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ABSTRACT

Aim Geographical disparities in the effect of the environment on population
dynamics have been shown to follow a core-periphery gradient when peripheral
populations are less abundant and occur in marginal habitat. Whether the gradient
in environmental influence occurs in the absence of a gradient in abundance is not
known. We tested whether duck populations on the periphery of their main breed-
ing region were more strongly affected by environmental stochasticity and less
abundant than at the core.

Location The Prairie Pothole Region of central United States and Canada

Methods We used the North American Waterfowl Breeding Population and
Habitat Survey to model the dynamics of 10 duck species at 1059 sites spanning
1961–2012. We used the North American Breeding Bird Survey to measure abun-
dance at the same sites, averaged over the same time span. We used structural
equation models to characterize relationships among a site’s distance from the
regional centre, a site’s abundance, and the degree to which a site’s ducks were
affected by environmental stochasticity.

Results Environmental stochasticity never strongly contributed to population
dynamics in the region’s core. However, we did not find a linear increase in envi-
ronmental stochasticity with increasing distance from the core. For seven species,
we found that environmental stochasticty was stronger in sites of lower abundance.
For only two species did average abundance decline from the region’s core to
periphery.

Main conclusions Variability in the magnitude of environmental stochasticity
follows coarse spatial differences in wetland productivity. Yet, among peripheral
sites, the contribution of the environment to population dynamics varies, possibly
reflecting the importance of the local environment and dispersal.
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INTRODUCTION

There is probably no more fundamental question in ecology

than how populations respond numerically to environmental

change. Excitingly, the answer is never simple because popula-

tions can fluctuate in abundance even in static environments

due to density dependence in survival and reproductive rates

(Nicholson, 1933; Murray, 1982). As a result, characterizing

environmental variability as a driving factor of temporal change

in population size depends on quantifying the contribution of

both density dependent and density independent processes

(Turchin, 1995). Recently the scope of inquiry has broadened

because the dynamics of multiple populations extending over

large spatial extents can be analysed (e.g. Sæther et al., 2008). As

a result, it is now evident that the density dependent vs. density

independent dichotomy is itself dynamic; the contribution of

each type of process to population growth varies among popu-

lations (Forchhammer et al., 1998). The key advance to be made,

then, is to determine whether there is any spatial pattern with

regard to population dynamics, and whether such patterns indi-

cate a response of species to broader environmental or spatial

gradients.

One potentially general pattern is that density independent

factors (i.e. environmental stochasticity, (sensu Fukaya et al.,

2014; Ohlberger et al., 2014)) have a stronger effect on popula-

tion growth in the periphery than the core of species ranges.

Some studies have shown how peripheral populations are more

variable in their abundance (Curnutt et al., 1996; Mehlman,

1997; Doherty Jr et al., 2003) suggesting that they are affected

more by stochastic environmental fluctuations than core popu-

lations (García & Arroyo, 2001; Williams et al., 2003). In turn,

peripheral populations may be more responsive to the environ-

ment because they are smaller in size (Williams et al., 2003).

However, species for which peripheral populations are smaller

than elsewhere in the range may be more the exception than the

rule (Sagarin & Gaines, 2002; Samis & Eckert, 2007). Therefore,

a central question is whether the influence of environmental

stochasticity on population growth is higher in peripheral habi-

tats even if they are not necessarily lower in abundance. Alter-

natively, the relationship between environmental stochasticity

and abundance may hold regardless of how abundance is dis-

tributed across the species range.

To test these competing hypotheses, we modelled the dynam-

ics of ten duck species in the Prairie Pothole Region (PPR) of the

US and Canada. In the PPR, the optimal habitat for breeding

ducks is found in the region’s core, whereas soils and climate in

the region’s periphery lead to fewer, less persistent, and/or less

productive wetlands (Werner et al., 2013). Thus, if the effect of

environmental stochasticity on population dynamics is stronger

in marginal habitats, then we predict a positive association

between distance from the centre of the PPR and the effect of the

environment. On the other hand, differences in the type of range

edge and the fact that other environmental factors also shift

across the PPR (e.g. agricultural intensification of upland

habitat [Samson et al., 2004]) may obscure any core-periphery

relationships. Meanwhile, overall duck abundances might still

be lower on the edge of the PPR even if they are not affected

strongly by environmental stochasticity, due to dispersal and

source-sink dynamics (Curnutt et al., 1996; Bahn et al., 2006).

