
cell cycle.

Enzymes able to subsequently generate almost all phosphoinositides species were detected in the
nucleus. Nuclear PI3KC2α and PI3KC2β kinases can phosphorylate PI and PI(4)P at the 3′ position
of the inositol ring to form PI(3)P and PI(3,4)P2 [29,30]. PI3KC2α is enriched in nuclear speckles
and becomes phosphorylated upon RNA polymerase II (RNA pol II) inhibition by α-amanitin [29].
Although the role of PI3KC2α phosphorylation is unknown, this observation suggests a role of this
kinase, or its products PI(3)P and PI(3,4)P2 in pre-messenger RNA (mRNA) processing. Nuclear
PI3KC2β preferentially uses PI over PI(4)P as a substrate [30]. Moreover, its activity increases at the
gap 2 (G2)/mitosis (M) transition in human promyelocytic leukemia HL-60 cells, indicating a role of
PI(3)P in cell-cycle progression [25].

PI(4)P can be synthesized by two kinases, PI4Kα and PI4Kβ, which both phosphorylate PI
at the 4’ position. Their activities were confirmed in the nuclei of human, mouse, rat, and yeast
cells [31–33]. Moreover, Src-homology 2 containing inositol 5-phosphatases (SHIP-1, SHIP-2) hydrolyze
the phosphate group of PI(3,4,5)P3 at the 5’ position to form PI(3,4)P2 [34,35]. SHIP2, phosphorylated
at S132, also dephosphorylates PI(4,5)P2 and generates PI(4)P [36]. Phosphorylated forms of PI4Kβ

and SHIP-2 localize to nuclear speckles. Moreover, PI4Kβ accumulates in nuclear speckles after RNA
pol II inhibition by α-amanitin [36–39]. The detection of another PI(4)P synthesizing kinase, PI4Kα,
implies localization of PI(4)P also in nucleoli [33].

A nuclear kinase that phosphorylates the inositol ring at the 5’ position is yet to be discovered,
but nuclear PI(5)P can be formed by the type I phosphatidylinositol (4,5)-bisphosphate 4-phosphatase
(PI(4,5)P2 4-Ptase I). Inversely, nuclear PI(5)P can be phosphorylated by the type II phosphatidylinositol
5-phosphate 4-kinase β (PIP4KIIβ) to PI(4,5)P2 [40]. Jones et al. [41] showed that PIP4KIIβ is inhibited
upon cellular stress, resulting in the accumulation of PI(5)P in the nucleus. Similarly, PI(4,5)P2 4-Ptase
I, which dephosphorylates PI(4,5)P2 to PI(5)P, translocates into the nucleus upon DNA damage [42],
leading to accumulation of PI(5)P in the cell nucleus.

Both PI(4)P and PI(5)P may serve as precursors for PI(4,5)P2 synthesis. Type I phosphatidylinositol
4-phosphate 5-kinases (PIP5KI) utilize PI(4)P, whereas type II phosphatidylinositol 5-phosphate
4-kinases (PIP4KII) utilize PI(5)P as a substrate. Isoforms of both types, type I PIP5KIα and PIP5KIγ_i4,
as well as type II PIP4KIIα, PIP4KIIβ, and PIP4KIIγ, localize to the nucleus [37,38,40,43–45]. Many of
these enzymes colocalize with nuclear speckle markers [37,38,43]. Moreover, PIP5K1β can localize
in both plasma membrane and vesicles in the perinuclei; therefore, it is likely to be active in the
nucleus [46].
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Nuclear PI(3,4,5)P3 is generated by phosphorylation of PI(4,5)P2 by class I PI3K kinases PI3Kβ

and PI3Kγ or by inositol polyphosphate multikinase (IPMK) [47–52]. Moreover, PTEN phosphatase,
which dephosphorylates PI(3,4,5)P3 at the 3’ position generating PI(4,5)P2 [53], localizes to both the
cytoplasm and nucleus [54–56]. However, PTEN does not seem to act on PI(3,4,5)P3 in the nucleus [57].

