TEOPETUYECKAA N NMPUKNAOHAA MEXAHUKA. 2006. Bein. 42. C. 92-97

YK 539.3
V. V. ZOZULYA, Dr. of Phys. and Math. Sciences

NONPERFECT CONTACT OF LAMINATED SHELLS
WITH CONSIDERING DEBONDING BETWEEN LAMINAS
IN TEMPERATURE FIELD

The problem of a heat conductivity of laminated shells through the heat-
conducting layer in the case of debonding between laminas is considered here.
The developed approach is based on our previous publications [1—4].

Let an elastic homogeneous anisotropic laminated shell of arbitrary geomet-

ry consists of Q layers with 2h? thickness. There is a heat-conducting medium
in the gap h(x) between the laminas in the debonding area. The medium in the

gap does not resist laminas deformation, and heat exchange between laminas is
due to the thermal conductivity of the medium.

The thermodynamic state of the system, including the laminas and the heat-
conducting medium is defined by the components of the stress and strain tensors
and displacement vector, and the temperature and specific strength of the inter-
nal heat sources at the bodies and the medium, respectively.

The differential equations of thermoelasticity for the displacement vector
components may be presented in the form

@ (@4 2@ (@) 4 @) @ _ (q) @D_p@37 -
ADUD+ ADOD4p D=0, AD=c0)9 0, AP=pPd 6; (1)

where d;=0/9dx; are partial derivatives with respect to the space variables x; ;

Ci(j(lzcg are the elastic modulus; ngq) are the linear thermal expansion coefficients.
The parts boundary conditions for displacements and traction have the form

@ 6Dy — D (9)
P =0 =Y (vxeavp )
u =g\ (vxedv? vxev?), @)

In the area of debonding 8V€(‘1) mechanical boundary conditions has form of

inequalities [5].
The equations of the shell heat conductivity can be written as

A#9,0,00 — @ =0 (VXGV(q)). 3)

Here kl(jq) are the coefficients of thermal conductivity.
The boundary conditions for the temperature and heat flux are
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0@ = 92‘1) (VxedVy), q9 = q(q) (Vxe BVq) . (4)
The temperature distribution in the heat-conducting medium is described by
* *
29,00, =% =0 (vxev?). (5)

Boundary conditions on the lateral sides of the heat-conducting medium are
considered in the form

29,00 +p, (61 -0 )=0. (6)

Conditions of heat conductivity in the contact surface between the heat-
conducting medium and laminas have the form

0.=0?, 10,6,=170 6@ (vxeav'?). (7)

In the area of debonding were close mechanical contact take place the ther-
mal conditions can be rewritten as

go =0, (6 -6} (vxeav?), )

where ¢ is the heat flux passing across the close mechanical contact area, o,

is the contacts thermal conductivity.

Analysis of the problem encounters mathematical difficulties caused by the
dimension of the problem, as well as by its non-linearity. The problem can be
partially simplified considering thin bodies, i.e. its dimension reducing obtained.

Let assume that the parameters, which describe the stress-strain state of

each lamina as a three-dimensional body are sufficiently smooth functions of x;

coordinate and may be expanded into Legandre's polynomial series. Then using
the approach developed in [1-4, 6], they can be expressed as
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where ®= x3/h(q) is a dimensionless coordinate.

The equations of thermoelasticity and heat conductivity and corresponding
boundary conditions may be easily rewritten for coefficients in the Legandre's

93



polynomial series. As result we obtain the 2-D equations and boundary condi-
tions for k coefficient in the Legandre's polynomial.

In the first approximation, the shell theory considers only the first two terms
of the Legandre polynomials series [6,8]. In this case the thermodynamic pa-
rameters, which describe the state of the laminated shell are introduced as

u® (x) = (x, )+ (x, ) x5

0@ (x)=0'"(x,)+6 (x, ) x; /1,

0l (x) =6 (x, ) +6{9" (x,, ) x; /1. (10)
Then the 2-D equations of thermo-elasticity (1) can be rewritten as

00,,(9)0 701 ()1, 70 ((9)0 _ g(q)0 ()0 _
L0000+ 11 19 (60610 ) 45900,

LLO 54)0 N L11 <q>1 + L1(9<q>1 e(q)l) +@1= (a1

and the 2-D equations of heat-conductivity (5) become
()0

Aoe(q)o (Q(q)+ Q(q) ) (k1+k )Q(q)O X =0,
7L(q)O
@1, 3 ( @+, - @, 1"
A+ (04" + 047 )+ (ky+ky ) 5+ 2 — =0 (12)
2h Ao

Unknown parameters in equations (14) are

()0
@+ _ @) + 36 @0_ 1 (a+_
0" -0} h(e +T, )+ o & _—Zh(e 7).