Further, we must caution that we are defining ‘core’ and ‘periph-

ery’ as it pertains to habitat variability across the region. A lack of

data precludes measuring population dynamics at the core and

periphery of species ranges.

In summary, we characterized each of > 1000 sites for 10 duck

species according to: 1) the degree to which environmental

stochasticity affects population growth, 2) average abundance,

and 3) distance from the centre of the PPR. We built a set of

structural equation models to test how the three characteristics

are related and answer the question: Are peripheral populations

less abundant and more strongly affected by environmental

stochasticity than core populations?

METHODS

Data

We used data from two surveys: the North American Waterfowl

Breeding Population and Habitat Survey (BPOP) and the North

American Breeding Bird Survey (BBS). With a methodology

designed specifically to monitor duck numbers, we used the

BPOP to build models of annual change in abundance

while taking into account observer error and demographic

stochasticity. Although the BBS does not have the same focus on

waterfowl, we used abundances averaged over long time periods

to indicate where ducks are consistently abundant or rare (see

also Forcey et al., 2007, 2011). Thus, we tested whether spatial

differences in the influence of environmental stochasticity on

population growth corresponded to areas that have supported

large or small populations in the past 50 years, even if those

populations are in flux (see below).

The US Fish and Wildlife Service initiated the BPOP in 1955

(Zimpfer et al., 2012). In May of each year, observers fly

transects from fixed-wing aircraft and count all duck species.

We used the smallest survey area at which data are archived– the

28.8 km × 400 m transect segment – as the sampling unit.

Further details on survey methodology can be found in Smith

(1995), Sæther et al. (2008), and Murray et al. (2010).

From 1961 onward, observers also counted wetlands, which

comprise natural and artificial water bodies that are expected to

persist for at least three weeks beyond the survey date. Wetland

numbers are known to be correlated with duck population

growth (Sæther et al., 2008). Hence, we included wetlands as a

covariate in our models. Consequently, our measure of environ-

mental stochasticity is independent from the deterministic

influence of spatial variability in wetland numbers.

We limited our analysis to the Prairie Pothole Region

(∼13000 km2; 1151 transect segments) because it has the longest

time series and is where breeding duck densities are at their

highest in North America. From the original set of transect

segments, we eliminated 92 because they had 17 or more years

(> 30%) of missing wetland data. For the reduced data, there

were still 2726 segment-year combinations (5.0%) missing
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wetland data. We imputed the missing data using predictive

means matching in the mice package (van Buuren &

Groothuis-Oudshoorn, 2011) in R 3.0.2 (R Development Core

Team, 2013). We used transect segment and year as predictors in

the imputation. In the end, we analysed 1059 transect segments

covering the years 1961–2012 (52 years).

We modelled the dynamics of the ten most common prairie

duck species: the dabblers American Wigeon (Anas americana),

Blue-winged Teal (A. discors), Gadwall (A. strepera), Green-

winged Teal (A. carolinensis), Mallard (A. platyrhynchos), North-

ern Pintail (A. acuta), Northern Shoveler (A. clypeata); and the

divers Canvasback (Aythya valisineria), Lesser Scaup (A. affinis),

Redhead (A. americana). We used raw counts of individual

ducks uncorrected for sightability differences among species or

observers; we accounted for such error via the modelling process

(see below). The raw counts were a summation of counts of lone

drakes and individuals observed in mixed sex flocks, and twice

the count of duck pairs.

We used the BBS to obtain a general picture of spatial vari-

ation of duck counts across the prairies. The BBS is a ground-

based survey that censuses all birds seen or heard during 50

3-minute 400 m-radius point counts spaced 800 m apart along

∼40 km roadside routes (Sauer et al., 2014). The surveys are

conducted on one day in late May or early June. Previously, the

BBS has been used to relate duck abundances to climate and

habitat factors (Forcey et al., 2007, 2011). For our purposes, we

averaged BBS counts for each of 3516 routes over the years

1961–2012, the years that corresponded to the BPOP data. We

associated each BPOP transect segment to the closest BBS route.

