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Abstract: The natural formation of the bioactive C17-polyacetylenes (−)-(R)-panaxynol 

and panaxydol was analyzed by 13C-labeling experiments. For this purpose, plants of 

Panax ginseng were supplied with 13CO2 under field conditions or, alternatively, sterile 

root cultures of P. ginseng were supplemented with [U-13C6]glucose. The polyynes were 

isolated from the labeled roots or hairy root cultures, respectively, and analyzed by 

quantitative NMR spectroscopy. The same mixtures of eight doubly 13C-labeled 

isotopologues and one single labeled isotopologue were observed in the C17-polyacetylenes 

obtained from the two experiments. The polyketide-type labeling pattern is in line with the 

biosynthetic origin of the compounds via decarboxylation of fatty acids, probably of 

crepenynic acid. The 13C-study now provides experimental evidence for the biosynthesis of 

panaxynol and related polyacetylenes in P. ginseng under in planta conditions as well as in 

root cultures. The data also show that 13CO2 experiments under field conditions are useful 

to elucidate the biosynthetic pathways of metabolites, including those from roots. 
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1. Introduction 

Extracts of ginseng (Panax ginseng C.A. Meyer) roots are used as health promoting drugs in 

traditional Oriental medicine. In recent times, however, ginseng has also gained importance in Western 

medicine as an anti-aging drug with an increasing market value [1]. Although the mechanisms of 

action of ginseng on human metabolism and health are not well understood, bioactivity is mainly 

assigned to the presence of ginsenosides, a group of secondary metabolites belonging to the triterpene 

saponins class [2–4]. However, additional bioactive natural products are present in the extracts of  

P. ginseng that contribute to the overall effect of ginseng. Among these bioactive metabolites, the  

C17-polyacetylenes, which include panaxynol (1, Figure 1) and its related epoxide panaxydol (2), have 

attracted remarkable interest mainly due to their biological activities [5]. Panaxynol was first isolated 

from roots of P. ginseng C.A. Meyer and described in 1964 [6]. To date, more than 16 polyacetylenes 

have been reported from P. ginseng [7] and other plants, mainly from the Araliaceae and Apiaceae 

families, including carrots, parsnip, parsley, fennel and celery [8,9].  

Figure 1. Structures of (−)-(R)-panaxynol (1) and panaxydol (2). 

 

Panaxynol and related polyynes have shown cytotoxic activity against several human tumour cell 

lines in vitro [10–15]. In vivo studies have confirmed the high potential of these metabolites for 

antitumour treatment [13]. Panaxynol-type polyacetylenes also exhibit significant antimicrobial  

(e.g., antimycobacterial) [16], antifungal [17–19], antiplatelet and anti-inflammatory [20–23], 

neuroprotective [24,25], antimutagenic [26–28], antiproliferative [12,21,29,30], antitrypanosomal [4], 

allergenic and skin-irritating activities [31–34]. The broad bioactivity of these metabolites, in combination 

with their high potential to benefit human health, reflects the importance of these polyacetylenes and the 

need for more detailed studies of their biosynthetic route, as a prerequisite to perhaps produce them by 

biotechnological means (e.g., using modified plants or recombinant microbial cultures). 

On the basis of their structural similarity to fatty acids and of early experiments with radiolabeled 

fatty acids, it is widely accepted that the linear C17 polyacetylenes are derived from C18 unsaturated 

fatty acids [35–37] (reviewed in [9]). It has also been proposed, without experimental validation, that 
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3-hydroxyoleic acid could serve as an intermediate in panaxynol biosynthesis [36] and that aryl 

polyacetylenes are derived from the shikimate pathway [9]. However, the experimental evidence for 

the fatty acid route leading to C17 polyacetylenes is rather weak due to low incorporation rates of the 

radiolabeled precursors into the final products and the question remains open whether the fatty acid 

route is the main and only biosynthetic pathway leading to these secondary metabolites. In this study, 

we have used 13CO2 and 13C-labeled glucose as tracers for in vivo isotope labeling of P. ginseng plants 

and root cultures, respectively, to elucidate the biosynthetic pathway of C17 polyacetylenes. 

