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We introduce a methodology to infer zones of high potential for the habitat of a species, useful
for management of biodiversity, conservation, biogeography, ecology, or sustainable use.
Inference is based on a set of sites where the presence of the species has been reported. Each

site is associated with covariate values, measured on discrete scales. We compute the predictive
probability that the species is present at each node of a regular grid. Possible spatial bias for
sites of presence is accounted for. Since the resulting posterior distribution does not have a

closed form, a Markov chain Monte Carlo (MCMC) algorithm is implemented. However, we
also describe an approximation to the posterior distribution, which avoids MCMC. Relevant
features of the approach are that specific notions of data acquisition such as sampling intensity
and detectability are accounted for, and that available a priori information regarding areas of

distribution of the species is incorporated in a clear-cut way. These concepts, arising in the
presence-only context, are not addressed in alternative methods. We also consider an uncer-
tainty map, which measures the variability for the predictive probability at each node on the

grid. A simulation study is carried out to test and compare our approach with other standard
methods. Two case studies are also presented.
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1. Introduction

All species of animals and plants occupy a more or less well-defined geographical
region, called their areas, or ranges, of distribution. It is one of the most fundamental
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expressions of its ecology and evolutionary history (Udvardy, 1969; Brown, Stevens
and Kaufman, 1996; Gaston and Blackburn, 2000). A species distribution is the
product of a complex combination of processes (Gaston and Blackburn, 2000), that
begin with the apparition of the species by evolution, and its movements in eco-
logical and geological times. The distribution is determined by factors affecting: (1)
the regions in space where the right autoecological conditions for the survival of the
species (climate, soil, energy availability, etc.) are met, (2) the regions of space that
are available to the dispersal of the species, and (3) the presence or absence of crucial
population interactions, that is, key competitors, predators, diseases, and mutualists
(seed dispersers, pollinators, and so on). It is quite likely that at different spatial and
temporal scales this complex of factors operate with different intensity.

Detailed knowledge of distribution areas is relevant to address basic questions in
biogeography and ecology, but it is also useful in the management of biodiversity for
conservation or sustainable use. Problems like the relative roles of ecological and
historical factors in shaping them, how the shape of the area changes with the spatial
scale of observation, and the relative importance of the local (or alpha) and the
turnover (or beta) components of biodiversity, depend on being able to estimate in
detail such areas. Moreover, such detailed knowledge can be used to determine the
areas best suited for conservation, the regions where given activities can endanger
protected species, and so on.

Unfortunately, for most species, the knowledge biologists have about distribution
areas is very rough and often reduced to the few localities where a species has been
observed. Ecologists and biogeographers determine the area of distribution by
starting with ‘‘points’’ (in practice, localities) where the species has been registered or
observed. A number of informal procedures are used to extrapolate from a cloud of
points in the geographical space to a set of polygons that represent the area of dis-
tribution (Jennrich and Turner, 1969; Udvardy, 1969; Rapoport, 1975). Generally
speaking, such extrapolation is entirely based on the field experience of the
researchers and it is done at a very rough scale. The fundamental data that bioge-
ographers use to base their extrapolations are the presence points. Detailed faunistic
or floristic studies yield lists of observations of species in localities. Absences are
mostly inferred from knowledge of the biology of the species, or from the experience
of field biologists. Thus, an important feature of the data available in this setting is
that one may only be certain of sites of presence, whereas sites of absence are not
readily available. The problem in this paper is to infer zones of high probability for
the habitat of species, using only reported sites of presence. When legitimate sites of
absence are also available, this problem can be approached from many directions,
such as generalized linear models (Austin, 2002), autologistic models (Pettitt, Weir
and Hart, 2002), or Kriging (Heagerty and Lele, 1998).

We explicitly assume that (1) the scale is such that all the high similarity areas can
be reached by the species, and that (2) the biotic interactions can be ignored. If the
first assumption is false, our procedure will calculate the ‘‘fundamental niche’’ of the
species (Peterson, Stockwell and Kluza, 2002). How important is the second
assumption is a matter of empirical research and will depend on the specific cases.

We propose a Bayesian methodology for quantifying the probability that the
species is present at each site, given that the sites in the region possess a known set of
physical characteristics: the covariates. This probability will be estimated using
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information on sites where individuals of the given species have been detected, with
the capability of incorporating available prior knowledge.

An important feature in this setting is the fact that detected sites of presence
typically occur clustered around roads, or near populated areas. From now on we
refer to this as spatial bias. It describes heterogeneous distributions of sampled
points, in a geographical sense. Since each site has associated values of additional
covariates, any geographical distribution of points induces a distribution of points in
the covariate space. These points may also be non-uniformly distributed, so in
addition, a notion of covariate bias is relevant. Clearly, covariate bias depends on the
nature of spatial bias and on the distribution of covariates over the whole region of
interest. Although spatial correlation may also be present, we do not consider it
explicitly in our approach because the nodes are sufficiently large so as to safely
disregard local correlations. Spatial correlation is nevertheless indirectly considered
through the covariates and spatial bias.