We also measured the Euclidean distance between each BPOP

transect segment and the geographic centre of all BPOP transect

segments. Thus, we had average BBS abundance and distance to

the centre of the PPR for each BPOP transect segment. It is

important to note, however, that all duck species we modelled

have breeding ranges that extend beyond the PPR.

Population modelling

We modelled population dynamics using a state-space Ricker

model. In the state-space approach, count data such as those

enumerated in the waterfowl aerial surveys are considered to be

an imperfect approximation of abundance (Clark & Bjørnstad,

2004), and the first part of the model is an observation model

that relates duck counts (Y) at each point in space (i) and time

(t) to ‘real’ but unknown abundances (Ni,t). This relationship

consists of stochastic and deterministic components with the

stochastic component assuming that duck counts are drawn

from a normal distribution with mean, η, and variance, σ:

Y Normali t i t y, , ,∼ η σ( )

In the deterministic component, the mean, η, is linearly related

(with intercept, a, and slope, c) to the real abundance following

Lillegård et al. (2008) and Sæther et al. (2008):

ηi t i ta c N, ,= +

We then used a Ricker model to relate abundance to maximum

intrinsic growth rate (r.maxi), carrying capacity (Ki), density

dependence (1-Ni,t/Ki), and the environment (ei,t). To simplify

the model, we assumed intrinsic growth rate and carrying

capacity were fixed across time although we allowed the terms to

vary across space. We chose a Ricker model because Murray et al.

(2010) found that the best fit theta-logistic model, when fit to

duck population time series data, was equivalent to the Ricker,

i.e. in the majority of cases the θ exponent was not different

from 1.0.

In the stochastic component of the model, we assumed

abundances were drawn from a normal distribution. The deter-

ministic component then relates the mean of this distribution,

N̂ , to demography and the environment via the Ricker

equation:

N Normal Ni t i t N, ,+ +( )1 1∼ ˆ , σ

ˆ ., ,
,
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The dependent variable in this model is more commonly

expressed as population growth (Sibly & Hone, 2002), which

leads to the linear equation:

ln
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The purpose of our investigation was to quantify site-to-site

variability in the contribution of the environment to annual

changes in duck population growth, ei,t, for a particular level of

wetland availability (Ponds). Therefore, we added an environ-

mental model, decomposing the contribution into stochastic

and deterministic components:

e Normali t i t e, , ,∼ ϕ σ( )

ϕ α β μ τi t Ponds i t i i t i tPonds Ponds, , ,= + ∗ + ∗ + +Δ

The model consists of parameter estimates for the overall effect

of wetlands (βPonds) (averaged across all points in space and time)

as well as random deviations of this estimate for each site (Δi).

The μi and τt represent random deviations from the average

contribution of the environment (the intercept, α) for each site

and year respectively. Accounting for such spatial and temporal

variability is known as the Besag-York-Mollie model (Besag

et al., 1991) and is used frequently to model spatiotemporal

variation in the incidence of disease and subsequent mortality

(e.g. Lawson et al., 2003).

We estimated all parameters using a Bayesian framework in

the program OpenBUGS (Lunn et al., 2009) because such an

approach allows for hierarchical models that account for spa-

tially and temporally autocorrelated random effects (Thomas

et al., 2004; Forcey et al., 2007). Given that: 1) our sample unit,

the transect segment, is aggregated into transects, 2) ducks

are fairly mobile, and 3) environmental conditions likely are
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correlated over the scale of interest, we expect strong spatial

autocorrelation and thus necessarily included autocorrelation in

our model. In other words, we expected the contribution of the

environment at one site to depend on the contribution at adja-

cent sites and thus modeled this factor explicitly. In fact, the u

term measures site specific environmental stochasticity and

is estimated by ‘borrowing’ information from neighbours

(Kéry & Schaub, 2011). This is done by conditioning u with an

autoregressive normal prior distribution (CAR.normal; Thomas

et al., 2004). Likewise, year specific environmental effects (τ) are

expected to depend on conditions in – and borrow information

from – adjacent years. Such temporal autocorrelation is taken

into account using the CAR.normal prior (Thomas et al., 2004;

Amaral-Turkman et al., 2011). Our R and OpenBUGS code can

be found in Appendices S1 and S2.