In addition to kinases and phosphatases, PI(4,5)P2 is a substrate for phosphatidylinositol-specific
phospholipase C (PI-PLC). PI-PLC cleaves PI(4,5)P2 and generates second messengers—inositol
1,4,5-trisphosphate (Ins(1,4,5)P3) and 1,2-diacylglycerol (DAG) [58]. The eukaryotic PI-PLC enzyme
family consists of 13 isoforms, and eight of them were detected in the nucleus. The most studied
PI-PLCβ1 contains a nuclear localization signal (NLS) in its C-terminus [59] and localizes to nuclear
speckles [60,61]. Other subtypes of PI-PLCβ (PI-PLCβ2, β3, and β4) and other isozymes, such as
PI-PLCγ1, PI-PLCδ1, PI-PLCδ4, and PI-PLCζ, were also confirmed to localize to the nucleus [59,62–71].

4. Localization of Nuclear Phosphoinositides

One of the biggest challenges in the field is the reduced number of tools for in vivo visualization
of phosphoinositides. Therefore, antibodies and phosphoinositide-binding domains are widely used
to detect phosphoinositides in cell nuclei via light and electron microscopy [72,73]. Gillooly et al. [74]
used the FYVE domain of the receptor tyrosine kinase Hrs, a specific marker of PI(3)P, to identify
PI(3)P in the dense fibrillar component of the nucleoli. We detected PI(4)P in the cell nuclei using the
specific anti-PI(4)P antibody and PI(4)P-binding OSH1-PH domain. PI(4)P localizes to nuclear speckles
and forms small foci in the nucleoplasm [72]. A specific antibody showed the presence of PI(3,4)P2 at
the nuclear membrane [75]. Anti-PI(4,5)P2 antibodies (clone 2C11, clone KT10, and clone AM212) or
the PI(4,5)P2-specific PH domain showed PI(4,5)P2 localization in nuclear speckles, nucleoli, and at the
interface between the heterochromatin and the interchromatin space in the nucleus [13,14,37,72,76–81].

However, how are amphipathic phosphoinositides retained in the hydrophilic intranuclear
environment? We recently showed that PI(4,5)P2 localizes to a specific, only recently described nuclear
compartment—nuclear lipid islets (NLIs) (Figure 2). These globular structures have a diameter of
40–100 nm, with a surface formed mainly by PI(4,5)P2 molecules with hydrophilic heads presumably
directed outward, while hydrophobic tails are directed inward. The core of NLIs is formed by carbon-rich
compounds, likely lipids, whereas their periphery is associated with nucleic acids and proteins
including RNA pol II large subunit, transcription factors, and nuclear myosin 1 (NM1), which contains
a C-terminal PI(4,5)P2-specific pleckstrin homology (PH) domain [80]. Furthermore, PI(4,5)P2 can serve
as a scaffolding platform which facilitates the formation of transcription factories, thus participating
in the formation of nuclear architecture competent for transcription. The phosphoinositides can
be plausibly required for phase separation in order to facilitate the formation of various nuclear
compartments and molecular condensates separated from the surrounding environment, while having
a reduced energy requirement to maintain this level of organization [82].
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Figure 2. Nuclear lipid islets (NLIs)—a recently described nuclear compartment involved in
RNA polymerase II (pol II)-dependent transcription. (A) Using super-resolution three-dimensional
structured illumination microscopy (3D SIM), we revealed NLIs in the nucleoplasm as small foci
labeled by anti-phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) antibody. Nuclear PI(4,5)P2 labeling
reconstructed in 3D is presented here as a two-dimensional (2D) maximum intensity projection image.
Using the NIS-Elements and MATLAB software, we determined the relative distribution of PI(4,5)P2
in nuclear speckles, nucleoli, and NLIs. The color-coded image and diagram presented below show
PI(4,5)P2 in nuclear speckles in yellow, PI(4,5)P2 in NLIs in red, and the nucleolar PI(4,5)P2 in blue.
(B) Transmission electron microscopy (TEM) demonstrates the localization of nuclear PI(4,5)P2 labeling
in full detail. Color-coding is the same as in (A). NLIs of 40–100 nm are presented below in magnified
view. Abbreviations in (A) and (B): N—nucleus, NL—nucleoli, NLIs—nuclear lipid islets, NS—nuclear
speckles. The bars in (A) and (B, general view) are 1 µm; the bar in (B, magnified views) is 100 nm.
Figure 2 is presented here with permission from Sobol et al. [75].