Assessment of potential zones of presence is based on values of the covariates.
This means that even if samples were spatially biased, it is possible that they rep-
resent sampled covariates that are unbiased. However, in general we must allow for
the fact that covariate bias may be present, induced by spatial bias. Covariate bias
hence governs the probability that a site with a given set of covariate values appears
as a physically examined site, over the period of observation considered.

In addition, there is the notion of detectability of a species. Even if the species is
present at a physically examined site, the species may not be detected. Detectability
is an intrinsic property of the species, for a given observation procedure imple-
mented in the field. This is interpreted as the probability of detecting the presence
of a species, given that it is present at an observed site. Probability of observation
refers to the probability of actually registering the presence of a species at a site,
once probability of presence, covariate bias, and detectability have been accounted
for.

Some methods do exist and have been extensively used for constructing maps of
distribution areas. However, few are formulated in statistical terms, and none appear
to adequately take into account the available prior information. Methods mostly
used are: Bioclim (Busby, 1991), Domain (Carpenter, Gillison and Winter, 1993),
FloraMap (Jones and Gladkov, 1999), and GARP (Stockwell and Noble, 1991;
Peterson and Cohoon, 1999; Stockwell and Peters, 1999; Peterson, Stockwell and
Kluza, 2002). These algorithms are becoming increasingly popular, not only to
address scientific questions (Peterson, Soberón, and Sánchez-Cordero, 1999), but
also to estimate routes of entrance of invasive species (Soberón, Golubov and Sar-
ukhán, 2001), risk of damage by plague species (Sánchez-Cordero and Martı́nez-
Meyer, 2000), and other applied questions.

In all the above algorithms the opinion or knowledge of experts is used, a pos-
teriori and informally, to correct blatant errors, mostly overprediction. The experts
often reduce the surfaces predicted by the methods without resorting to explicit
algorithm or criteria. This practice suggests that in applications, prior knowledge or
expert opinion is indeed taken into consideration, although not transparently. One
important aspect of the approach we consider in this paper is that prior knowledge is
readily recognized and utilized in a clear-cut way for the production of relevant
maps. In addition to establishing statistical inference for the map of probabilities of
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presence, we propose a map of uncertainty, which allows for greater insight into the
nature of potential areas of distribution.

2. The statistical model

2.1. Notation

Let R be the set of nodes determined by a regular, square grid, which covers the
region of interest. The probability of potential habitation at s 2 R usually represents
potential over a square centered on s, taken to be the same size as a square on the
grid. For each s 2 R, an M-dimensional vector e(s)=(e1(s),…,eM(s)) of covariates is
assumed to be known. The M covariates are considered either categorical, or mea-
sured on discrete scales, so ek(s) 2 {1,…,Rk}, 1 £ k £ M, being Rk the number of
classes of the kth covariate. The set of all conceivable covariate configurations is
F={1,…,R1}· … · {1,…,RM} (although many of them may not actually occur over
R), so that #ðF Þ ¼

QM
k¼1 Rk.

Observed data consists of n nodes, s1 ,…, sn, corresponding to n exact geo-
graphical locations of positive observation, that have been identified with the nearest
s 2 R. Some of these nodes may be multiple, since two or more observations may
have occurred at different locations sharing the same center. For f 2 F, we denote by
C( f) the number of nodes in the sample such that e(si)=f, 1 £ i £ n. Let
C=(C( f))f 2 F be the vector of all counts, arranged according to F ’s lexicographical
order. The vector C summarizes observed data, and any modeling approach should
be aimed at describing the probabilistic behavior of C. Notice that

P
f 2 FC( f)=n,

and that many of the C( f) may actually be zero, since n is usually very small relative
to # (F). A model parameterized to account for all f 2 F would be inconvenient in
that it would pose an estimation problem with sparse data. Reduction in parameter
dimensionality based on pairwise interactions between covariates will be considered
and appropriate notation is required.

Let G be the set of index pairs (a, b), 1 £ a<b £ M, J=(a, b) be a generic pair in
G, eJ (s)=(ea(s), eb(s)), and FJ={1,…,Ra} · {1,…,Rb}. For g 2 FJ, let CJ ( g) be the
number of nodes in the sample such that eJ (si)=g, and CJ=(CJ ( g))g 2 FJ.