We estimated the posterior distribution for all unknown

parameters in our model, including the variances associated

with each stochastic node, using Markov Chain Monte Carlo

sampling in OpenBUGS (Lunn et al., 2009). We used vague

priors for all the stochastic nodes, following Thomas et al.

(2004) (Appendix S3). We ran two model chains for 35000

iterations each, discarding the first 10000 iterations as a

burn-in sample. Thus, our final sample consisted of 50000

values, from which we calculated the mean and 95% credible

interval. The credible interval was measured as the Highest

Posterior Density (HPD) interval, i.e. the narrowest segment of

all the values that contain 95% of the data, using the coda

package (Plummer et al., 2006) in R 3.0.2 (R Development

Core Team, 2013).

Measuring environmental stochasticity

We calculated the site-specific contribution of environmental

stochasticity to population growth (φi) by solving the equation:

ϕ α β μ τi t Ponds i t i i t i tPonds Ponds, , ,= + ∗ + ∗ + +Δ

We set τ = 0 to estimate the environmental contribution for the

‘average’ year. We set wetland availability to the overall average

across all sites and years (Ponds = 25.630).

We plotted site-specific environmental effects on a back-

ground map provided by Global Administrative Areas (http://

www.gadm.org) and downloaded via the raster package

(Hijmans, 2015) in R 3.0.2 (R Development Core Team, 2013).

For visualization purposes, we binned site-specific effects into

5% percentiles with strong effects corresponding to the 5th per-

centile and weak effects corresponding to the 95th percentile.

Geographic analysis

Our aim was to test whether populations strongly affected by

environmental stochasticity were located at the periphery of the

PPR and in areas of low abundance. However, we included the

possibility that variability in environmental stochasticity may be

associated with only one or neither of these factors. Further, we

included the possibility that distance to the centre of the PPR

and abundance might be related even if one or neither is related

to the strength of environmental stochasticity. We compared

the evidence for these different relationships using structural

equation modeling (SEM) in the lavaan package v. 0.5–14

(Rosseel, 2012) in R 3.0.2 (R Development Core Team, 2013).

We modeled eight different scenarios relating environmental

stochasticity, distance from the PPR’s centre, and BBS abun-

dance (Fig. 1). For each model, we calculated a Bayesian Infor-

mation Criterion (BIC). We subtracted this value from the

minimum BIC in the set of eight models (ΔBIC). We converted

ΔBIC to a model weight:

Weight
BIC

BIC
i

i

i

i

k=
−( )

−( )
=
∑

exp

exp

1

2
1

21

Δ

Δ

We averaged the model weights over 2000 draws randomly

selected from the 50000 total draws. We calculated also the 95%

credible interval of the distribution of model weights. We

selected the final model as the one with the highest average

model weight. We present the model selection results graphically

(mean weight ± 95% credible interval for each model). Also, we

report the parameter estimates of the relationships included in

the final model.

RESULTS

The effect of environmental stochasticity on duck population

dynamics was not the same everywhere in the Prairie Pothole

Region (PPR). Most striking was the dichotomy we observed

between the core and periphery of the PPR: we did not find any

species strongly affected by environmental stochasticity in the

core (Fig. 2; Appendix S4). Instead, environmental stochasticity

was strongest in peripheral sites. However, we found that each

species tended to respond to the environment randomly across

the periphery; no sites were consistently strong for all species

Distance Abundance

BA

C

Environment

Figure 1 The general form of the structural equation model
relating the magnitude of environmental stochasticity
(‘Environment’) to the distance of a site to the geographic centre
of the Prairie Pothole Region (PPR) (‘Distance’) and to the
abundance of a site (‘Abundance’). From the general form, we
constructed eight separate models that reflect different
combinations of the links, A, B, and C. Environmental
stochasticity was estimated using a Ricker model of population
dynamics fitted to a 52 year time series of duck counts taken
from the North American Waterfowl Breeding Population and
Habitat Survey. Distance to the centre of the PPR was measured
in ArcGIS v.10 (ESRI, 2011). Abundance is the 52 year average of
counts taken from the North American Breeding Bird Survey.
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(Fig. 2). The one exception was in the southwest corner of the

PPR where all species had several sites strongly affected by envi-

ronmental stochasticity (Appendix S4). We did not find the

same core-periphery dynamic for BBS abundances; sites of

high and low abundances were scattered across the region

(Appendix S5).