Another possibility is that the hydrophobic acyl tails interact with hydrophobic protein
modifications of intranuclear proteins and hydrophobic protein pockets, or form bigger hydrophobic
complexes. Such interactions can shield fatty-acid chains of phosphoinositides from the hydrophilic
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environment. Indeed, PI(4,5)P2 interacts with the myristoyl moiety of BASP1 transcription factor and
anchors it at promoters of target genes [83]. While acyl chains bind to hydrophobic protein domains or
larger phospholipid complexes, exposed phosphorylated inositol head groups of phosphoinositides
can be metabolized by nuclear kinases and phosphatases. The head groups also bind the positively
charged protein binding pockets. Phosphoinositides can, thus, form an interphase for protein–protein
interactions [84]. Lewis et al. [85], using neomycin extraction, revealed that proteins with at least
one positively charged lysine/arginine (K/R) amino acid motif interact with PI(4,5)P2, and identified
over 300 nuclear proteins involved in processes such as DNA topological modification, chromatin
remodeling, and RNA processing. The analysis of data from neomycin pull-down provided evidence
of several phosphoinositide-binding motifs. One of them is a semi-conserved cluster of basic residues
that correspond to the polybasic region (PBR) of certain proteins and can allosterically regulate
histone binding specificity [86]. Another well-described phosphoinositide-binding motif is the plant
homeodomain (PHD) finger domain. Binding of phosphoinositides to the PHD finger was shown to
modulate chromatin association, and have a role in DNA damage response, ubiquitin signaling, and
epigenetic regulation of gene expression [79,86–88].

5. Nuclear Processes Regulated by Phosphoinositides

To understand the different processes that involve nuclear phosphoinositides, a high-throughput
study identified was carried out, and over 120 nuclear proteins showed binding to various
phosphoinositides with different affinities [89]. These findings point rather toward multiple specific
roles of particular phosphoinositides in nuclear processes. Below, we summarize proteins which are
known to bind phosphoinositides in the nucleus and the roles of these interactions.

5.1. Anti-Apoptotic Signaling

Nuclear PI(3,4,5)P3 is an important molecule implied in cell differentiation and anti-apoptotic
signaling [90–92]. PI(3,4,5)P3 binds directly to nucleophosmin (B23) in the nucleus, and their interaction
is induced by nerve growth factor (NGF) treatment [92]. Moreover, protein kinase B (AKT),
a PI(3,4,5)P3 effector protein, translocates to the nucleus after NGF stimulation in a PI3K-dependent
manner [93,94]. In the nucleus, AKT interacts directly with B23 and protects it from degradation [95].
The PI(3,4,5)P3–B23 complex then mediates anti-apoptotic signaling and inhibits caspase-activated
DNase, thereby protecting DNA from fragmentation [92]. The action of both phosphatases—SHIP-2
and phosphatase and tensin homolog (PTEN)—as well as the overexpression of PI(3,4,5)P3-binding
mutant of B23, can inhibit NGF-induced anti-apoptotic actions [91,92]. Because it was reported that
PTEN does not dephosphorylate PI(3,4,5)P3 in the nucleus [57], it is unclear whether PTEN can
antagonize the NGF pathway through the decrease of PI(3,4,5)P3 level or via a different mechanism.

The direct binding of PI(3,4,5)P3 to the long non-coding RNA LINK-A, which facilitates AKT
recruitment to PI(3,4,5)P3 resulting in the changes of AKT conformation and its activation, was
described [96]. AKT also interacts with another PI(3,4,5)P3-binding protein, ErbB3-binding protein 1
(EBP1). EBP1 binds PI(3,4,5)P3 through the C-terminal polybasic motif. Although the role of PI(3,4,5)P3
in the function or localization of EBP1 is unclear, a mutation in the polybasic motif which reduces
binding to PI(3,4,5)P3 is associated with cancer [97].

In addition, PI(5)P affects ubiquitin signaling in the nucleus as it stimulates the activity of the
speckle-type POZ domain protein (SPOP)–Cul3 ubiquitin ligase complex. PIP4KIIβ kinase is a key
regulator of (SPOP)–Cul3 ubiquitin ligase, and the mechanism behind stimulation of (SPOP)–Cul3
activity is most probably mediated by PI(5)P through a p38-dependent signaling pathway [98].

5.2. Chromatin Remodeling

Due to the negatively charged inositol head, PI(4,5)P2 interacts directly with positively charged
histones H1 and H3 [99]. In vitro, RNA pol II transcription is inhibited by H1 [100–102]. This inhibition
can be partially restored by the addition of PI(4,5)P2. These results suggest that the PI(4,5)P2 binding
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to H1 loosens the interaction of H1 with DNA and facilitates the progress of RNA pol II transcription
in vivo. This process might be negatively regulated by phosphorylation of H1 by PKC [99].