Let ps be a
binary random variable which takes on the value 1 if the species is present at s, and
the value 0 otherwise. The map of probabilities of presence for the species over R is
the probability P( ps=1), as a function of s. A fundamental underlying notion is that
presence is determined by covariates, rather than geographical location. Let
U=(U1, … ,UM) be the random vector of covariate values tacitly selected by the
species when it makes itself present. The fundamental assumption that justifies
inference of areas of high potential from reported sites of presence via the consid-
eration of covariates is that P ( ps=1) =P(U=e(s)). By simplifying this assumption,
postulating that presence is determined only by the corresponding value UJ=(Ua,Ub)
of the pair J, this translates to

Pðps ¼ 1jJÞ ¼ PðUJ ¼ eJðsÞjJÞ: ð1Þ
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For g 2 FJ define hJ(g)=P(UJ=g| J), and hJ=(hJ(g))g 2 FJ
(hJ specifies the density of

UJ). To incorporate sampling bias, let d(s) denote the probability that in a random
excursion to the field, node s is examined for presence. This is spatial bias, and
induces ‘‘covariate bias’’, which we denote by vJ(g). This last quantity is the prob-
ability that in a single outing, a node having value g for the covariate pair J is
physically examined for presence. The relationship between spatial and covariate
biases is

vJðgÞ ¼
X

fs:eJðsÞ¼gg
dðsÞ: ð2Þ

As we have noted, detectability is an inherent property of the species, but it may
depend on e(s). In what follows, for notational simplicity and because we believe it to
be reasonable, we consider constant detectability d, that is, d is the probability of
detecting a species given that it is present at a visited node. Considerations and
notations may be defined to allow for non-constant detections as well, but we do not
address theme here. We make a few comments in Section 6 regarding these
assumptions.

If os denotes a binary variable that takes on the value 1 if a species is observed at
node s, and 0 otherwise, we have that

Pðos ¼ 1jJÞ ¼ PðUJ ¼ eJðsÞjJÞvJðeJðsÞÞd: ð3Þ

The probability of presence, P(UJ=eJ(s)| J), will not be identifiable without first
discerning vJ(eJ(s)) and d. Our method will assume that both of these quantities are
given as inputs. Regarding vJ(eJ(s)), we assume this is given exactly via (2) and
specification of d(s), which is either assumed to be spatially uniform, or to be given
input generated by the user by previous means.

Notice that what is indeed random and observed is UJ, the value of the covariate
pair at a recorded site of presence, rather than os itself, which is fixed at the value 1 as
a consequence of design. By incorporating the parameterization, and using (1) and
(3), we obtain

Pðos ¼ 1jhJ; JÞ ¼ PðUJ ¼ eJðsÞjhJ; JÞvJðeJðsÞÞd: ð4Þ

The notation z h0 ¼ ðhJ ÞJ2G and C0 ¼ ðCJ ÞJ2G will also prove to be useful to denote
pairwise parameters and observed pairwise counts. Dimensionality will be reduced ifP

a<b RaRb < #ðF Þ, which is typical in our context because the Rk’s are not small.

2.2. Formulation

Consider a fixed pair J, and let N be the total number of nodes examined in the
timeframe considered, that gave rise to the n nodes of presence. Temporarily assume
N is known. If the N sampled nodes can be considered independent (if hJ is assumed
as a random variable a weaker assumption of exchangeability may be used), each
one can be viewed as having been randomly grouped into one of #(FJ)+1 bins. The
first #(FJ) bins have the possible values of g 2 FJ as labels, and being classified into
one of these bins signifies os=1. The last bin corresponds to a node having resulted
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in os=0. By (4), the probability of a node being classified into bin labeled g is hJ(g)
vJ(g) d. This constitutes a standard multinomial setting, so that if cJ=(cJ(g))g 2 FJ

is a
vector such that

P
g 2 FJ

C
J
(g) £ N, then

PðCJ ¼ cJjhJ;JÞ ¼ sJ 1�
X

g2FJ

hJðgÞvJðgÞd
( )N�

P
g2FJ

cJðgÞY

g2FJ

fhJðgÞvJðgÞdgcJðgÞ;

ð5Þ

where s J is the normalizing constant N !f
Q

g2FJ
cJ ðgÞ!g�1½fN �

P
g2FJ

cJ ðgÞg!��1. For
c a vector of counts such that

P
f 2 F c( f) £ N, we postulate the following model for

C:

PðC ¼ cjh0Þ ¼
X

J2G
pðJÞ kJðcJ;NÞ½ ��1PðCJ ¼ JjhJ; JÞ; ð6Þ

where the constant kJ(cJ,N) is the number of different c configurations that give rise
to the same cJ (this number does not depend on h¢), and p (J) is a probability mass
function over G. It is not hard to show that

P
{c:
P

f 2 Fc( f) £ N}P(C=c| h¢)=1.
One interpretation of model (6) is probabilistic, based on the notion of mixing. A

species is thought of as selecting a pair J at random from G, with probability p (J).
Conditioned on J, the probability of presence at any site s is specified by hJ (eJ(s)).
This induces a multinomial count structure for CJ, which in turn induces a count
structure for C (namely, uniform probability is assigned to all values of C that
produce counts CJ).