2. Results and Discussion  

2.1. Isolation and Identification of Panaxynol (1) and Panaxydol (2) 

Lyophilized roots from plants treated with 13CO2 or root cultures enriched with [U-13C6]glucose 

were extracted with hexane. Purification of the corresponding extracts using column chromatography 

yielded the less polar panaxynol (1) and more polar panaxydol (2) in pure form; both metabolites were 

identified by comparing their spectroscopic data (1H and 13C-NMR) to those reported in the  

literature [38–41]. However, in view of the conflicting reports on the structures of this type of 

polyacetylenes (e.g., their stereoconfigurations), it is important to emphasize the correct identification 

of the isolated panaxynol; this metabolite was originally reported by Takahashi from P. ginseng [6] 

and later reported with the names falcarinol from Falcaria vulgaris [42] and carotatoxin from  

Daucus carota [43]. The first attempt to establish the absolute stereochemistry at C-3 of the compound 

was carried out by Larsen et al. [44], who described falcarinol from Seseli gummiferum as having a  

3-(R) chirality on the basis of chemical correlation studies. The second attempt was carried out by 

Shim et al. [45,46] who described panaxynol as having a 3-(S) chirality on the basis of CD 

measurements. More recently, modified Mosher’s methods have described falcarinol from 

Dendropanax arboreus as being dextrorotatory and having the 3-(S) chirality [47], whereas panaxynol 

from P. ginseng was reported as being levorotatory and having the 3-(R) chirality [40]. These later 

reports were confirmed by Zheng et al. [48] who carried out the enantiospecific synthesis of the two 

isomers of falcarinol/panaxynol and demonstrated that the 3-(R) and 3-(S) chiralities correspond to the 

levorotatory and dextrorotatory enantiomers, respectively. The negative value of the optical activity of 

panaxynol obtained in this study also indicated its 3-(R) chirality. 

2.2. Biosynthesis of Panaxynol and Panaxydol in P. ginseng 

2.2.1. In planta Experiments with 13CO2 

Experiments with 13CO2 best resemble the physiological conditions for plants and the labeling 

profiles in the biosynthetic products represent quasi undisturbed in planta conditions. More 

specifically, the results obtained from these experiments are free from artifacts due to metabolic stress 

reactions (e.g., triggered by wounding in labeling experiments with cut plant organs) or due to the 

usage of non-physiological substrates in experiments with cell cultures. The strategic idea behind 

isotopologue profiling using 13CO2 is the photosynthetic generation of completely 13C-labeled 

metabolic intermediates (e.g., triose and pentose phosphates and products thereof) during an incubation 
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period with 13CO2 (pulse period). During a subsequent chase period, the plants are allowed to grow 

under standard conditions (i.e., in a natural atmosphere with 12CO2) for several days in which 

unlabeled photosynthetic intermediates are generated (i.e., with 12C). These 13C- and 12C-intermediates 

from the pulse and the chase periods, respectively, are then taken by the plant as precursors for 

downstream biosynthetic processes. Consequently, the combination of these precursor units results in 

specific mixtures of 13C-isotopologues in the product. In other words, mixtures of unlabeled and 

multiple 13C-labeled isotopologues are generated as a consequence of the biosynthetic history of the 

metabolites under study. Using quantitative NMR spectroscopy, these isotopologue profiles can be 

assigned and attributed to biosynthetic pathways. Several recent examples have demonstrated the 

power of this experimental approach [49–51]. 
13CO2-labeling experiments of P. ginseng (Figure 2) were carried out using a portable 13CO2 unit [52]. 

To this aim, six-year-old plants of P. ginseng growing under field conditions were exposed to a 13CO2 

atmosphere for 9.5 h and then allowed to grow for 19 days under natural conditions. Extraction of the 

roots yielded a mixture which, after purification, led to the isolation of labeled panaxynol (1) and 

panaxydol (2). The overall 13C-abundances (as determined from the 1H-NMR spectra of the 

compounds) were 1.5–2% for all carbon atoms. The relative intensities of the singlet signals due to 
13C1-isotopologues in the 13C-NMR spectra of the labeled and unlabelled samples were identical. 

However, in the 13C-NMR spectra of labeled panaxynol (1) and panaxydol (2), all carbon signals, with 

the exception of the methyl carbon signals at 14.3 ppm, showed 13C-coupled satellite pairs (reflecting 
13C2-isotopologues; Tables 1 and 2; Figure 3) at relative intensities of ca. 15% in the overall signal 

integrals for a given carbon atom. The same satellites from the unlabelled samples could display only 

1% relative intensity in the global intensity of a given carbon due to the natural 13C-abundance of a 
13C2-isotopologue (i.e., 0.01 mol%). Notably, with the given amounts of the samples (i.e., 2–3 mg, 

respectively), these natural abundance satellites could not be detected at all with the unlabelled 

compounds due to the low intrinsic sensitivity of 13C-NMR spectroscopy (for a review of quantitative 
13C-NMR spectroscopy, see [53]). With the 13C-enriched samples, however, these satellites were 

detected and the analysis of the coupling constants for the 13C2-signals allowed the assignments of 

eight pairs of 13C2-labeled isotopologues, namely [1,2-13C2]-, [3,4-13C2]-, [5,6-13C2]-, [7,8-13C2]-,  