Another mechanism of PI(4,5)P2 action in chromatin remodeling is through its direct interaction
with Brg1, the ATPase subunit of the SWI/SNF-like BAF chromatin remodeling complex [103]. PI(4,5)P2
binds the BAF complex, targets it to chromatin, and facilitates changes in chromatin structure during
T-lymphocyte activation [104].

PI(5)P can influence chromatin remodeling through proteins which do not contain PHD
fingers [105]. Two components of the Sin3A corepressor complex, SAP30 and SAP30L, bind to
phosphoinositides, preferably to PI(5)P, through a zinc motif which overlaps with the SAP30
DNA-binding site. Viiri et al. [105] proposed that PI(5)P binding displaces the Sin3A corepressor
complex from DNA, leading to translocation from the nucleus to the cytoplasm.

5.3. Epigenetics

Histone acetylation reduces the positive charge of histones and loosens their association with
negatively charged DNA. As a result, DNA is more accessible for transcription factors which can
facilitate DNA transcription [106,107]. It was shown that chromatin acetylation is repressed by a process
which requires PI(4,5)P2 and myristoylation of the transcriptional corepressor BASP1. It was shown
that PI(4,5)P2 interacts with BASP1 through its myristoyl moiety and facilitates BASP1 interaction
with histone deacetylase 1 (HDAC1). The BASP1–PI(4,5)P2–HDAC1 complex is then recruited to the
promoter of target genes, where HDAC1 deacetylates histones and reduces promoter accessibility for
RNA pol II transcription machinery [83].

It was shown that PI(5)P binds to the PHD finger domain of certain nuclear proteins and modulates
their binding to chromatin, as well as having a role in DNA damage response, ubiquitin signaling,
and epigenetic regulation of gene expression. In particular, PI(5)P is an important player in DNA
damage response through its interaction with the inhibitor of growth protein 2 (ING2) [87]. Following
DNA damage, ING2 expression is induced, which then stimulates acetylation of cellular tumor
antigen p53, leading to enhancement of p53-dependent transcription, G1-phase cycle arrest, and
apoptosis [108]. Under these conditions, the intranuclear level of PI(5)P is enzymatically elevated,
which results in increased ING2 association with chromatin [41] and induction of apoptosis through
the ING2–p53 pathway [42]. Very recently, the involvement of PIP5KIα and PI(4,5)P2 in the regulation
of p53 was demonstrated. Choi et al. [109] showed that, upon DNA damage, PIP5KIα interacts with
p53 and produces PI(4,5)P2, which in turn associates with p53 through its C-terminal domain (CTD).
The binding of PI(4,5)P2 to p53 contributes to the recruitment of the small heat-shock proteins HSP27
and αB-crystallin, which bind to p53, thus promoting its stabilization.

Furthermore, in Arabidopsis plants, PI(5)P affects the level of H3K4me3 [110]. The Arabidopsis
homolog of trithorax (ATX1) is a trimethyltransferase that acts on H3K4 at the promotor regions, binds
to PI(5)P, and causes ATX1 detachment from promoters and translocation from the nucleus to the
cytoplasm. These data suggest that the effect of PI(5)P binding to PHD domains can have different
impacts on its binding partners [88].

Gelato et al. [86] described the regulation of ubiquitin-like PHD and RING finger domain-
containing protein 1 (UHRF1) by PI(5)P. UHRF1 is a multidomain protein which binds unmodified
histone H3 and recruits histone methyltransferases to methylate H3K9, thus establishing transcription
repressive marks. Moreover, UHRF1 is able to bind H3K9me3 and, being in a complex with histone
methyltransferases, maintains heterochromatin state [86]. PI(5)P binds directly to the polybasic region
(PBR) in the C-terminal part of UHRF1, changes the conformation of UHRF1, and allosterically regulates
its histone binding specificity. When not bound to PI(5)P, UHRF1 recognizes the unmodified histone
H3 tail, while the PI(5)P–UHRF1 complex binds histone H3K9me3 [86]. Therefore, PI(5)P levels could
regulate UHFR1 association with chromatin, thereby having an impact on the heterochromatic state of
the genome.
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5.4. Gene Expression

PI(4,5)P2 and PI(5)P regulate transcription during myogenic differentiation. A knock-down of
PIP4KIIβ, resulting in accumulation of PI(5)P, increases myotube formation through modulating TATA
box binding protein 3 (TAF3). Both PI(5)P and PI(4,5)P2 modulate TAF3 interaction with H3K4me3 and
regulate expression of specific genes [111]. It was shown that the activity of class I PI3K is increased
upon induction of granulocytic differentiation and affects growth factor stimulation of various cell
lines or isolated nuclei [90,91,112].