While the influence of the environment was most extreme in

the periphery, we did not find evidence that its influence

declined linearly from the core to the periphery. For no species

did any of the selected structural equation models include a

term where the environment’s influence was related to distance

from the centre of the PPR (Fig. 3). Instead, for seven of the ten

species, we found the most support for models that included a

relationship between environmental stochasticity and abun-

dance. As expected, the influence of environmental stochasticity

weakened with increasing abundance (Table 1). Although the

slope estimates were positive, the intercept term was negative

implying that for small-to-average sized populations, environ-

mental stochasticity reduces population growth from what is

expected under pure density dependence (Table 1). On the other

hand, the slope estimates were small and their 95% credible

intervals included zero. Thus, we suggest that we only have

weak support for an environmental stochasticity-abundance

relationship.

For the other three species, American Wigeon, Canvasback,

and Redhead, the influence of environmental stocahsticity on

population growth was random with respect to both space and

average abundance. However, for the wigeon and Canvasback,

we found that abundance declined from the core to the periph-

ery of the PPR (Table 1). For Redhead, we found support for the

null model, i.e. the effect of environmental stochasticity, abun-

dance, and distance from the centre of the PPR were all unre-

lated to each other (Table 1).

DISCUSSION

Importance of spatially nested environmental
variability to population dynamics

Our key finding is that the effect of environmental stochasticity

on population dynamics is a spatially nested phenomenon: it is

highly variable at fine spatial scales but entrained by large areas

of strong or weak influence that correspond to core-periphery

differences in environmental productivity. For example, we

never found a strong effect of environmental stochasticity for

any duck species at the core of the PPR. Rather, we found that

environmental stochasticity was most influential at or near the

region’s periphery and especially strong in the southwest corner

(central Montana), which is where wetland productivity is the

lowest (Werner et al., 2013). Thus, the nature of environmental

influence may follow the extremes of wetland productivity, with

weak influence in productive wetlands and strong influence in

unproductive wetlands.

Within productivity extremes, our results suggest additional

local control leading to site level variability in how environmen-

tal stochasticity contributes to population change. Not only did

we find apparent randomness in the location where any given

species was strongly affected by environmental stochasticity

(though never in the core), we also failed to detect evidence that

the effect of environmental stochasticity increased linearly from

the core to the periphery. Thus, different suites of species may be

strongly affected by the environment even at adjacent sites.

Furthermore, the degree to which any individual species is

affected by the environment may differ among adjacent sites.

Together, these results suggest that the factors that ultimately

affect population growth in a density independent manner

are those that vary at fine spatial scales (i.e. the ∼24 km transect

segments we analysed). One strong influence we did not

measure was underlying geology; in the PPR moraine landforms

are spatially discontinuous but correlated with duck abundances

(Ducks Unlimited Canada, personal communication; see also

Browne et al., 2009). Moraines may be a better indicator of

habitat quality than any feature or combination of features that

may vary along core-to-periphery gradients.

The fact that we did not find a fine scale relationship between

environmental stochasticity and position on a core-periphery

gradient is somewhat consistent with the findings of Sæther

et al. (2008). Using the same prairie duck data, Sæther et al.

(2008) found a latitudinal gradient (south > north) in popula-

tion fluctuations and, for some species, a latitudinal gradient in

process variance, which encompasses both demographic and

environmental stochasticity. Our analysis suggests that the lati-

tudinal differences that Sæther et al. (2008) observed may be

driven by patterns in the southwest rather than the south as a

whole. More generally, then, one cannot ignore longitudinal

variation especially in systems structured by both latitudinal

(temperature) and longitudinal (precipitation) climatic gradi-

ents. Furthermore, Sæther et al. (2008) suggested that latitudinal

differences in population dynamics may be driven by latitudinal

differences in wetland shape and agricultural practices.

