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Abstract: Salicylic acid (SA) is an important signaling molecule involved in plant defense. While many
proteins play essential roles in SA signaling, increasing evidence shows that responses to SA appear
to involve and require lipid signals. The phospholipid-generated signal transduction involves a
family of enzymes that catalyze the hydrolysis or phosphorylation of phospholipids in membranes to
generate signaling molecules, which are important in the plant cellular response. In this review, we
focus first, the role of SA as a mitigator in biotic/abiotic stress. Later, we describe the experimental
evidence supporting the phospholipid–SA connection in plant cells, emphasizing the roles of the
secondary lipid messengers (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid
(PA)) and related enzymes (phospholipase D (PLD) and phospholipase C (PLC)). By placing these
recent finding in context of phospholipids and SA in plant cells, we highlight the role of phospholipids
as modulators in the early steps of SA triggered transduction in plant cells.
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1. Introduction

Plants and other living organisms face new challenges every day. As such, they have developed
efficient strategies to adapt to different types of stress to survive and propagate. The stress response
occurs through the activation of signal transduction cascades, which control the physiological and
biochemical responses needed for plant. In recent years, phospholipids have been reported not
only as components of the plasma membrane, but also as important regulatory lipids involved
in the response to stress in plant cells [1–3]. In recent decades, the number of advances related
to phospholipid signaling has increased. Phospholipid signals are produced and metabolized by
several enzymes, such as phospholipases, lipid kinases and phosphatases [4–6]. Different approaches,
such as genetic manipulation studies, omics studies, lipid analyses, molecular interaction analyses
and physiological analyses, have been integrated to determine the function of this lipid signaling
pathway [7–10]. Their results have shown that this pathway participates in the process of plant growth,
development and responses to the changes generated by biotic and abiotic stresses [6,11]. Therefore,
lipid signaling plays an important role in mediating plant hormone effects [7]. Several key
proteins of the phosphoinositide metabolic pathway, such as phospholipases and lipid mediators
(phosphatidylinositol 4,5-bisphosphate (PIP2), inositol 1,4,5-trisphosphate (IP3), phosphatidic acid,
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(PA) and phosphatidylinositol-4-phosphate, (PI4P)), are involved in processes mediated by plant
hormones such as salicylic acid (SA).

SA is a phenolic phytohormone that plays a central role in various physiological processes,
in defense against biotic and biotic stress such as the regulation of plant growth and development [12–16].
SA is also involved in the regulation of signaling pathways associated with secondary metabolite
biosynthesis pathway [17–19]. However, little is known about the possible connection between
phospholipid signaling and SA-dependent defense responses. In this review we focus on reviewing
the current knowledge of the role of phospholipid signaling in the response triggered by SA. Later,
the experimental evidence supporting the phospholipid–SA connection in plant cells is discussed,
emphasizing how lipid secondary messengers (PIP2 and PA) and related enzymes (phospholipase
D (PLD) and phospholipase C (PLC)) involved in the control of SA signal transduction. Finally, it is
discussed how the mediation of the phospholipid pathway in SA signaling has an important role
in the synthesis of secondary metabolites. Discussions of the biochemistry of these phospholipids,
their metabolizing enzymes, and their roles in other plant stress responses can be found in several
excellent reviews [7,12,20–22].

2. Salicylic Acid: An Essential Regulator to Mitigate Biotic and Abiotic Stress in Plants

Salicylic acid (SA; 2-hydroxybenzoic acid) is an endogenous molecule that modulates the response
to various types of stress in plants, both biotic and abiotic [12,15,16]. SA belongs to a diverse group of
phenolic compounds, generally defined compounds that have an aromatic ring with a hydroxyl group or
its functional derivative [23]. The most well-established role of SA is as a signaling molecule in the plant
immune response that playing direct or indirect roles in the regulation of many aspects of plant growth
and development, as well as cell growth, respiration, stomatal aperture, senescence, seed germination,
seedling development thermogenesis, flowering and disease resistance [24]. However, notably, the
regulatory role of SA in these physiological functions differs because the basal levels of SA vary between
different plant species, the stage of development in which they are found, the type of tissue analyzed
and exposure to (a) biotic stress. In the following section, several lines of evidence are reviewed that
maintain that in SA signaling there are effector proteins that mediate the function of SA under biotic
stress, while under abiotic stress SA causes changes in the metabolism of plant cells.