(@) 1
@+, o @-_ 3 (gt_7 )9 + 36
0\ + 0 2h(e Tk) Y ol= (e +Tk) > 1

We will consider only one term in the Legendre polynomials series for 6,.. In

this case equation of heat-conductivity in the gap is independent on the equa-
tions of thermo-elasticity (11) and heat-conductivity (12) of the laminate shell,
see [1-3] for details.

To illustrate developed approach we consider axisymmetrical cylindrical shell
which is in adhesive contact with cylindrical rigid body in the temperature field.

There is a debonding area with gap /,(x) between shell and body. Let’s study

the temperature field and stress-strain state using the approach presented
above.

For simplicity we consider classic Kirchhoff-Love's theory of shells. In this
case differential equations of thermo-elasticity and heat-conductivity for the axi-
symmetrical cylindrical shell have the form
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240
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dx dx
where
_ 1 _ 3 15
Fy=0,5¢,(6 +Tk)+%(Tk—9 ) B 8=

L3 3

F=0,5¢, (T, -6 )+%(Tk+9 )—Eef, Dzm,

Mo (g —uy) (36" +66°—-100" )+, /6"
Mg (g—uy)+ A,k

The system of differential equations (14), (15) can be transformed into the in-
tegral equations of Hammerstein's type

IG (x.y)Fy (y)dy=6%,
1

T,=

jW(x,y){%[P()’) =By F }dy W .
!
where
3(1-
Fy=B, (F+e20") By’ BO:%, B%

The kernels in these integral equations are the Green’s functions of the form
G, (x,y) =exp(—¢;|x—y|)/2¢; (i=0,1),

exp (—B|x— y|)[cos(B|x— y|)+sin(B|x—y|)] . (17)

1
W(x y)= 5D

An algorithm for the problem solution has been elaborated in [1-3].
It is assumed that in homogeneous temperature field the shell is in un-

stressed state. Then stress 6, and G in the axisymmetrical cylindrical shell

are calculated by formulas

E d
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Using the Green’s functions they can be presented in the integral form

d G(& %)

G, (x)=h IT (&L d§+bIG(§ )T, (E)dE—byT, (x) +

d G(§

+b j[p@ 412 (19)

Gy(x)=Vo (x)+ -0, E[Ty(x)+T;(x)z], (20)

Ew(x)
r
where

by=[3E0, 2 | /[ (1+v)n?hy |,

=[30+v)Ea 2] /[4nn |,
by=[ Bar®z|[[a-vinky ], by=[3r*z]/[20°h, |. (21)

Calculation have been done for the data: temperature hj(x)=h, sinmx/l ,
63=750°C , 87=0°C; geometrical parameters r=10m, h=0,01m,
ho(x) = hm sinTx /[l hm=0,002m , ld=2r; material properties: v=0,3
E=2,5-100MPa, 0,=2,5-107°C™", &,=20V/m°C , %, =10V/m°C .

The temperature field and stresses 6, and o distribution are presented in
Fig. 1 and Fig. 2. The presented numerical results show that the debonding be-
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tween laminas changes significantly the thermal conditions and effects the tem-
perature field and stresses distribution.

PE3OME. 3apaya TennonpoBigHOCTI LWapyBaTux 060MOHOK Yepes Tennonposia-
HUI Wap hopmMynioeTbCsa AN BUNagKy nopylieHb CyLinbHOCTI M wapamu. Migxig nons-
rac y BpaxyBaHHi 3MiHM TOBLUMHM LUapy 3a paxyHOK NopylleHb CYLiNbHOCTI Ta Aedopmy-
BaHb 06OMNOHOK. TPUBUMIPHI PIBHSIHHS TEPMOMPYXHOCTI Ta TEMNONPOBIAHOCTI po3knaja-
10TbCsl Yy MoniHOMianbHi psaau JlexaHapa 3a TOBLUMHOW. PIBHAHHS NepLUoro HabnukeHHs
BMBYEHO Binblw AeTanbHo. Po3rmsHyTo uncnoBuii npuknag TennonpoBigHOCTI WwapyBaToil
060MoHKM Yepe3 TENNONPOoBIAHWIA Wap.

SUMMARY. The problem of heat conductivity of laminated shells through the
heat-conducting layer in the case of debonding between laminas is formulated. The ap-
proach consists in considering a change of layer thickness in the process of debonding and
shells deformation. Three dimensional equations of thermoelasticity and heat conduction
are expanded into a polynomial Legendre series in terms of the thickness. The first-
approximations equations have been studied in more details. Numerical example of the
heat conductivity of the laminated shells through the heat-conducting layer is considered.
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