[9,10-13C2]-, [11,12-13C2]-, [13,14-13C2]-, [15,16-13C2]-1 and -2, respectively, at similar or identical 

abundances of ca. 0.2 mol-% (see also Figure 4 where these isotopologues are indicated by bold bars 

connecting 13C-atoms in the molecule). The observed pattern of adjacent 13C-pairs indicates a 

polyketide-type biosynthesis, starting from [1,2-13C2]-acetyl-CoA/malonyl-CoA via a mixture of  

[1,2-13C2]-, [3,4-13C2]-, [5,6-13C2]-, [7,8-13C2]-, [9,10-13C2]-, [11,12-13C2]-, [13,14-13C2]-, [15,16-13C2]-, 

and [17,18-13C2]-fatty acids that is finally converted into the isotopologue profile of 1 and 2.  

On this basis, it can be concluded that decarboxylation of a putative C18-intermediate takes place at 

the site where the uncoupled methyl group is finally observed in panaxynol or panaxydol (cf. Figure 4). 

Furthermore, it is suggestive to propose oleic acid (4) and crepenynic acid (6) as potential 

intermediates, since the triple and double bonds are located at the same positions as in the  

C17-polyacetylenes after decarboxylation. Decarboxylation could then occur at the level of 

intermediate 8 resulting in panaxynol (1) (Scheme 1). Panaxydol (2) could be formed by oxygenation 

of the C9-C10 double bond in panaxynol. However, it is important to keep in mind that the 

decarboxlation step can also occur upstream, i.e., with 3-hydroxyoleic acid or 3-hydroxylinoleic acid 
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as intermediates. However, in this scenario desaturases would unusually act on non-carboxylated 

substrates in order to introduce the required triple and double bonds in panaxynol and panaxydol. 

Theoretically, carboxylation of a labeled C16-fatty acid intermediate could also give rise of the detected 

labeling pattern. On the other hand, this hypothesis would be in contrast to earlier results that reported 

C18-precursors for C17-polyacetylenes [9,35–37]. 

Figure 2. The portable unit used in this study for controlled incubation of P. ginseng with 
13CO2 under field conditions. 

 

Table 1. 1H- and 13C-NMR data of 13C-labelled panaxynol (1) (solvent, CDCl3; δ in ppm).  

Atom 1H (δ) JHH (Hz) Atom 13C (δ) JCC (Hz) 

1a 
1b 
2 
3 
8a 
8b 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 
 

5.26 
5.47 
5.95 
4.92 
2.39 
2.70 
3.14 
2.96 

1.45–1.55 
1.25–1.40 
1.25–1.40 
1.25–1.40 
1.25–1.40 
1.25–1.40 

0.89 
 
 

1H, ddd; 10.2, 1.5, 1.0  
1H, ddd; 17.1, 1.5, 1.0 
1H, ddd;16.8, 10.2, 5.4 

1H, br d; 5.2 
1H, ddd;17.7, 7.1, 0.9 
1H, ddd; 17.7, 5.5, 0.9 
1H, ddd; 7.1, 5.5, 4.2 

1H, br td; 6.1, 4.1 
2H, m 

10H, m 
10H, m 
10H, m 
10H, m 
10H, m 

3H, br t; 6.8 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

117.4 
136.1 
63.7 
75.0 
71.0 
66.4 
77.4 
19.6 
54.4 
57.1 
27.7 
26.6 
29.6 
29.3 
31.9 
22.8 
14.3 

70.9 
70.9 
75.8 
75.8 

156.9 
157.0 
nd * 
68.2 
29.9 
29.9 
33.8 
33.9 
45.7 
45.3 
34.5 
34.5 

- 

* nd, cannot be measured due to signal overlap. 
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Table 2. 1H- and 13C-NMR data of 13C-labelled panaxydol (2) (solvent, CDCl3; δ in ppm).  