2.1. Salicylic Acid Signaling through SA-Binding Protein

To elucidate the mechanisms through which SA induces these responses, several putative effector
proteins have been identified. In this sense, multiple investigations via biochemical and genetic
approaches have revealed that SA can act through multiple effector proteins in plants called SA-binding
proteins (SABPs) [25–28]. Several SABPs have currently been purified from extracts in different organs
of plants or suspension cells. For example, inhibition of SABP1, which was purified from tobacco leaves
and suspension cells as a cytosolic (peroxisomal) catalase (SABP1-CAT1) mediated by SA may result
in the H2O2 burst seen during the hypersensitive response (HR) leading to the activation of defense
proteins [25,29]. Additionally, in Arabidopsis, an SAPB1 protein named CAT2 has been identified in
leaves pretreated with SA [30]. However, how SA binds SABP1 remains unclear.

Another protein identified as SA-binding protein 2 (SABP2) from tobacco exhibits high affinity
for SA (Kd = 90 nM). SABP2 has methyl salicylate esterase (MeSA) activity, converting MeSA
into SA and playing a crucial role in the activation of systemic acquired resistance in response to
plant pathogens. Interestingly, T-DNA insertion lines defective in expression of a pathogen-responsive
SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic
SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for
SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via
isochorismate synthase [31]. In addition to SABP2 proteins in tobacco and Arabidopsis, SABP2 ortholog
have been characterized in poplar and potato showed an inhibition of esterase activity in response
to SA in vitro [32,33]. In addition, SABP3, a chloroplastic carbonic anhydrase was identified in
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tobacco as β-carbonic anhydrase [20,25]. This protein also plays a role in the HR and, interestingly
may have antioxidative properties [25]. Recently, other SABPs have been identified and validated
in Arabidopsis, such as thimet oligopeptidases (TOPs), glyceraldehyde 3-phosphate dehydrogenase
(GADPH), glutathione S-transferase, α-ketoglutarate dehydrogenase and thioredoxins [25].

Research on the role of SABPs in response to abiotic stress, is lacking. Recently, Li et al.
(2019) demonstrated that overexpression of LcSABP (an orthologous gene of SABP2) from Lycium
chinense is involved in the regulation of the drought stress response through a SA-dependent defense
pathway in transgenic tobacco plants [34]. However, although several approaches have uncovered
multiple SABPs, none of these proteins seem to function as typical receptors that mediates activation
of the stress response in plants. Therefore, other research groups have proposed different models of
the perception of SA through the master regulator NON-EXPRESSOR OF PATHOGENESIS-RELATED
GENES 1 (NPR1) or the negative regulators NPR3/NPR4 in SA-induced immune responses [35–38].
For example, Ding et al. (2018), reported that, rather than acting as a regulator of NPR1 protein stability,
NPR4/NPR3 function as cotranscriptional repressors that regulate SA signaling independently of NPR1,
demonstrating that the recognition of SA can occur through the contrasting roles of SA-binding
NPR proteins [35]. All this evidence reported by different research groups and other research is
various aspects are complementary, ultimately allowing us to establish a molecular scenario in which
SA signaling occurs under biotic stress: (1) SA alone cannot induce a response in plants, but must
orchestrate the response through protein components that transmit the signal during the plant defense
response; (2) The presence of SABPs indicates that there exists a mechanism independent of NPR1
that plants must control the transition of the stress response towards their cellular metabolism; and (3)
The recognition of SA by NPR1 receptors or their paralogs NPR3 and NPR4 would be under strict
regulation, with contrasting roles that depend on a wide range of SA concentrations, which would
partially explain the different responses observed between different plant species.

