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Abstract. Bathymetry is one of the most conspicuous variables to consider in any study involving marine 
environments. In developing countries, accurate and up to date bathymetric charts are rare or in most 
cases limited to local areas, most of them available only in hardcopy format. This is the case of the 
Yucatan submerged platform. In this study, we compare and discuss the performance of two spatial 
interpolation techniques for creating a digital bathymetric model (DBM): Inverse distance functions and 
Kriging. The DBM for Yucatan Peninsula submerged platform was generated using 2650 depth point-
data values digitized from navigational charts previously published by the Mexican “Secretaria de 
Marina” at a 1:850,000 scale. The exponential Kriging model produced the most accurate estimates, 
reducing the error in 18.2% compared with the inverse distance functions. Our results might become 
helpful to other researchers trying to decide the type of interpolation technique and selection of the model 
when elaborating digital elevation models for regional mapping purposes. 
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Resumo. Comparación del desempeño de dos métodos de interpolación espacial para crear un 
modelo batimétrico digital de la plataforma sumergida de Yucatán. La batimetría es una de las 
variables más sobresaliente a considerar en estudios de medio ambientes marinos. En los países en 
desarrollo son raras las cartas batimétricas precisas y actualizadas o en la mayoría de los casos estas se 
limitan a áreas muy particulares. Muchas de estas cartas están disponibles solamente en formato impreso. 
Este es el caso particular de la plataforma de Yucatán. En este estudio comparamos y discutimos el 
desempeño de dos técnicas de interpolación espacial usadas para crear un modelo batimétrico digital 
(MBD): funciones de distancia inversa y kriging. El MBD fue generado usando 2650 valores puntuales 
de profundidad, los cuales fueron digitalizados de cartas de navegación publicadas por la Secretaria de 
Marina, a una escala de 1:850,000. El modelo de kriging exponencial produjo las estimaciones más 
precisas, reduciendo el error de estimación en al menos un 18.2% comparado con las funciones de 
distancia inversa. Nuestros resultados podrían ser útiles para otros investigadores tratando de decidir el 
tipo de técnica de interpolación y la selección del modelo a emplear cuando se elaboran modelos de 
elevación digital con propósitos de mapeo regional. 
 
Palavras-chave: Funciones de distancia inversa, kriging, geoestadística, batimetría, plataforma de Yucatán. 
 

Introduction 
Bathymetry is the process of measuring 

seafloor water depths and producing realization of 
underwater topography. The development of 
bathymetric models is of great importance for the 

 
study of underwater environments, and they 
frequently are the only type of data available for 
inferring the geology over much of the ocean floor 
(Bowles et al. 1998). 
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The importance of having accurate 
bathymetry estimations is evident for a variety  
of scientific fields related with monitoring, 
evaluation and assessment of marine environments. 
The study of geology and structure of ocean  
floor (Wright et al. 2000, Ramírez-Herrera  
& Urrutia-Fucugauchi 1999), the study of  
physical oceanographic processes such as  
currents, tides, water mix, and nutrient transport 
(Klenke & Schenke 2002, Merino 1997) as well  
as the study of biological processes such as  
larval transport, algal blooms and species  
abundance and distribution, relies on the  
availability of accurate estimations of bathymetry 
(Carlon 2002, Epifanio & Garvine 2001).  
However, in most developing countries the 
availability of accurate and up to date bathymetric 
charts is rare or in most cases is limited to a few 
charts for local areas, most of them available only in 
hardcopy format. 

Geostatistical techniques are useful in 
providing estimates of sample attributes at  
locations with sparse information (Burrough & 
McDonnell 1998). These methods work by  
defining the spatial structure of the phenomena  
(i.e. by autocorrelation or auto-covariance  
functions such as semi-variograms), then estimating 
values between measured points based on the  
degree of spatial autocorrelation or covariance  
found in the data (Robertson 1987, Isaak  
& Srivastava 1989). Kriging procedures and  
their required variography are not, however,  
without critics. It is argued that the structural  
analysis (variography) may be a rather involved  
and even a somewhat subjective process. 
Consequently, simpler alternatives to kriging,  
such as the inverse distance weighting have  
been used as interpolation methods (Merwade et al. 
2006, Kravchenko & Bullock 1999). This technique 
is easier to implement due to the fact that  
the estimation of values does not require any 
measure of either spatial autocorrelation or spatial 
auto-covariance.  

In this study, two spatial interpolation 
methods namely inverse distance weighting 
functions and kriging, were compared in terms of 
accuracy of the estimates for creating the best DBM 
for Yucatan submerged platform.  