Both PI(4,5)P2 and PI(3,4,5)P3 can interact with steroidogenic factor 1 (SF-1) [84,113], which
regulates the transcription of genes involved in lipid and steroid metabolism, as well as in the
regulation of cytoskeleton dynamics, cell cycle, and apoptosis [114]. PI(4,5)P2 or PI(3,4,5)P3 bind to the
SF-1 sterol-binding pocket through their acyl chains and stabilize the tertiary structure of SF-1. SF-1 in
a complex with PI(3,4,5)P3 displays significantly higher affinity for a coactivator peptide than in a
complex with PI(4,5)P2 [84,113]. Therefore, the action of IMPK kinase or PTEN phosphatase can affect
SF-1 activity and, thus, SF-1 target gene expression [84]. Additional work is required to define PTEN
involvement and clarify its active role in the nucleus in this process as compared to earlier findings [57].
Furthermore, in Caenorhabditis elegans, depletion of PI(4,5)P2 results in chromosome structural changes
which lead to various defects during meiotic progression. The altered chromosome structure is
accompanied by the increased transcription activity, which might indicate the DNA-damage-driven
apoptosis in the C. elegans gonad [115].

5.5. RNA Pol II-Dependent Transcription Initiation

PI(4,5)P2 forms a complex with the active form of RNA pol II, as shown by immunoprecipitation
with anti-PI(4,5)P2 antibody or a pull-down experiment with PI(4,5)P2-coupled beads [14,80,83].
However, there is still no evidence of a direct interaction between PI(4,5)P2 and RNA pol II. Our recent
study suggests that PI(4,5)P2 can be bound to RNA pol II transcription machinery through a direct
interaction with the transcription factor nuclear myosin 1 (NM1). In vivo transcription and pull-down
assays showed that NM1 requires association with PI(4,5)P2 to form a complex with the active form of
RNA pol II, thus maintaining transcription [80]. We showed that PI(4,5)P2 associates with actively
transcribed genes, RNA pol II, the RNA pol II transcription factors, NM1, and nascent transcripts at the
surface of NLIs (Figures 3 and 4) [80]. Our data suggest that NM1 can tether the chromatin-remodeling
complexes to NLIs supporting the transcriptionally competent chromatin state [80].
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Figure 3. A schematic view of PI(4,5)P2 involvement in RNA pol I and II transcription on the NLI
surface and the regulation of nucleolar processes by PI(4,5)P2. Based on published data [11,67,73–75].
(A) Phosphatidylinositol (PI) is transported into nucleus together with phosphatidylinositol transfer
protein (PITP) and is converted to PI(4,5)P2 via phosphorylation by PI kinases (PIKs) and PI phosphate
kinases (PIPKs). (B) PI(4,5)P2 is the major component of NLIs, where it may serve as an anchor for
the assembly of transcription complexes. PI(4,5)P2 plays a role in promoting RNA pol II transcription
together with transcription factor NM1. Upon inhibition of RNA pol II transcription via α-amanitin,
the pattern and quantity of NLIs do not change, implying a role for NLIs as a structural platform
for the transcription factories. (C) In the nucleolus, PI(4,5)P2 directly interacts with PHF8 and
represses its function as H3K9me2 demethylase. The PI(4,5)P2-binding mutant of PHF8 has increased
activity on ribosomal DNA (rDNA) promoter, which leads to the increased expression of rDNA. Also,
PI(4,5)P2 is present at the promoter of RNA pol I, and depletion of PI(4,5)P2 leads to a significant
decrease in transcription level. PI(4,5)P2 binds to upstream binding factor of RNA pol I (UBF) and
fibrillarin in the fibrillar center (FC) and dense fibrillar component (DFC), respectively. Inhibition of
RNA pol I transcription via drugs results in disassociation of PI(4,5)P2 from fibrillarin in the DFC;
however, PI(4,5)P2 colocalizes with UBF and RNA pol I in the FC regardless of active transcription.
Moreover, during mitosis, when the transcription is switched off, PI(4,5)P2 preserves its association
with UBF and RNA pol I in nucleolar organizing regions (NORs). This suggests a structural role
for PI(4,5)P2 in the formation and/or maintenance of core helix of NORs. FC—fibrillar centers,
Fib—fibrillarin, DFC—dense fibrillar component, GC—granular component, Me—methyl group,
NLIs—nuclear lipid islets, NM1—nuclear myosin 1, NPC—nuclear pore complex, NS—nuclear speckles,
PI—phosphatidylinositol, PIP2—phosphatidylinositol 4,5-bisphosphate, PITP—phosphatidylinositol
transfer proteins, Pol I—RNA polymerase I, Pol II—RNA polymerase II, SL1—selectivity factor
1, TFs—transcription factors of RNA pol II, TIF1A—transcription initiation factor of RNA pol I,
UBF—upstream binding factor of RNA pol I.
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Figure 4. Detailed model of the surface of NLI. The model is depicted roughly in proportion to the real
size of the molecules based on experimental data from Sobol et al. [75]. Abbreviations and colors used
in this model are the same as in Figure 3. (A) is the same as in Figure 3. (B) Comparative size of NLI
and PI(4,5)P2 molecule. (C) A part of the surface of NLI, composed of PI(4,5)P2, ceramide, cholesterol,
and RNA, with the associated RNA pol II transcription complex, NM1, and nascent transcripts.