2.2. SA as a Mitigator of Abiotic Stress

Abiotic stress is one of the most challenging threats to agricultural systems and productivity of
crop plants. It is difficult to estimate the effects of abiotic stress on crop production, but there is a
substantial impact on plants. Phytohormones constitute a solid tool to improve the effects of stress
on crops of high commercial demand. In particular, SA has been shown to improve plant tolerance
to abiotic stresses such as metals, ozone, UV radiation, chilling, salinity, heat, cold and drought
[see review 40]. Compared with those on biotic stress, studies on SA-modulated abiotic tolerance have
focused on the physiological level, demonstrating that the protective effect of SA is associated with
the antioxidant system, the accumulation of osmolytes, secondary metabolites or even an increase
in mineral nutrients [39]. It is clear that SA is part of a complex signal transduction network, and
its protective effects may differ by the species and developmental stage of the plants, their genetic
background (dicotyledonous vs. monocotyledonous plants), the concentration of exogenous SA and
its endogenous level in a given plant. In this context, the use of plants cells as a simplified and
amenable experimental model has allowed the study of SA-induced signaling mechanisms that would
be too complex in plant tissues or organs [40]. Several lines of evidence using plant cells suggest
that signaling pathways components such as reactive oxygen species (ROS), abscisic acid (ABA),
Ca2+ and phospholipids interact with the SA signaling pathway [2,23,24,41]. However, compared to
those involved in biotic stress, the molecular mechanisms involved in abiotic stress in response to SA
remain poorly explored. Therefore, we focus on discussing the regulation of some major players in the
signaling pathway mediated by phospholipids in response to SA with a focus on plant cells.

3. Phospholipid Signaling in Plants

Phospholipids are the main and vital components in all membranes in eukaryotes.-Most membrane
bilayers comprise structural membrane lipids, such as phosphatidylethanolamine (PE) phosphatidyl
choline (PC) and phosphatidylserine (PS), which together account for 70%–80%, followed by
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phosphaytidylglycerol (PG) and phosphatidylinositol (PI) (5–10%). Phospholipids are composed of two
fatty acid tails, glycerol, a phosphate group and a polar head group (Figure 1). Phosphoinositides (PPIns)
is a term used to describe the seven types of phosphorylated PIs and are the best examples of lipids
with important regulatory functions in various cellular processes, including the control of membrane
trafficking, cytoskeletal remodeling, ion transport and signal transduction [9,42]. In this context,
lipid signaling in the membrane is the perfect mechanism for information transmission throughout the
plasma membrane, cytosol and other organelles, particularly the nucleus [43,44].
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Figure 1. Phospholipid hydrolysis sites by phospholipase A1 (PLA1), phospholipase A2 (PLA2)
phospholipase C (PLC) and phospholipase D (PLD). Figure shows a representation of a phospholipid
with the three major phospholipases involved in its hydrolysis and the bond hydrolyzed by them in
glycerophospholipids with an arbitrary composition of fatty acids. The hydrolysis site is indicated in
dashed red arrows. Solid black arrows indicate a phospholipid of plasmatic membrane.

Phospholipid-mediated signaling involves the generation of messengers by phospholipases and/or
lipid kinases [7]. Phospholipases are classified according to the site of phospholipid cleavage and the
nature of their products: A1, A2, C and D (PLA1, PLA2, PLC and PLD, respectively) [40,45] (Figure 1).
Some phospholipases are characterized by their strict substrate preference. For example, PLCs are
either phosphoinositide-specific PLCs (PI–PLCs) or nonspecific PLCs (NPCs). PI–PLCs hydrolyze PIP2,
generating two second messengers—IP3 and diacylglycerol (DAG). In mammals, IP3 binds to specific
calcium channels, triggering the release of calcium from internal stores (such as the endoplasmic
reticulum) into the cytosol. No IP3-binding channels have been identified in terrestrial plants [46];
however, reports have indicated that IP3 can be phosphorylated into higher phosphorylated forms,
such as inositol–hexakisphosphate (IP6; also known as phytic acid) by inositol kinases (IPKs) [7,42].
Instead, DAG in plants is rapidly phosphorylated by DAG kinase (DAGK) to produce PA, which has
been shown to exert several regulatory functions [47]. PA can also be formed by the hydrolysis of PC,
PG or PE, via the action of PLD [48] (Figure 2). The specific phospholipids at various intracellular
locations is essential for the regulation of a range of important cellular processes. It has been well
characterized that the recruitment of proteins to the plasma membrane is fundamental to initiate and
regulate signal transduction events [49].
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membrane-bound diacylglycerol (DAG) and IP3. While DAG is rapidly phosphorylated by DGK to
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IP3 diffuses into cytosol (dashed red arrow) where is converted to IP6 for which several new signaling
functions are emerging. Dashed black arrow indicate regulation (either directly or indirectly) of
downstream targets. Solid black arrow indicates calcium release from vacuole.