The distribution p (J) may be thought of as summarizing the idiosyncrasy of the
species with regard to its appraisal of a site according to covariates. The relatively
simple structure of model (6) (pairs of covariates) is compatible with a principle
stating that species focus on a small set of attributes and simple criteria when
deciding a site for colonization. For example, it is known that for the GARP
algorithm, more than about five variables do not add much predictive power (Pet-
erson and Cohoon, 1999). Although sensible, this principle will require experimental
testing, and our model could provide a contrasting hypothesis for such testing.

Regarding N, it is not the rule that a full record of visited sites is kept, especially
considering historical data, and thus N must be considered to be unknown. How-
ever, for each J we expect that CJ(g)�N hJ(g) vJ(g) d (for large N), and since
P

g 2 FJ
hJ(g)=1, we must have N � NJ ¼

P
g2FJ

CJ ðgÞv�1J ðgÞd�1
l m

for all J. A simple

way to proceed, as we do in the following Sections, is to postulate
N={#(G)})1

P
J 2 GNJ as a working approximation in (6), rather than considering N

itself to be an unknown nuisance parameter.

3. Inference

3.1. Predictive probability

For each pair of covariates, a prior distribution, f ðhJ Þ, is postulated for the
parameter hJ. A way to proceed is to consider J as a parameter (random variable),

Argáez et al.32



and take the p (J)’s as its prior distribution. This is the usual procedure in the
Bayesian analysis of mixture models (inclusion of a further hierarchy by taking the
p (J)’s as random is irrelevant because we are assuming an arbitrary distribution for
J). The elicitation of f (h J) and p (J) is discussed in Section 2. As before, let P(CJ| hJ,
J) denote the multinomial model (5), and f (hJ| CJ, J) denote the posterior distri-
bution of h J given J. Notation p (J|C¢) is used for the posterior probability for pair J.

The law of total probability yields Pðps ¼ 1jC0Þ ¼
P

J2G P ðps ¼ 1jC0; JÞpðJ jC0Þ:
The quantity P(ps=1| C¢,J) is the predictive probability of presence given J, and is
calculated by

R
P ð ps ¼ 1jhJ ; JÞf ðhJ jC0; JÞdhJ . Since P(ps=1| hJ, J)=hJ(eJ(s)), we

obtain by substitution that P ðps ¼ 1jC0; JÞ ¼ E½hJ ðeJ ðsÞÞjC0; J �. Thus, the predictive
probability at node s is given by

Pðps ¼ 1jC0Þ ¼
X

J2G
E½hJðeJðsÞÞjC0; J�pðJjC0Þ: ð7Þ

For each pair J we postulate a Dirichlet distribution as prior for hJ, whose

expression is f hJ jJð Þ ¼ CðaJ Þ
Q

g2FJ
CðaJ ðgÞÞ

h i�1Q
g2FJ

hJ ðgÞaJ ðgÞ�1, where aJ=
P

g 2 FJ
aJ(g), a J(g)>0. The parameter for this distribution is a¢ J=(a J (g))g 2 FJ

.
However, there is no standard closed form for f (h J| CJ, J) resulting from the model
(5), and a Dirichlet prior, under the expressions for the bin probabilities (see
Equation (A.1)). Therefore one needs to resort to numerical methods (MCMC, see
Appendix A) to simulate values h J from f (h J| CJ, J) to obtain the quantities
E [hJ (eJ (s))| C¢,J], and p (J| C¢) involved in (7). The quantity p (J| C¢) can be
interpreted as the posterior probability that the species assigns to pair J in its
preference about colonizing R.

However we discovered an alternative to avoid MCMC, by taking a Dirichlet with
parameters X�J þ aJ as an approximation to the exact posterior distribution, where
X�J ¼ ðX �J ðgÞÞg2 FJ

; with X �J ðgÞ ¼ CJ ðgÞðvJ ðgÞdÞ�1. Inspired by the observation that
X �J ðgÞ represents an approximation of the actual multinomial count related to the cell
probability hJ(g), we would obtain the mentioned Dirichlet as a ‘‘posterior’’. Note
that X �J ðgÞ may not be integer and the rigorous consideration of an alternative model
of this type for the CJ(g)’s would entail the identification of an unknown normali-
zation constant dependant on h J, thus prohibiting inference. Therefore, the X �J ðeJ Þ’s
should only be considered as a device for obtaining our approximation to the actual
posterior. The required expected value in (7) is given by ½X �J ðeJ ðsÞÞþ
aJ ðeJ ðsÞÞ�½N þ aJ ��1. The closed-form calculation of p (J| C¢) is shown in Appendix
B. As far as the approximation is concerned, what is relevant is that, by examining
the distributions f (h J| CJ,J) and f ðhJ jX�J ; JÞ; we observe (numerically) that
E[hJ(eJ(s))| CJ,J] and E½hJ ðeJ ðsÞÞjX�J ; J � are virtually equal. Certainly, the mathe-
matical tractability of f ðhJ jX�J ; JÞ (a Dirichlet) is more appealing. We compare both
approaches in Section 4. It is relevant to note that a precise probabilistic definition
for the concept of ‘‘potential’’ at node s has been established: the predictive prob-
ability given by (7).