 
Methods 

The Yucatan Peninsula is a large calcareous 
platform that extends into a submerged area called 
the “Campeche Bank”. It is located between 19o 40’ 

and 21o 37’ N and 87o 30’ and 90o 26’ W.  
Two bodies of water, the Gulf of Mexico and  
the Caribbean Sea, border the coast of the  
Yucatan Peninsula (Figure 1). The Peninsula  
attained its present shape in the late Pliocene;  
with important depositions on the coast during  
the Holocene, and platform reefs which are 
continually developing to its North and East  
ends. Variations in water depth have been 
documented, the maximum interglacial sea level  
was 30 m higher than today, at the Pliocene; and in 
the early Holocene sea level was some 100 m  
lower than today, and present sea level was  
attained only 5500 years ago. (Schmitter-Soto et  
al. 2002). 

Depth data used in this study were  
obtained from the navigational charts S.M 800,  
and S.M. 900 published at a 1:850,000 scale  
by “Secretaria de Marina”, Mexico in 1994 and 
1995, which updated the information from previous 
charts from the same source published during  
1972 and 1977 respectively. The charts were 
acquired in hardcopy format and digitized to  
raster format using a personal scanner. Raster  
images were imported to the Idrisi GIS-software 
(Eastman 1999) and geometrically corrected to  
the Latitude-Longitude coordinates system using 
degrees and decimal degrees as units, referenced  
to the ellipsoid GRS 1980 and North America  
datum 1983. Figure 2 shows the distribution of  
2650 punctual depth data values and the coast  
line, obtained from: http://crusty.er.usgs.gov/ 
coast.getcoast.html. 

To produce Digital Bathymetric Models 
that “best” represent the depth variability for the 
Yucatan submerged platform, we compare the 
performance of two spatial interpolation techniques: 
Inverse distance weighting and Kriging. All 
geostatistical analyses were made using the GS+ TM 
software (Robertson 2000) and then exported to 
Surfer 8 TM and Arc View 3.2 TM for final 
enhancement and display. 

Inverse distance weighting functions is  
a nearest neighbor interpolation technique  
that combines both the neighborhood and  
gradual change notions (Burrough & McDonnell 
1998). Estimates of depth values at unvisited  
points are obtained as a weighted average of  
his neighbors (sampled points), where the  
closest points have more weight (importance)  
than those that are far away. The weighted values  
are based on an inverse function of the distance  
to the neighbors. The inverse distance function is 
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expressed with equation a): 
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Where Z is the estimated depth value, Zi is the  
depth value calculated at the location i, d is the 
separation between the estimated point and  
the sampled location, p is an analysis-defined  
power parameter and n represents the number of 
sampling points used for estimation. 
 The main factor affecting the accuracy  
of inverse distance interpolator is the value of  
the power parameter p (Isaak & Srivastava 1989).  
In this study, we compared estimates of inverse 
distance interpolator using different integer  
powers parameters 1, 2, 3, 4, 5 and 6, which are  
the most commonly used in literature (Kravchenco  
& Bullock 1999, Burrough & MacDonnell 1998). 
Since the goal of using inverse distance functions  
as estimators is giving  more weight (importance)  
to the closest sampled points (Webster & Oliver, 
2001), in this study we just considered integer 
values of p parameter, because the values lower than 
1 are closest to a simple average estimation (Isaaks  

& Srivastava 1989). In addition, the size of the 
neighborhood and the number of neighbors are  
also relevant to the accuracy of the results. Here,  
the closest 16 sampling point in a radius of 1.7 
decimal degrees were used to perform  
the estimations. The choice of neighborhood  
size was obtained as the maximum separation in 
which autocorrelation exists between two points 
located in space (Figure 3). 

Kriging is a spatial interpolation technique 
based on the spatial structure of sampled  
points. Using kriging, estimates of depth values  
at unsampled locations are obtained from  
the information provided by the structures of  
spatial variability, as depicted by an autocorrelation 
function, in this case the semi-variogram of  
depth values. Such structures help in defining  
the size and shape of the neighborhood  
for interpolation (i.e. sampling points that are 
spatially auto-correlated to the point to be 
estimated). The semi-variogram is computed by 
using equation b): 
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Figure 1. Geographic location of Yucatan peninsula. 



J. BELLO-PINEDA & J. L. HERNÁNDEZ-STEFANONI 

Pan-American Journal of Aquatic Sciences (2007) 2 (3): 247-254 

250 

Where Z(xi) is the depth in the location i, Z(xi + h) is 
the depth value of other points separated from xi, by 
a discrete lag h; n represents the number of pairs of 
observations separated by h, and γ(h) is the 
estimated or “experimental” semi-variance value for 
all pairs at lag h. 
 