5.6. Pre-mRNA Processing

PI(4,5)P2 depletion from HeLa nuclear extract by anti-PI(4,5)P2 antibody inhibits pre-mRNA
splicing in vitro. However, addition of PI(4,5)P2 itself into depleted extract does not restore splicing
reaction. This indicates that not only PI(4,5)P2 but also its binding partners—small nuclear RNAs
(snRNAs) and the active form of RNA pol II—are necessary to restore splicing activity [14]. However,
the exact molecular mechanism behind this phenomenon remains unknown.

Once mRNA is matured, it is exported to the cytoplasm upon association with RNA-interacting
protein complexes [116,117]. PI(4,5)P2 and PI(3,4,5)P3 directly interact with the N-terminal part of the
export factor Aly/REF. A disruption of this interaction displaces Aly from nuclear speckles, and mRNA
export is attenuated [118]. Furthermore, Wickramasinghe et al. [119] showed that the PI3K activity of
IPMK and nuclear PI(3,4,5)P3 formation is essential for Aly binding to target mRNA transcripts, which
code factors involved in the repair of DNA double-strand breaks by homologous recombination.

5.7. rDNA Modification and RNA Pol I Transcription

Transcription of rDNA by RNA pol I takes place in the nucleolus in specific compartments where
tandem repeats of pre-ribosomal RNA genes are assembled [120,121]. The upstream binding factor
(UBF) and the promoter selectivity factor (SL1) form a complex, which is recruited to the rDNA
promoter and facilitates the initiation of RNA pol I transcription [122]. UBF binds not only to the rDNA
promoter but also to the enhancer and the transcribed region of rDNA genes [123–128]. We showed
that PI(4,5)P2 binds to UBF enhancing its binding to the rDNA promoter. Moreover, the depletion of
PI(4,5)P2 from HeLa nuclear extract decreases the level of RNA pol I transcription in vitro. The decrease
can be partially restored by the addition of PI(4,5)P2 into the transcription reaction. The depletion of
PI(4,5)P2 after the transcription initiation did not cause any significant change in the transcription [78].
These data suggest that the PI(4,5)P2–UBF interaction might be required for the association of the
transcription initiation complex with rDNA and activation of RNA pol I transcription (Figure 3).
Since UBF can trigger the formation of pseudo-NORs by binding to specific regions of rDNA [124],
we propose that PI(4,5)P2 can modulate binding of UBF to rDNA sequences and, therefore, participate
in NOR formation. In accordance with this model, we showed that PI(4,5)P2 interacts with RNA pol I
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subunits and UBF regardless of active transcription, indicating a structural role for PI(4,5)P2 in the
formation and maintenance of NORs [13] (Figure 3). In the in vitro experiments using the purified
histones from Brassica oleracea, we showed that PI(4,5)P2 degradation by PLC results in increased
histone binding to the rDNA promoter [129]. This suggests an additional mechanism of the RNA pol I
transcription regulation by PI(4,5)P2.