In order to display the resulting map, we consider the arbitrary partition
Ij=((j)1)/10, j/10], 1 £ j £ 10, and a gray-scale to plot the predictive probability
P(ps=1| C¢) at each node, in accord with interval Ijs where P ð ps ¼ 1jC0Þ 2 Ijs . We
also evaluate IJ ðsÞ ¼

R
Ijs

f ðhJ ðeJ ðsÞÞjC0; JÞdhJ ðeJ ðsÞÞ. The quantity IJ(s) is the
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posterior probability that hJ(eJ(s)) lies in Ijs ; and motivated by (7), the quantity
IðsÞ ¼

P
J2G IJ ðsÞpðJ jC0Þ provides a level of certainty about the potential plotted in

the first map. It depends both on the posterior distribution of each J, and on the
partition used to display the first map, and may also be displayed using a gray-scale
on the same partition. Maps of uncertainty obtained with MCMC and the
approximation were qualitatively equivalent, even for the most extreme cases (small
n, non-informative prior, and non-homogeneous bias).

The consideration of a measure of uncertainty in maps may be found in just a
handful of papers, varying in flavor and presentation (see for example, Heikkinen
and Högmander, 1994; Högmander and Möller, 1995; De Oliveira, 2000). In our
experience, the usage of the map of uncertainty (or certainty) helps in the inter-
pretation and understanding of the posterior distribution at hand, and enables more
educated conclusions.

3.2. Prior elicitation

For the Dirichlet distribution it is a fact that aJ(g)=a JE[ hJ(g)] , where E[hJ(g)] is the
prior expected value for hJ(g). That is, the values a J and E[ hJ(g)] should be elicited
in order to fix the aJ(g). It would be unusual that the expert provides values directly
for these quantities, and a heuristic procedure to obtain them indirectly is proposed.
We ask the user, based on prior experience and knowledge about the species (but not
using data at hand), to divide R into disjoint regions: region P, where it is very likely
that the species is present, and region A, where it is very unlikely that the species is
present. The complement, I, is implicitly defined, and represents a region of
ambiguity (see Fig. 3(a)). Either P, A, or both may be empty (see Fig. 4(a)).

Consider arbitrary nodes s1 2 P, s2 2 A, and s3 2 I. If eJ ðs1Þ ¼ eJ ðs2Þ ¼ eJ ðs3Þ;
then s1, s2, s3 are called a 3-way contradiction, in the sense that the user’s assessment
is putting the same covariate values in areas with different a priori meaning. Region
R is examined until a 3-way contradiction (if any) is found, and the three nodes
involved are excluded. The examination is repeated, each time with the remaining
nodes, until 3-way contradictions are exhausted. Let R2 � R be the resulting set.
Within R2 there can be other contradictions: If nodes s1 2 P\ R2, s2 2 A\ R2 (or
s1 2 P\ R2, s2 2 I\ R2, or s1 2 A\ R2, s2 2 I\ R2) are such that eJ(s1)=eJ(s2),
then s1, s2 are called a 2-way contradiction. Following a similar procedure, 2-way
contradictions are removed from R2, and the remaining nodes conform the set R1 of
non-contradictory nodes. Notice that R1 is not uniquely determined, because a node
can be involved in several 3-way and/or 2-way contradictions, and the order in which
contradictions are excluded is arbitrary. Nevertheless, the relevant information
contained in R1 is #(R1), which is independent of the elimination sequence.

The setR1 contains the non-contradictory information in the covariates given by the
user. One interpretation of parameter aJ>0 is the amount of information contained in
the prior distribution (Gelman et al., 1995, p. 76). Since the relevant information for
establishment of the species depends on values of the covariates, we are thus motivated
to define aJ ¼ #ðR1Þ½#ðR nR1Þ��1, which takes on values in the range (0,1).