Alberta Saskatchewan

North Dakota

South Dakota

Manitoba

Montana

N

100 km

Figure 2 The number of species in each transect segment that
were strongly affected by environmental stochasticity. A strong
effect is when the influence of environmental stochasticity on
population dynamics comes from the top 5% of the distribution
of values for each species. Background maps come from the
Global Administrative Areas website (http://www.gadm.org)
downloaded using the raster package (Hijmans, 2015) in R 3.0.2
(R Development Core Team, 2013).

R. E. Feldman et al.

Global Ecology and Biogeography, 24, 896–904, © 2015 John Wiley & Sons Ltd900



Certainly the latter has also a longitudinal component: a greater

proportion of upland habitat has been converted to agriculture

in the east than the west (Samson et al., 2004).

The only environmental variable we actually included in our

models was wetland availability (sensu Viljugrein et al., 2005;

Sæther et al., 2008). We did so in order to remove its effect and

focus our interpretation on less obvious but potentially very

influential environmental drivers of population change, such as

those mentioned above. Yet because the particular environmen-

tal variables that best characterize marginal environments might

differ for different regional ‘peripheries’, we chose to quantify

them collectively as environmental stochasticity. An alternative

Am. Wigeon BW Teal Canvasback Gadwall GW Teal

Mallard Pintail Redhead Scaup Shoveler

ABC
AB
BC
AC

B
A
C
X

ABC
AB
BC
AC

B
A
C
X

0.250.50.75 1 0.250.50.75 1 0.250.50.75 1 0.250.50.75 1 0.250.50.75 1

BIC Weight

Li
nk

s 
in

cl
ud
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Figure 3 The weight of evidence for each of eight structural equation models. The models relate the magnitude of environmental
stochasticity to the distance of a site to the geographic centre of the Prairie Pothole Region (PPR) and to the abundance of a site. We
constructed eight separate models that reflect different ways of linking the three variables. Each individual link is labeled A, B, or C as
shown in Figure 1. The model indicated by an ‘X’ is the null model whereby none of the variables are linked to each other. We calculated
the Bayesian Information Criterion for each model, which we converted to the model weights shown here. The data are presented as
means ± 95% credible intervals for 2000 model iterations, each corresponding to an independent posterior draw of environmental
stochasticity values. Asterisks indicate the model upon which we made inferences.

Table 1 Coefficients from the selected structural equation model for each species. We show the coefficients for the two links included in
the species models (see also Fig. 1). Link B relates environmental stochasticity to a site’s abundance. Link C relates a site’s abundance to the
distance of the site from the centre of the Prairie Pothole Region. We do not include link A – the direct relationship between environmental
stochasticity and distance from the centre of the PPR – because the link was not included in any of the selected structural equation models.
The coefficients in link B are estimated along with their 95% credible intervals from 2000 draws of the posterior distribution of
environmental stochasticity. The uncertainties in link C are 95% confidence intervals because the values of abundance and distance to the
centre of the PPR are fixed across all posterior draws

Species

Links

included

in selected

model

Parameters

Link B Link C

Environment

(Intercept) Abundance

Abundance

(Intercept) Distance

Am. Wigeon C −5.28 [−7.54, −3.09] 0 0.609 [0.416, 0.803] – 0.000980 [−0.000558, −0.00140]

BW Teal BC −5.67 [−9.87, −2.01] 0.0363 [−0.0105, 0.0765] 2.14 [1.23, 3.05] 0.00282 [0.000844, 0.00480]

Canvasback C −3.55 [−4.50, −2.56] 0 0.417 [0.267, 0.567] – 0.000948 [−0.000620, −0.00127]