Our group showed that PI(4,5)P2 also binds to another nucleolar protein—fibrillarin [78]. Fibrillarin
functions in pre-rRNA processing, modification, and ribosomal assembly and, therefore, is crucial for
cell vitality [130]. Moreover, the depletion of fibrillarin impairs the normal embryo development [131].
PI(4,5)P2 binds to fibrillarin in the dense fibrillar component of the nucleolus and modulates the
binding of fibrillarin to pre-rRNA [78]. The interaction between fibrillarin, PI(4,5)P2, and rRNA may
provide a link between the transcription initiation process and the processing machinery (Figure 3).

Moreover, we showed that PI(4,5)P2 contributes to the regulation of rRNA gene expression not
only at the transcriptional, but also at the epigenetic level [79,132]. PI(4,5)P2 directly interacts with PHD
finger protein 8 (PHF8) histone lysine demethylase through its C-terminal K/R-rich motif. PI(4,5)P2
binding promotes conformational changes in PHF8, represses its H3K9me2 demethylase activity and,
thus, regulates expression of pre-rRNA genes [79] (Figure 3).

6. Conclusions

Taking together, all these data indicate that phosphoinositides play multiple specific roles in the
nuclear processes depending on their binding partners and physiological state of a cell.

In order to regulate the nuclear functions, the processes in the cell nucleus are spatially and
temporarily organized. It is, therefore, crucial to understand molecular interactions leading to
the formation of the intranuclear order, such as spatial maintenance of chromosomal domains,
transcription-dependent movements of gene loci in nuclear volume, and various epigenetic effects
regulating gene expression. This review summarizes the origin and essential functions of nuclear
phosphoinositides, and describes multiple roles of PI(4,5)P2 in the regulation of gene expression, which
are currently emerging.

The available data suggest that PI is transported to the nucleus via PITPs [16–18], where it can
be consecutively phosphorylated to form nuclear phosphoinositides. However, a redundant system
may exist to transport and maintain the level of nuclear PIs, since changes of expression of PITPs
do not dramatically affect the amount in the nucleolus [133]. The activity of phosphatidylinositol
kinases/phosphatases and, thus, the nuclear phosphoinositide levels are dynamically regulated during
the cell cycle and under various cell conditions [23–26,41,42,90,91,111,112,134,135].

Phosphoinositides interact with nuclear proteins, resulting in changes of protein
conformation, localization, and activity. In such a way, phosphoinositides modulate a
variety of important nuclear processes such as chromatin remodeling and modification, DNA
transcription, pre-mRNA processing, RNA export, cell-cycle regulation, and DNA damage
response [13,14,38,41,76–80,83,85,86,91,92,98,99,103,104,111,113,118,119,134,136,137]. We suggest that
PI(4,5)P2 and other phosphoinositides can act as an interface to facilitate the molecular interactions
and reorganizations of the nuclear/nucleolar complexes (Figures 3 and 4). A possible advantage of this
boundary is a rapid turnover of phosphoinositides by kinases and phosphatases within the nucleus,
allowing fast regulation of transcription and other nuclear processes. Differential phosphorylation
of phosphoinositides can result in a higher or lower affinity for their interacting molecules, thus
modulating the activity and the composition of the particular complexes.

The compartmentalization of the nucleus and the existence of the different pools of the same
phosphoinositides might allow local fine-tuning of the metabolism of the distinct phosphoinositides
in the specific nuclear compartment at exact time points. This permits affecting only the particular
process with no or minimal impact on the others. There is growing evidence that the organization
of the membraneless intranuclear compartments like nucleoli, nuclear speckles, paraspeckles, and
chromatin domains is due to phase separation through specific interactions between different parts
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of the complex molecules like phosphoinositides, proteins, and nucleic acids [138–145]. We already
suggested that NLIs might represent a phase-separated system as well [80]. Recently, our suggestion
was endorsed by Boehning et al. [142], who showed that the CTD of RNA pol II phase separates
and is crucial for the formation of transcription factories. We believe that the impact of the nuclear
phosphoinositides on the spatial organization and functions of nuclear and nucleolar subdomains is of
a great importance and needs to be elucidated further. Available data suggest that the disruptions of
the phosphoinositide–protein complexes and their impaired functions may affect the general nuclear
organization. That is why we expect the exponential and qualitative progress in the field to bring about
new key findings and discoveries. However, the functional redundancy of the enzymes involved in
the nuclear phosphoinositide metabolism and the lack of in vivo phosphoinositide labeling are the
biggest challenges currently being faced.
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