Regarding elicitation of E[hJ(g)] , the idea is to determine the probability of
presence for each g 2 FJ that the user has (implicitly) specified by delimiting P,A,
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and I. By postulating that ‘‘very likely’’ and ‘‘very unlikely’’ in the query above
signify probabilities of 0.95 for P, 0.05 for A, and 0.5 for I (denoting ambiguity), we
define

wJðgÞ¼
ð0:95Þ#fs2P :eJðsÞ¼ggþð0:5Þ#fs2I :eJðsÞ¼ggþð0:05Þ#fs2A :eJðsÞ¼gg

#fs2R :eJðsÞ¼gg
:

Using these values we establish E hJ ðgÞ½ � ¼ wJ ðgÞ
P

g02FJ
wJ ðg0Þ

h i�1
. Finally, since aJ

is the quantity of information contained in the prior for each J, a sensible value for p
(J) is found by normalizing the a J’s: pðJÞ ¼ aJ

P
J 02G aJ 0

� ��1
. Heuristic verification

that elicitation is made sensibly is to calculate the a priori map of potential by means
of P ps ¼ 1ð Þ ¼

P
J2G E hJ ðeJ ðsÞÞ½ �pðJÞ. By inspection, we verify that contours of

P(ps=1) roughly coincide with the areas P, A, and I established by the user
(compare Figs 3(a)–(b), and 4(a)–(b)). In the absence of prior information (that is,
I=R), one would set a J(g)=(RaRb)

)1, a well accepted non-informative prior. For
further details of the elicitation process, see Argáez, Christen and Nakamura (in
preparation).

4. Simulation study

The physical region and corresponding covariates are quite real – the Yucatan
Peninsula in Mexico – but the actual sites of presence of a fictitious species were
simulated. A regular grid of 761 nodes, separated approximately by 12 km, covers
this region (scale 1:1,000,000). Three covariates are considered on this grid: mean
temperature (5 levels), mean rainfall (10 levels), and vegetation type (11 levels).

Our fictitious species is postulated to prefer an ‘‘ideal’’ climate l =(l1, l2, l3). In
order to prescribe how probability of presence depends on e(s), and to incorporate
the notion that the species’ probability of presence decreases as the climate departs
from l, we set P �ð ps ¼ 1Þ ¼ exp �0:5 l� eðsÞ½ �tA l� eðsÞ½ �

� �
in the simulations. Note

that model P* is not a member of the family of models we have developed in our
methodology. This is intentional. The proposed methodology, when fed with sim-
ulated data from (7), gives satisfactory results, and we do not document those
examples here. Instead, we exemplify how procedures react to data generated by
alternative realities that represent types of maps typically latent in biological
applications. The symmetric matrix A=(ahl), 1 £ h, l £ 3, allows for structure
regarding interactions in the components of e(s). By varying l and A we are able to
simulate species with different degrees of sensitivity to an ideal climate. In the sim-
ulation study the function P*(ps=1) may be regarded as ‘‘reality’’. Spatial bias is
obtained by assigning a probability of visiting a node as inversely proportional to its
distance to the nearest road, and covariate bias is defined by using the expression (2).
We reproduce this fact by considering main highways on the Peninsula.

Data for simulations were generated as follows: a species is present at a node s
according to probability P �ð ps ¼ 1Þ, the site s is visited by human observers with a
probability inversely proportional to the distance from s to the nearest road (spatial
bias), and an observation of the species is recorded with probability d (d is fixed at 1
from now on). Spatial bias is tuned in the simulations so that the (random) number n
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has a desired order of magnitude. This simulation scheme produces spatial clustering
that is strikingly akin to actual observed records of presence for species.

We compare our results with ‘‘reality’’, and with results obtained with the alter-
native methods FloraMap and Domain. In addition, we produce the uncertainty
map as explained in Section 1. Maps of potential using Bioclim and GARP were also
obtained, but are not presented here, because these methods output practically all of
the Yucatan Peninsula as high potential in all cases. We only display two repre-
sentative examples. The first example represents a species with high sensitivity
(a11=a22=a33=1, a12=a23=0.9, a13=0.85), and the second example a species with
low sensitivity (a11=a22=a33=1, a12=0.6, a13=0.3, a23=0.1). We only display a
few representative figures. Additional figures are made available on the world wide
web, http://www.cimat.mx/�nakamura/potential.html. In what follows these figures
will be denoted by the prefix ‘‘W’’ (software currently under development will also be
available there).

The idealized potential may be found in Figs 1(a) and 2(a). In both cases, the
scenarios are difficult, in that there is spatial bias, non-informative prior information,
and a small sample size. In Figs 1(b) and 2(b) the estimated potential map for each
scenario is depicted. In both figures the presence of record sites located far away

Figure 1. (a) Idealized potential produced by P �ðps ¼ 1Þ. (b) Simulated points of presence

(n=15), and estimated potential using our method. (c) Map of uncertainty for the estimated
potential using the Dirichlet approximation. (d) Estimated potential using FloraMap.
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from the actual high potential area are noted. Our method does not produce a high
potential area around those sites, unlike FloraMap (Figs 1(d) and 2(d)) or Domain
(Figs W1(f ) and W2(f )). Moreover, maps depicted in Figs 1(c) and 2(c) show a low
level of uncertainty for those sites. We also observe that low potential probability
areas are associated with a low level of uncertainty. Our uncertainty maps depict that
potential probabilities of about 0.5 are associated with the highest levels of uncer-
tainty, resembling the standard setting of estimation of a binomial proportion.