 
Figure 2. Distribution of punctual depth values as digitized 
from the navigational charts S.M 800, and S.M. 900 published 
by “Secretaria de Marina”. 
 

Semi-variances were calculated for each 
possible pair of sampling points, and the  
mean values of semi-variances were plotted for 
increasing lag intervals (h) to produce the 
experimental semi-variogram. Spherical, gaussian 
and exponential models were then fitted  
to experimental semi-variograms (Robertson 2000). 
The fitted models provided the following 
parameters; the total variance -also known as  
the “sill” variance- which defines the asymptotic 
value of semi-variance with respect to the lag 
separation. The sill variance is split in two, the 
variance due to spatial dependence and the random 
or “nugget” variance. In turn, the nugget variance, 
the y intercept in the semi-variogram model, reflects 
both, the spatial variation at shorter lags than the 
minimum sample spacing and the unexplained 
variance. The range of influence is the maximum 
separation at which depth values are still spatially 
dependent (Isaak & Srivastava 1989, Burrough & 
Mcdonnell 1998, Webster & Oliver 2001). The 
coefficient of determination (r2) resulting from 
fitting of models to experimental semi-variograms, 
and cross-validation procedures described later on, 
were both used as criteria to select the best models in 
each situation. 

Depth value estimates were obtained by 

using block kriging as expressed with the equation 
c): 
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Where λi are the optimal weights selected to 
minimize the estimation variance (Webster y Oliver, 
2001), Z(xi) are the observed values of depth and 
Z(x0) is the optimal and unbiased estimate of depth 
values. The bathymetric maps were obtained using at 
least 16 sampling locations within a maximum 
radius of 1.7 (Decimal degrees). Neighborhood 
characteristics were determined by the range of 
influence of the semi-variogram. 

The performance of each interpolation 
technique, in terms of the accuracy of estimates, was 
assessed by comparing the deviations of estimates 
from the measured data through the use of a “jack-
kniffing” technique or cross-validation (Isaak & 
Srivastava, 1989, Webster & Oliver 2001). In such a 
procedure, sample values are deleted from the data 
set, one at a time and then the value in turn is 
interpolated by performing the interpolation 
algorithm with the remaining sampling values. This 
yields a list of estimated values of depth data paired 
to those measured at sampled locations. Therefore, 
the comparison of performance between 
interpolation techniques was achieved by using the 
following statistics: correlation coefficient between 
measured and estimated depth values, the mean error 
(ME), the mean absolute error (MAE) and the root 
mean square error (RMSE) (Zar 1999). 
The ME is used for determining the degree of bias in 
the estimates and it is calculated with equation d): 
 

)()(ˆ1
1

xx i

n

i
i ZZ

n
ME ∑

=

−=                 d) 

 
The MAE provides an absolute measure of the size 
of the error. MAE is calculated with the equation e):  
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The RMSE provides a measure of the error size that 
it is sensitive to outliers. RMSE values can be 
calculated with equation f):  
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Finally, the relative improvement of the best method 
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compared with the other procedures is calculated 
with equation g): 
 

( )
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Where RMSEBest are the minimum value of RMSE 
and RMSECurrent represent the RMSE of the current 
model. 
 
Results 

The spatial variation depicted by the semi-
variogram models are shown on Table I. Spherical, 
Gaussian and Exponential models were found to fit 
well the experimental semi-variograms, and to 
explain the spatial autocorrelation present in the  
depth variable (Figure 3), yielding an r2 ranging 
from 0.95 to 0.97 (Table I). The structural variance, 
which determines the variance explained by the 
model and calculated as (total variance–nugget 
variance)/total variance*100, ranged from 85.0% to 
99.9%. This not only suggests that most of the 
variability of depth values is explained by the 
models, but also that a small fraction of variability is 
attributable to the nugget variance, which was 
ranged from 0.1 to 15.0 %. The range of influence 
showed values between 1.4 and 3.0 decimal degrees, 
indicating that one would reasonably expect that the 
depth values in places separated as far as in between 
1.4 and 3.0 decimal degrees are still somewhat 
related. 