3.1. Phospholipid Signaling-SA Connection

As reviewed in previous section, while protein components are essential for SA signaling,
important roles for lipids and their enzymes have also been revealed to be an essential part of SA signal
transduction. The importance of some components of phospholipid signaling in response to SA can be
briefly illustrated by a few examples. In Arabidopsis suspension cells, Krinke et al. (2009) demonstrated
that SA stimulation led to rapid activation of PLD; however, when PLD activity is modified due to the
presence of primary alcohols and consequently reduces PA levels, transcriptomic changes stimulated
by SA are affected [50]. Interestingly, in the same model, it was shown that PI–PLC substrates and
products participate in SA-triggered transcriptomic remodeling [40] Therefore, these two studies
clearly show a connection between lipid signaling and SA in controlling gene expression. In contrast,
other research groups have contributed by focusing on enzyme activity in vitro, in vivo lipid labeling
in different plant cell cultures or the generation of mutant plants to establish the role of phospholipids
in SA signaling.

3.2. SA Differentially Alters PLC and PLD Activity in Plant Cells

Plant cell cultures are useful tools for investigating of physiological phenomena such as cell
proliferation and differentiation in plants. In such experimental systems the environment should be
completely controllable, and the population should be homogeneous. Furthermore, if the model is
well characterized it can provide a suitable system for the study of intracellular signaling in plants.

However, to the best of our knowledge, the consequences of age-related changes in
phosphoinositide metabolism regarding plasma membrane signaling have not been addressed in detail.
For this reason, our research group carried out a study focused on two key phospholipases with
relevant functions in plant signaling, PI–PLC and PLD, to evaluate the effect of SA on the enzymatic
activities during the culture cycle of C. chinense cell suspensions. In this context, our first hypothesis
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was that, during the cell growth cycle, constant metabolic changes occur, and phospholipase function
is probably an effective way to control these processes. To this end, we investigated whether different
concentrations of SA (25–200 µM) for 30 min affected the activity of PI–PLC and PLD in cell cultures.
In vitro assays with a radiolabeled substrate 3[H]-PIP2 and 3[H]-PC, were using in both assays to
measure the formation of IP3 for PLC activity and choline for PLD activity. Our data showed that SA
treatment differentially modified PI–PLC and PLD activities in a dose-dependent manner. Interestingly,
PI–PLC and PLD activity was stimulated mainly by 25-µM SA [51]. In contrast, with 200 µM SA,
PLC activity was inhibited, but not PLD activity [52]. Activation of PLD in response to SA was also
observed in cell suspensions of Arabidopsis treated with 250-µM SA at 45 min after SA treatment [46].
Taken together, these results show that SA uses phospholipid-mediated signaling machinery for
signal transduction, suggesting finely tuned regulation of this hormone mechanism. Furthermore,
the identification of multiple isoforms of PLC and PLD, as well as their weak expression patterns
of enzymes according to DNA chip technology in Arabidopsis, Oryza sativa and Glycine max, suggest
different regulatory mechanisms in response to exogenous phytohormone treatment [25,53].