An extensive simulation study may be found in Argáez, Christen and Nakamura
(in preparation). Our methodology appears to behave correctly in all reasonable
situations and also seems to be robust to isolated sites of presence located far away
(geographically speaking) from the main area of high potential. These sites prompted
FloraMap and Domain into determining high potential for a significant area around
these points, inducing over-estimation. The region of high potential is recovered
reasonably well despite the clustering of points of presence, so the method also
appears to be robust to the spatial bias introduced by roads and towns. As expected,
when n increases, the map of uncertainty tends to a region with low uncertainty.

Regarding the differences for the maps of uncertainty produced by the exact
posterior (simulated using MCMC) and with the Dirichlet approximation, the maps

Figure 2. (a) Idealized potential produced by P �ðps ¼ 1Þ. (b) Simulated points of presence

(n=20), and estimated potential using our method. (c) Map of uncertainty for the estimated
potential using the Dirichlet approximation. (d) Estimated potential using FloraMap.
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of uncertainty do not appear to have substantial differences that would lead to
qualitatively different interpretations (see Figs W1(c)–(d) and W2(c)–(d)).

5. Case studies

5.1. Coccothrinax readii

The region of interest is the Yucatan Peninsula. The species under study, Coccoth-
rinax readii, is an endemic plant belonging to the palmacea family, regarded as an
endangered species. This species has been reported in 67 localities. The regular grid is
as described in Section 4, and the matrix containing the values of covariates for each
node of the grid was obtained from the Centro de Investigación Cientı́fica de
Yucatán (CICY). The physical covariates used on the grid are: humidity (17 levels),
mean temperature (5 levels), mean rainfall (10 levels), type of vegetation (11 levels),
and type of soil (17 levels), which produce 10 pairs of covariates.

The a priori zones P and A, as produced by the expert from CICY, are shown in
Fig. 3(a). The resulting map using our method and the uncertainty map are shown in
Fig. 3(c) and (d), respectively. In this application, pair J defined by temperature–soil
type produces p (J| C

¢) =0.9889, and pair J¢ defined by humidity–temperature,
produces p (J¢|C¢)=0.0111. Other pairs produce a posterior probability less than
0.0002.

The potential map was observed by experts concerned with this species. Their
appraisal on these zones of high potential given by our method is that they are quite
sensible, unlike FloraMap (Fig. W3(e)), and Domain (Fig. W3(f)). Recent consid-
erations suggest that this species is, at present, expanding its area of distribution. The
zones highlighted by our method coincide with the expert’s assessment about the
areas where it is suspected that the species can colonize. Another comment regards
the isolated reported site towards the center of the Peninsula. The validity of that site
is actually under discussion. The combination of potential map in Fig. 3(c) (low
predictive probability), with the uncertainty map in Fig. 3(d) (low level of uncer-
tainty), leads to the suspicion that this record is anomalous.

5.2. Baronia brevicornis

The region of interest is the country of Mexico. Baronia brevicornis is a butterfly,
which has been reported present in 40 localities. The matrix containing the values of
covariates was obtained from the Comisión Nacional para el Conocimiento y Uso de
la Biodiversidad (CONABIO). The regular grid consists of 136,875 nodes, with a
separation of 4 km (scale 1:4,000,000). Covariates used on the grid are: climate (50
levels), humidity (9 levels), soil (79 levels), rain (19 levels), mean temperature (15
levels), maximum absolute temperature (18 levels), maximum average temperature
(19 levels), minimum absolute temperature (20 levels), minimum average tempera-
ture (18 levels), and elevation (5 levels). These covariates lead us to consider 45 pairs.
The map of a priori information is shown in Fig. 4(a).
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Fig. 4(c) is the potential map, with the sites of presence, and Fig. 4(d) is the map
of uncertainty. In this case, the most influential pair is humidity-elevation, with
posterior probability 0.999. Based on the field experience of one of us (JSM), Domain
(Fig. W4(f)) overpredicts the actual or likely distribution area of B. brevicornis, which
is a species strictly associated to the tropical deciduous forest, a very particular veg-
etation type. FloraMap (Fig. W4(e)) produces a slightly less overpredicted surface, but
still including large tracts of unsuitable habitat, where the butterfly has never been
seen. On the other hand, our method outlined areas where the likelihood of presence
of B. brevicornis is good, without including obvious unsuitable habitat.