Atom 1H (δ) JHH (Hz) Atom 13C (δ) JCC (Hz) 

1a 
1b 
2 
3 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

5.47 
5.24 
5.94 
4.91 
3.03 
5.39 
5.52 
2.03 

1.24–1.39 
1.24–1.39 
1.24–1.39 
1.24–1.39 
1.24–1.39 

0.88 

1H, ddd; 17.1, 1.2 
1H, ddd; 10.1, 1.2 

1H, ddd; 17.0, 10.2, 5.4 
3H, t; 5.9 
2H, d; 6.9 

1H, ddddd; 11.3, 6.1, 1.6 
1H, ddddd; 9.8, 8.1, 1.7 

2H, ddd; 10.7, 6.9 
10H, m 
10H, m 
10H, m 
10H, m 
10H, m 

3H, t; 6.9 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

117.2 
136.3 
63.7 
74.3 
71.5 
64.1 
80.5 
17.8 
122.0 
133.3 
27.4 
29.3 
29.3 
29.3 
31.7 
22.8 
14.3 

71.0 
70.7 
76.0 
76.0 

156.6 
nd * 
68.1 
67.8 
71.4 
71.3 
34.0 
34.0 
34.6 
34.6 
34.5 
34.5 

- 

* nd, cannot be measured due to signal overlap. 

Figure 3. 13C-NMR signals of panaxynol (1) and panaxydol (2) from the 13CO2 

experiment. Couplings between 13C-atoms are indicated. Notably, satellites due to 

couplings between three adjacent 13C-atoms are not observed in the upfield or downfield 

regions of the doublets. 
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Scheme 1. Proposed biosynthetic pathway of panaxynol (1) and panaxydol (2). Adjacent 
13C-atoms detected in experiments with 13CO2 or [U-13C6]glucose are indicated by blue bars.  

 

2.2.2. Experiments in Root Cultures with [U-13C6]glucose 

Panaxynol (1), but not panaxydol (2), was obtained from the extract of P. ginseng hairy root 

cultures cultivated for four weeks in SH medium [54] containing a mixture of 88 mM sucrose and 4.4 mM 

[U-13C6]glucose. The carbon signals in the 13C-NMR spectrum of 1 showed the characteristic  
13C-coupling satellites, with coupling constants identical to those described above for the panaxynol 

sample obtained from plants labeled with 13CO2 (Table 1). However, the relative sizes of the  
13C-coupling satellites were higher (ca. 70% in the overall intensity for a given carbon) in the 13C 

spectrum of the panaxynol from the cultures than those from the field-grown plants. Not surprisingly, 

this reflects the high incorporation rates of [U-13C6]glucose in the stationary labeling experiment with 

the root cultures. It can be concluded that [U-13C6]glucose was efficiently incorporated into 1 via  
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[U-13C2]acetyl-CoA following the same or closely related biosynthetic routes as described above for 

the plants growing under natural conditions. This shows that the pathways are obviously not affected 

by the supply of carbohydrates as carbon sources for root cultures.  

3. Experimental 

3.1. Chemicals 

13CO2 and [U-13C6]glucose (99% 13C-abundance) and other compounds were obtained from  

Sigma-Aldrich (Steinheim, Germany).  

3.2. Plants and Labeling Experiments with 13CO2 

Labeling experiments with 13CO2 were carried out in August 2011 using six-year-old plants of 

Panax ginseng C.A. Meyer growing in the commercial field of FloraFarm (Walsrode, Germany). The 

plant was kept under a 13CO2 atmosphere (700 ppm) from 9 am for 9.5 h (pulse period; 13CO2 

consumption: about 11 L) and left for 19 days (chase period) under natural field conditions before 

collecting the roots for extraction. The roots were washed, cut in pieces, frozen (liquid nitrogen) and 

lyophilized. Finally, the dry root pieces were ground using a mortar. 

3.3. Root Cultures 

Transformed roots of P. ginseng C.A. Meyer were induced from four-year-old rhizomes after 

infection with Agrobacterium rhizogenes A4 strain. Sterilized root discs were wounded with a sterile 

needle loaded with an A. rhizogenes suspension grown in liquid YEB medium [54] for 24 h at 28 ± 2 °C on 

a rotary shaker (Adolf Kühner AG, Birsfelden, Switzerland) at 100 rpm. The inoculated root discs 

were placed on Schenk and Hildebrandt’s medium (SH) [55] containing 3% (w/v) sucrose, 0.1% (w/v) 

myo-inositol and 0.27% (w/v) Phytagel (Sigma) at 26 °C. The medium was adjusted to pH 7.0 before 

autoclaving. After two days of co-cultivation, the explants were transferred to fresh medium containing 

cefotaxime (500 mg/L) in order to eliminate bacteria. After one or two months of cultivation, roots 

started to appear at the infection sites. In order to obtain the root lines, single roots were picked off and 

placed onto new media containing cefotaxime. Hairy roots free of bacterial contamination were 

cultured on hormone-free SH solid medium, in the dark at 26 °C. After six months of subculturing, the 

roots were cultured every two weeks on fresh solid medium and the selected root lines were transferred 

to SH liquid medium and kept in a rotary shaker at 100 rpm and 26 °C in the dark. The transformed 

nature of these root lines was confirmed by the presence of the TL-DNA rol C gene in the plant 

genome, detected by the pRiA4 by polymerase chain reaction analysis as described previously [56]. 