The results, in terms of the accuracy of 
estimates (estimated errors), obtained from the cross-
validation procedures are presented in Table II. The 
mean error (ME) is generally lower for kriging 
methods as interpolators. The depth values when 
predicted by kriging resulted in average 
underestimations of 3.6 and 3.8, being this the 
lowest values compared with those of inverse 
distance procedures, which gave a mean 
underestimation higher than 12.2. The other two 
measures of error, i.e. MAE and RMSE, showed 
similar behavior for all methods. The highest values 
of these measures of errors were obtained with 
inverse distance methods. In the same way estimated 
depth values are more correlated with measured 
depth data when kriging is utilized (Figure 4). 
Therefore, there is evidence that the accuracy of 
depth values estimations is improved when kriging 
procedures are applied. The relative improvement of 
the best technique compared with the others is also 
showed in Table II. Kriging procedure allowed at 
least a reduction of 18.2% in the error compared 

with the inverse distance functions. 
The results strongly suggest that the 

accuracy of estimates and therefore the accuracy of 
mapping depth values were improved by using 
kriging (Table II). Furthermore, it must be taken into 
account that the kriging technique has an intrinsic 
additional advantage over the other interpolation 
method since its estimates are unbiased and with 
minimum variance. Thus, they are accompanied by a 
measure of the error in each predicted value: the 
estimation variance (Webster & Oliver 2001). This 
measure of the estimation error is provided by most 
of the geostatistical software programs, including 
GS+TM. The final DBM produced by using the 
exponential model with kriging, was imported to the 
software Surfer TM for final enhancement and 
display. Figure 5 shows a 2.5-D representation of the 
final DBM. 

 

 
Figure 3. Experimental and model semi-variograms of depth 
values: a) spherical model, b) exponential model and c) gaussian 
model. 
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Table I. Parameters and statistics of semi-variogram models describing the spatial variability of depth 
values. 

Model Nugget 
Variance 

Total 
Variance Range Relative Structural 

(%) Variance r2 

Spherical 8500.00 248500.00 3.005 96.6 0.972 

Exponential 100.00 300500.00 1.724 99.9 0.973 

Gaussian 36900.00 246800.00 1.417 85.0 0.951 

 
Table II. Results of mean error, mean absolut error, root mean square error, correlation coefficients between 
measured and estimated depth values. 
Interpolation ME MAE RMSE Corr RI 
Procedure         (%) 
Kriging (spherical) -3.83 40.98 155.41 0.956 1.42 
Kriging (exponential) -3.55 36.68 153.21 0.957 0.00 
Kriging (Gaussian) -6.06 45.97 162.14 0.939 5.51 
Inverse distance-1 -26.77 56.39 221.62 0.917 30.87 
Inverse distance-2 -21.77 48.48 201.41 0.929 23.93 
Inverse distance-3 -17.64 44.62 191.08 0.934 19.82 
Inverse distance-4 -14.90 43.03 187.60 0.934 18.33 
Inverse distance-5 -13.28 42.63 187.25 0.934 18.18 
Inverse distance-6 -12.33 42.56 187.92 0.933 18.47 
 

 
Figure 4. Results of cross validation analysis used to compare the interpolation methods: a) spherical kriging, b) exponential kriging, 
c) gaussian kriging, d) inverse distance-1, e) inverse distance-2, f) inverse distance-3, g) inverse distance-4, h) inverse distance-5, i) 
inverse distance-d (Dotted lines represent a perfect fit 1:1). 
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Figure 5. A 2.5-D illustration of the final digital bathymetric model (DBM) for the Yucatan submerged platform produced by using 
the spherical model with kriging. 
 
Discussion 

The results obtained from the comparison  
of the two interpolation methods analyzed in  
this study indicated that kriging was the  
most suitable method for mapping the spatial 
distribution of depth values at regional scale.  
The results also revealed that although the  
inverse distance method has the advantage of 
relative simplicity and ease of processing,  
this method is the least accurate, resulting with  
at least an increase of 18.2% in the error  
compared with kriging procedures. Other studies 
have reported similar results (Hernandez-Stefanoni 
& Ponce-Hernandez 2006, Nalder & Wein 1998, 
Voltz & Webster 1990), revealing that the 
estimation is improved when kriging is applied. 
However this improvement is given only if  
number of points is large enough to apply  
this technique and if a careful selection of the 
models of semi-variograms is undertaken 
(Kravchenko & Bullock 1999). 

It is also important to notice that in addition 
to the better performance of kriging procedures,  

 
the semi-variogram analysis required for kriging 
interpolation provides interpretative values beyond 
its role in kriging estimation (Rossi et al. 1992). 
Such information is not produced and  
made available by using the inverse distance 
functions. For example, semi-variogram models 
were able to explain the nature, intensity and  
extent of the spatial distribution patterns of depth 
values. They also showed that such values are 
spatially structured from patches separated between 
1.4 and 3.0 decimal degrees, which correspond to 
the “range of influence” parameter on the semi-
variogram. 

As a final remark and considering that in 
many developing countries the accuracy of 
bathymetric data in digital format are rare, our 
approach might constitute a suitable option not only  
to researchers in our region but to others trying  
to decide the type of interpolation technique  
and the model to choose when elaborating  
digital elevation models for regional mapping 
purposes. 
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