6. Discussion

The methodology postulated here has a series of technical advantages over the
existing methodologies. It precisely defines ‘‘potential’’, has a formal background in
statistical inference to support it, has a version simple to implement, identifies and
incorporates concepts specific to the genesis of curatorial data, and allows for
inclusion of prior information in a convenient way. It might be argued that the

Figure 3. Coccothrinax readii (a) a priori regions provided by expert. (b) Resulting
a priori potential. (c) Reported sites of presence (n=67), and estimated potential
using our method. (d) Map of uncertainty for the estimated potential.
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consideration of only pairs of covariates could be too restrictive. Nevertheless, the
mixture model proposed is rather flexible, reasonably parsimonious, and may well
approximate higher interactions among covariates. Certainly, the techniques used in
this paper may be easily generalized for higher interactions (3, 4-way, etc.), but we
are not sure that the additional complexity would reflect in better results.

In a strict sense, Equation (2) may not hold, but the independence alluded does
not seem too stringent. One does not intentionally plan to consider nodes having the
same covariate pair as candidates for additional examination. Regarding the
assumption of constant detectability, statement (1) is also saying that the species
tends to make itself present at nodes such that eJ(s) resembles probable values for UJ.
Hence, since the species tends to be present at nodes of similar covariate pairs, it is
sensible to assume that detectability does not depend on s at all sites where the
species is present. An interesting possibility for research, is to establish spatial bias
by using accumulated historical data. For example, in studying B. brevicornis, one
has information on reported sites of presence for several species of butterflies, that
may provide substantial information on sampling bias.

Bioclimatic predictive algorithms are becoming indispensable in many areas of
ecological work. The need to predict the potential or actual distribution of species is
acute in conservation work, invasive species management, bioprospecting, etc. From
a user’s perspective, the method we present here has several advantages over existing
algorithms. In the first place, its Bayesian nature allows the inclusion of a large body
of knowledge that experienced biologists have, but that could not be used by pre-
vious methodologies. In the second place, the preliminary examples we have ana-
lyzed suggest that our method suffers less from overprediction that some existing

Figure 4. Baronia brevicornis. (a) a priori regions provided by expert. (b) Resulting a priori

potential. (c) Reported sites of presence (n=44), and estimated potential using our method.
(d) Map of uncertainty for the estimated potential.
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alternatives. More work to assess the relative advantage of our method will be
required, but our preliminary results are encouraging. Finally, the probabilistic logic
of our algorithm is different from the approaches of Domain (clustering), or
FloraMap (principal components). Perhaps our method will consistently provide
better answers than the alternatives, but if this is not the case, having different tools
to tackle the same class of problems will give flexibility to those requiring the pre-
diction of biological species distributions.
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Appendix A: MCMC details

AMetropolis–Hasting algorithm is implemented. Model P(CJ| hJ, J) with a Dirichlet
prior produces the joint posterior distribution

fðhJ; JjC0Þ ¼
pðJÞN!CðaJÞ

ðN� nÞ!
Q

g2FJ

cJðgÞ!CðaJðgÞÞ
1�
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g2FJ
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( )N�n
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hJðgÞcJðgÞþaJðgÞ�1VJðgÞcJðgÞ:
ðA:1Þ

With probability p, given the set (h J)J 2 G and pair J at iteration t, a candidate J¢ is
selected uniformly from G. We take J(t+1)=J¢ with probability min { 1,q 1(J

(t),J¢)},
where
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:

On the other hand, with probability 1)p, given a fixed J, a candidate h0J is selected
from the Dirichlet distribution with parameters X�J þ aJ , the approximation used
for the posterior distribution. Since this approximation is commonly good, this

Potential areas of species distributions based on presence-only data 41



results in a high acceptance rate for this independent proposal and makes the
MCMC quite efficient. We take hðtþ1ÞJ ¼ h0J with probability min 1; q2ðh

ðtÞ
J ; h

0
J Þ

n o
,

where

q2ðhJ; h0JÞ ¼
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� �X�JðgÞ�cJðgÞ
:

We arbitrarily chose the value p=0.5.

Appendix B: Approximating p (J|C¢)

It is easy to see that pðJ jC0Þ / pðJÞ
R

P ðCJ jhJ ; JÞf ðhJ ÞdhJ : Having an approximation
f ðhJ jX�J ; JÞ for f ðhJ jC0; JÞ, by Bayes theorem we see that

Z

PðCJjhJ; JÞfðhJÞdhJ �
PðCJjh0J; JÞfðh0JÞ

fðh0JjX�JÞ

for some fixed value h0J (where the approximation is good). From this we
obtain

p JjC0ð Þ ¼ pðJÞ N!CðaJÞ
ðN� nÞ!CðNþ aJÞ

Y

g2FJ
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In the examples we took h0J ðgÞ ¼ X �J ðgÞ þ aJ ðgÞ
� �

N þ aJ½ ��1.
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