4. Association between Phosphoinositide Lipid Second Messengers and SA

4.1. Physiological Role of PIP2 in Plants

PIP2 is synthesized by phosphorylation at the D-5 position of the inositol ring of PI4P by
phosphatidylinositol 4-phosphate-5-kinase (PI4P-5 K). In plants, PIP2 represents less than 1% of
membrane phospholipids and performs various key cellular functions far beyond its role as a precursor
to IP3 and DAG. Among the widely reported functions include its role in actin cytoskeleton organization,
dynamic recruitment of cytoskeletal proteins, signaling to the plasma membrane, intracellular vesicular
trafficking secretion and stimulation of PLD (for review see [47,54,55]. For instance, the levels of PIP2

change in response to environmental stresses, including wounding [56], salt or osmotic stress [57–59]
and heat [60]. In recent years, PIP2, PI4P and its synthesizing enzyme, PI4PK, have been intensively
studied in plant cells due to their roles in signal transduction, not only as precursors of second
messengers, but also as membrane-bound regulators of signaling proteins [61]. In this sense, several
proteins regulated by PI binding have been identified; in some studies, these proteins have been termed
PI “modulins” [21,62] A. thaliana root hairs and pollen tubes [63] and as well as hypocotyls of Brassica
oleracea [64] have been used as models to study PIP2. Various reports have indicated the presence of
PIP2 in the membrane microdomains of pollen tubes or in the plasma membrane of tips of root hair
cells [65–67]. Disruption of PIP2 (biosynthesis or hydrolysis) interferes with vesicle trafficking and
affects pollen tube growth, supporting a role for PIP2 in the regulation of pollen tube growth [67–69].
The involvement of PIP2 in mediating plant adaptations to stress, such as salt or osmotic stress was
evaluated in Arabidopsis plants by Dewald and coworkers (2001) [57]. These authors reported the
accumulation of PIP2 in plants, suggesting that PIP2 plays an important role in the stress response
by modulating the activity of cytoskeletal-associated proteins and/or modifying vesicle trafficking in
response to osmotic stress.

4.2. Role of PIP2 in SA Signaling

The importance of hormones in PIP2 turnover can be briefly illustrated by a several examples.
Tejos et al. 2014 reported that exogenously applied auxin modulates PIP2 levels and that the PI4P

5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and
basal cargoes, such as PIN-FORMED transporters (which are essential for directional movement of
the auxin) for the plant hormone auxin in the plasma membrane polar domains in Arabidopsis root
cells [70]. In Arabidopsis suspension cells radiolabeled with 33P, [50], showed that SA activated a type-III
phosphatidylinositol-4-kinase (PI4 K) accompanied by a rapid increase in the labeling of PI4P and
PIP2. In this context, it is important to understand how SA could activate PI4 K in other plant models
species. In this sense, Sasek et al. 2014 [4] showed that a double knockout mutation of two isoforms of
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PI4 Kβ1β2 triggers SA signaling. In 2011, our research group performed an in vitro enzyme assay of
microsomes extracted from C. chinense Jacq. cells 30 min after SA treatment. The results showed that
SA induced an increase in lipid kinase activities leading to PI4P and PIP2 and a decrease in PI–PLC
activity [52]. Similarly, a SA-induced increase in PIP2 content has been reported in Arabidopsis cells [40].
The increased PIP2 level in these studies could be seen as a way to supply substrates for the action
of PI–PLC; however, since the activity of PLC is inhibited by SA, it is inferred that the accumulation
of PIP2 can stimulate PIP2-dependent PLD isoforms or other PIP2-PLC isoforms that may have been
differentially affected by SA [50,52]. These findings strongly suggest that PIP2 is a component of
the SA signaling pathway and that the activation of this molecule is necessary for the SA response.
Furthermore, it cannot be excluded that protein kinases act upstream in response to SA. For further
insight, the identification of PIP2-binding proteins crucial to the SA-signaling cascade is imperative.