3.4. Labeling Experiments with [U-13C6]Glucose 

The selected P. ginseng root line was cultured for four weeks in hormone-free SH liquid medium 

supplemented with 4.4 mM of [U-13C6]glucose. The root cultures were initiated from inocula of 2 ± 0.2 g 

of roots (fresh weight) maintained in 100-mL Erlenmeyer flasks, each containing 20 mL of SH 

medium. In this experiment, a total of 70 Erlenmeyer flasks were used, which corresponds to a total 
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volume of 1.4 L. After four weeks, the roots (381 g, fresh weight) were harvested by filtration and 

freeze dried (21 g, dry weight).  

3.5. Isolation of Panaxynol (1) and Panaxydol (2) 

Dry-powdered roots or root cultures (about 20 g) were extracted by refluxing (70 °C) twice for 3 h 

with hexane (300 mL). The solvent was evaporated under reduced pressure and the resulting crude 

extract (209 mg) was purified by open column chromatography (3 × 25 cm) using a mixture of 

hexane/acetone/methanol (80:18:2; v/v) as the eluting solvent (fraction volume, 5 mL). Panaxynol  

(1, 2.3 mg) was obtained in pure form at a retention volume of 155 mL. Panaxydol (2, 2.0 mg) was 

obtained in pure form from the field-grown roots of P. ginseng at a retention volume of 205 mL. The 

identity of both metabolites was confirmed by comparing their spectroscopic data (1H- and 13C-NMR) 

with those reported in literature [38–41]. The chirality at the C-3 position of panaxynol (1) was 

established as (R) by comparing its optical activity value ([α]D −28.5°, c 0.17, CHCl3) with that 

reported in the literature ([α]D −31.5°, c 1.0, CHCl3) [57]. 

3.6. Chromatography 

Thin-layer chromatography (TLC) was carried out using aluminum-backed silica gel (60 F254) 

plates (Merck, 0.2 mm thickness) and the spots on the TLC plates were visualized by using a solution 

of H2SO4/MeOH (1:10; v/v) followed by heating (95–100 °C). Column chromatography purifications 

were performed using silica gel 60 (0.063–0.200 mm; 70–230 mesh; ASTM) from Merck  

(Darmstadt, Germany). 

3.7. NMR Spectroscopy and Optical Rotation  

NMR spectra were recorded at 27 °C using DRX 500, Avance I 500 and Avance III 500 

spectrometers (Bruker Instruments, Karlsruhe, Germany). 1H- and 13C-NMR spectra were measured in 

CDCl3. For the measurement of 13C-NMR spectra, a cryo-probe head (5 mm QNP, inner coil = 13C) 

was used. One-dimensional 1H-spectra and COSY, HSQC, and HMBC experiments were performed 

with an inverse probe head (5 mm SEI, inner coil = 1H). The resonance frequencies of 1H and 13C were 

500.1 MHz and 125.8 MHz respectively. Data analysis was done with TOPSPIN 3.0 (Bruker) or 

MestReNova 7.0.0 (Mestrelab Research, Santiago de Compostela, Spain). The optical rotation was 

measured using a Perkin Elmer 241 MC polarimeter (Perkin Elmer, Waltham, MA, USA).  

4. Conclusions  

NMR-based isotopologue profiling of panaxydol and panaxynol confirmed their assumed origin 

from acetyl-CoA/malonyl-CoA via fatty acids with crepenynate as the putative intermediate. The 

decarboxylation site of the C18 intermediate(s) could now be clearly located to the methyl site of the 

product, panaxynol/panaxydol. The knowledge about the metabolite flux leading to the bioactive 

compounds and the factors for its control are useful to establish plants or root cultures of P. ginseng to 

produce C17-polyacetylenes at high yields. The study shows the feasibility of 13CO2-experiments to 

elucidate the biosynthetic origin of metabolites/products in field-grown plants. With the present study, 
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it is demonstrated that the biosynthesis of root metabolites can be studied by pulse/chase experiments 

starting from the fixation of 13CO2 by the leaves. 
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