Gadwall B −5.22 [−9.15, −1.50] 0.0109 [−0.0294, 0.0354] 2.46 [2.09, 2.82] 0

GW Teal B −2.72 [−3.03, −2.39] 0.136 [0.0118, 0.215] −0.179 [−0.221, −0.137] 0

Scaup B −3.37 [−4.96, −2.65] 0.0147 [−0.0242, 0.0645] 1.03 [0.827, 1.24] 0

Mallard B −5.02 [−9.20, −1.35] 0.00322 [−0.0240, 0.0234] 10.1 [9.28, 10.9] 0

Pintail B −4.73 [−7.96, −1.79] 0.0346 [−0.0410, 0.0973] 1.40 [1.23, 1.58] 0

Shoveler B −5.11 [−8.79, −1.51] 0.0466 [−0.00676, 0.102] 1.21 [1.03, 1.38] 0

Redhead X −3.06 [−3.76, −2.59] 0 0.819 [0.669, 0.968] 0
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perspective would have been to use wetland availability to

predict carrying capacity, or, at least allow carrying capacity to

vary over time. Doing so might have given a more realistic

picture of how abundance tracks wetland availability (Fowler &

Pease, 2010). When wetlands are included as an additive density

independent term, they explain very little of the variation in

duck numbers (Sæther et al., 2008; Feldman et al., unpub-

lished). If, however, temporal variability in carrying capacity

shifts the variation in counts away from the environment and

toward density dependence, then the periphery might actually

correspond to sites of strong density regulation in fluctuating

environments rather than stochastic variation around a long-

term equilibrium population.

Importance of dispersal to population dynamics

Metapopulation and source-sink perspectives posit dispersal as

a key process creating geographic structure in population

dynamics: individuals are thought to disperse from productive

environments toward the periphery, creating gradients in abun-

dance and susceptibility to environmental change (Pulliam,

1988; Guo et al., 2005). That we did not find these patterns

suggests an alternative type of dispersal dynamic that better

corresponds to what is known about duck migration. When

returning from their wintering grounds, prairie ducks are not

necessarily philopatric and there may be some geographic

or habitat related bias in where they settle (Johnson &

Grier, 1988). For example, if wetland availability is low due

to drought conditions, individuals are known to fly over south-

ern breeding grounds and settle farther north (Hansen &

McKnight, 1964; Smith, 1970; Derksen & Eldridge, 1980;

Johnson & Grier, 1988). Hence, southern populations may be

particularly affected by emigration and northern populations

by immigration, with the extent of the effect dependent on

temporal climatic variability. Thus dispersal might exacerbate

the environmental differences between the core and periphery,

which creates an apparent mismatch between how populations

respond to environmental change and the actual underlying

environmental gradients.

Past studies showing core-periphery patterns in population

dynamics have revealed how population size is the link between

range position and response to environmental variability

(Curnutt et al., 1996; Williams et al., 2003). In our study, none of

the species followed this causal pathway. Instead, we found some

support for an inverse relationship between abundance and the

influence of environmental stochasticity regardless of the

underlying spatial pattern of abundance. Furthermore, our

results support the finding that in any species assemblage, only a

few will show core to periphery gradients in abundance (Sagarin

& Gaines, 2002). In our study, only two of the ten species

(American Wigeon and Canvasback) conformed to the pattern.

Critically, though, because low abundant populations are not all

at the periphery, extinction risk due to random environmental

fluctuations may be tempered by the possibility of rescue from

nearby high abundant populations. Even at the periphery,

patchy responses to environment means that greater environ-

mental change (e.g. climate change) will not lead to a contrac-

tion in occupancy across the Prairie Pothole Region.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online

version of this article at the publisher’s web-site.

Appendix S1 R code to impute missing wetland data and

prepare duck and wetland data for analysis in OpenBUGS.

Appendix S2 OpenBUGS code for the conditionally

autoregressive Ricker model of population dynamics.

Appendix S3 Priors used for all stochastic nodes in MCMC

modeling of duck population dynamics.

Appendix S4 Spatial variation in the magnitude of environmen-

tal stochasticity for each of the 10 duck species.

Appendix S5 Spatial variation in abundance, Breeding Bird

Survey counts averaged from 1961–2012.

BIOSKETCH

This project emerged from a collaboration between

biologists at Trent University and Ducks Unlimited

Canada. Together, our aim is to improve our under-

standing of how ducks respond to global environmental

change given the potential for strong density depend-

ence in the regulation of their abundance. We will use

such an understanding to improve management and

ensure that ducks and their habitat are conserved well

into the future.
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