4.3. PA Is Involved in SA Signaling

Phosphatidic acid (PA) is a central intermediary in glycerolipid biosynthesis and a potent lipid
mediator involved in the regulation of various cellular processes such as lipid metabolism, signal
transduction, cytoskeletal rearrangements and vesicular trafficking [1,48,71,72]. The concentration
of this phospholipid in Arabidopsis leaves ranges from 50 to 150 µM, representing 1% of total
phospholipids [11,71]. PA is described as an important signaling molecule in plants and animals.
The formation of this lipid can increase as a rapid response (minutes) and is transiently generated
in response to biotic and abiotic stresses. This signal-induced PA is produced via two distinct
enzymatic pathways. The first route is accomplished in a two-step enzymatic process that involves the
generation of diacylglycerol (DAG) from inositol phospholipids catalyzed by PLC, followed by the
production of PA through the phosphorylation of DAG by DGK [73,74]. In the other route, PA can be
formed directly through the hydrolysis of structural phospholipids such as phosphatidylcholine and
phosphatidylethanolamine by PLD, mostly contributing to the formation of this molecule [1,73–75].
The signal is attenuated by the action of PA phosphatase or by the conversion of PA into DAG
pyrophosphate (DGPP) by PA kinase [76]. The participation of lipid metabolism and SA signaling
has been evident in recent years. The identification of SABP2 (a protein with lipase-like activity)
and its involvement as an essential component in SA triggered signaling is a clear example of this.
Recently, the biologic importance that PA could have in hormone signaling has gained increase
amounts of attention. Interestingly, several independent studies have determined that the PA response
is biphasic during the host–pathogen interaction in cells/tissues of tobacco and Arabidopsis as well as in
response to treatment with biotic and abiotic elicitors such as SA [72,77].

To understand the role of PA in signal transduction and hormone responses in depth, several
research groups have used knockout mutants of the PLD genes or application of 1-butanol (an antagonist
of PLD-dependent PA production), which results in an inactive phosphatidyl alcohol [78–80].
PLD-derived PA is involved in regulating various phytohormone signaling pathways, including
those of abscisic acid (ABA), gibberellic acid, ethylene and cytokinin [71,81,82]. However, few studies
have investigated the molecular mechanism that connects PA with the SA pathway. In this regard,
studies in plants have shown that SA increases PA levels during systemic responses [83] and stomatal
closure [45] and that exogenous PA can prevent the disruption of actin filaments caused by SA [84].
However, the mechanism of PLD-derived PA involvement in SA signaling remains unclear. In this
regard, Janda et al. 2015 suggested that n-butanol, a primary alcohol that modulates the activity of PLD,
is involved in the transport process of NPR1 to the nucleus in A. thaliana transgenic plants [78]. Another
example is that SA-induced PLDœ-PA signaling mediates NADPH oxidase RbohD activation and ROS
production, suggesting that PLDœ activation is an important component that functions downstream of
SA [75]. Additionally, using microarray analysis, Krinke et al. 2009 investigated whether genes that
responded to SA via PLD-produced PA were inhibited in the presence of 1-butanol [50]. Their results
revealed 97 genes that responded to SA, among which some encoded transcription factors and were
PR genes (e.g., NPR1, NIMIN1, NIMIN2, WRKY38, WRKY66) [50,75,78]. Additionally, our group
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observed an increase in PA during SA treatment in the cells of C. chinense; in contrast, 1-butanol caused
those levels stimulated by SA to decrease [85]. Taken together, these results suggest that PLD-derived
PA is an important mechanism in SA signaling.

4.4. PA-Binding Proteins Involved in Hormone Signaling

As discussed above, the activation of PLC or PLD can lead to PA production. One key PA action
as a signaling molecule occurs via its direct interaction with proteins. However, how does PA interact
with its effector proteins and how is its specificity likely achieved? Work by Kooijman et al. (2009)
suggested that PA undergoes double deprotonation and acquires a double negative charge; thus,
the formation of the hydrogen bond between the PA phosphate group and primary amino group
occurs later for a positively charged amino acid residue on the protein, such as lysine or arginine [86].
Furthermore, an increase in the electrostatic interaction of PA is necessary for its specific binding to
other phospholipids present within the plasma membrane [74,87,88]. The PA-protein interaction can
have two effects: modulation of catalytic activities and intracellular distribution. Substantial progress
has recently been made in understanding how PA interacts with various proteins and how it modulate
activities in signaling events. In this sense, excellent reviews have reported that different proteins
may be possible targets for PA. Among them are protein kinases and phosphatases, lipid kinases, ion
channels and NADPH oxidase [48,71,74,76,89,90]. Regarding hormone signaling, direct molecular
targets of PA have been identified in abscisic acid (ABA), gibberellic acid, ethylene, brassinosteroid (BR)
and cytokinin signaling pathways [71]. In the ABA responses, PLDœ1-derived PA has been shown
to bind to ABI1 PP2C, a protein phosphatase that negatively regulates the intracellular response of
ABA [91]. The amino acid residue required for the PA-ABI1 interaction has been identified and resides
in the N-terminal region of ABI1 [71,91]. PLDœ1-derived PA has also been shown to interact with
and stimulate NADPH oxidase. For example, Zhang et al. (2009) showed that PLD-PA is involved in
NADPH-oxidase (isoform RbohD) regulation, especially by PA-RbohD physical interactions. The PA
binding site in RbohD is located in the cytosolic region between the two EF hands and N-terminus [92].
The role of those proteins has been well described in studies on the response to ABA; however, studies
focused on the identification of some PA binding proteins in response to SA are scarce. There is a study
published by Matousková et al. 2014 demonstrating that the negative effect of SA on actin dynamics in
Arabidopsis seedlings was abolished by binding of the capping protein (CAP) with PA [84]. Research
into the exact functions of PA in SA-triggered signaling is one of the most interesting frontiers of
research in plant cells.

5. Salicylic Acid, Phospholipid Signaling and Secondary Metabolites in Plant Cells

Most research on SA has focused on its role in plants in response to biotic and abiotic stresses.
However, the SA signal spreads to other parts of the plant to induce multiple defense responses,
including the production of certain classes of secondary metabolites. Thus, it is important to study signal
transduction related to stress conditions because it would help in the development of strategies for the
commercial production of target compounds that activate or suppress certain metabolic pathways.
Much effort has been spent to understand the cascades of reactions that result in the formation and
accumulation of secondary metabolites in plant cells in response to SA. In this sense, it has been shown
that signaling molecules lead to genetic expression and biochemical changes in a specific metabolic
pathway [93,94]. Additionally, a whole-genome approaches such as metabolic and transcriptomic
profiling in the roots of Arabidopsis [95], in the seeds of Triticum estivum L. [96], in Rehmannia glutinosa
hairy roots [94] and in Scutellaria baicalensis [97], have been used to determine the genes specifically
regulated in response to SA treatment. Extensive studies have indicated that SA is an effective
elicitor of secondary metabolites in various plant species. In SA-treated Linum album cell cultures,
podopyllotoxin production was 3-fold higher than that in control cultures [98]. Ginsenoside in Panax
ginseng adventitious roots [99], xanthonescadensin G and paxanthone in Hypericum spp. suspension
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cells and hairy root cultures [100], and stilbene in suspension cell cultures of Vitis vinifera [101] can be
induced by SA.

These results suggest that the accumulation of secondary plant metabolites by SA could modulate
the signaling network associated with the secondary metabolism biosynthesis pathway. For example,
Hao et al. 2014 reported that intracellular H2O2 elicited by SA is a secondary messenger of signal
transduction that promotes phenylalanine ammonia–lyase (PAL; the first enzyme involved in the
accumulation of phenolic compounds) activity and participates in rosmarinic acid accumulation in
Salvia miltiorrhiza cell cultures [102].

Currently, the SA pathway may be associated with the phospholipid signaling system. Few reports,
however, have linked the components of phospholipid signaling activation with elicitation by SA
with respect to secondary metabolism. For example, Vasconsuelo et al. (2003) suggested that IP3

signaling is involved in chitosan-induced accumulation of anthraquinone synthesis in Rubia tinctorum,
but the stimulation decreases with the PLC antagonist neomycin and U73122 [103]. In 2014, Ruelland
et al. reported that PI–PLC products (IP3 or DAG) and substrates (phosphoinositides) participate in
SA-triggered transcriptomic remodeling in A. thaliana suspension cells [40].

To further understand the role of phospholipid signaling and secondary metabolism in response
to SA, our group used in vitro cultures of suspension cells of C. chinense Jacq. This crop species has
high commercial potential and generates high-economic-value metabolites including capsaicinoids
and vanillin.

The exposure of C. chinense suspension cultures to SA leads to an increase in the accumulation
of vanillin, the phenolic moiety of capsaicin [104]. This response is preceded by an increase in the
activity of PAL, a key enzyme involved in the phenylpropanoid pathway in Capsicum and requires
the participation of phospholipid signaling [19,52]. However, it is unclear whether the role of
phosphoinositide-dependent pathways controls PAL gene expression in C. chinense cells. Recently,
in 2019, we reported the role of the PI–PLC pathway in the transcriptional regulation of CchPAL1
and CchPAL5, which are putative PAL genes in Capsicum (Figure 3). We observed that an increase in
phosphoinositide levels appears to be important in the C. chinense SA-specific response, with PI–PLC
signaling contributing mainly to a common SA response [41]. In contrast, when PLD/PA synthesis
is blocked by 1-butanol in cells stimulated with SA, the transcriptional regulation of CchPAL1 and
CchPAL5 in response to SA does not involve the PLD pathway.
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may be identified by a receptor and activate a signaling cascade through phospholipases (PLC and PLD).
PAL genes expression is, in part, under the control of SA and is mediated by second messengers such
as IPn (dashed black arrow). These second messengers may increase Ca2+-dependent signaling
(solid black arrow), which results in the regulation of transcription factors or protein kinases (dashed
black arrow), and therefore causing an increase in the expression levels of phenylalanine ammonia–lyase
(PAL) genes. However, in the presence of U73122 or neomycin (inhibitors of PLC signaling), the levels
of DAG and IPn (second messengers) are reduced (solid red arrow), which leads to the alteration
of intracellular Ca2+ levels (dashed red arrow) that may affect the accumulation of PAL mRNA.
The responses of cells to SA, result in the production of second messengers, such as DAG, IPn or PA,
generated from the phospholipid-signaling pathway and are involve in the regulation of PAL activity

and in the production of vanillin.
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are still potential opportunities for future research focused particularly on the role of SA with 
phospholipid signaling. The data generated in future research will allow to develop of strategies 
based on the exogenous application of SA to improve plants stress responses, increasing the quality 
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6. Conclusions and Perspectives

In this review, we summarized various reports describing the roles of plant phospholipids as
signaling molecules involved in the SA response. Increasing amounts of evidence from biochemical and
genetic studies suggests that phospholipid signaling plays an important role in biotic and abiotic stress.
Interestingly, as demonstrated or inferred by multiple studies, components of phospholipid signaling
such as PA, PIP2 and PI orchestrate an amplification of the SA signal leading to downstream defense
responses involving protein–protein and lipid–protein interactions. However, due to the intricate
complexity of phospholipid signaling and the experimental conditions (in vitro versus in vivo) in
various systems, there are still questions about how signal transduction by SA could occur in plant cells.
Future studies using combinations of genetic and cellular approaches could help identify direct
lipid–protein interactions in a (sub) cellular context. Likewise, tools such as metabolomics could
provide a global perspective of the changes in secondary metabolism in plants, which will allow us to
show the impact that each of the components of phospholipid signaling makes on the SA molecular
scenario. In particular, the following questions are important to clarify in the lipids-SA connection in
plants: (i) Do the components of the NPR1 independent pathway interact with phospholipid mediators?
If this happens, what would that molecular mechanism be like in cell, tissues or organs in plants?
(ii) In the cellular context, is the spatial location of the components of phospholipid-mediated signaling
(phospholipases, substrates/products) key to modulating the response to SA? (iii) An intriguing aspect
of lipid signaling regulation may be post-translational modifications and their role in modulating the
activities of PLC and PLD in response to SA.

In conclusion, phospholipid signaling is a component of the response to SA in plants and
there are still potential opportunities for future research focused particularly on the role of SA with
phospholipid signaling. The data generated in future research will allow to develop of strategies based
on the exogenous application of SA to improve plants stress responses, increasing the quality and
production of crops.
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