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Abstract: Two main problems limit the success of titanium implants: bacterial infection, which
restricts their osseointegration capacity; and the stiffness mismatch between the implant and the host
cortical bone, which promotes bone resorption and risk of fracture. Porosity incorporation may reduce
this difference in stiffness but compromise biomechanical behavior. In this work, the relationship
between the microstructure (content, size, and shape of pores) and the antibacterial and cellular
behavior of samples fabricated by the space-holder technique (50 vol % NH4HCO3 and three ranges
of particle sizes) is established. Results are discussed in terms of the best biomechanical properties
and biofunctional activity balance (cell biocompatibility and antibacterial behavior). All substrates
achieved suitable cell biocompatibility of premioblast and osteoblast in adhesion and proliferation
processes. It is worth to highlighting that samples fabricated with the 100–200 µm space-holder
present better mechanical behavior—in terms of stiffness, microhardness, and yield strength—which
make them a very suitable material to replace cortical bone tissues. Those results exposed the
relationship between the surface properties and the race of bacteria and mammalian cells for the
surface with the aim to promote cellular growth over bacteria.

Keywords: bone implant; porous titanium; cellular adhesion; bacteria colonization; osseointegration

1. Introduction

Longer life expectancy, traumas, and congenital diseases have led to an increase in the use of
implants. Bone metal implants are usually made of commercially pure titanium (c.p. Ti) or based on Ti
alloys owing to its biocompatibility and mechanical behavior [1]. C.p. Ti has a Young’s Modulus of
100–110 GPa, which is higher than cortical bone (20–25 GPa), causing stress shielding phenomena and
bone resorption [2]. This problem can be solved using porous material instead of fully-dense one [3–6].
However, in order to achieve a biomechanical balance (stiffness vs. mechanical strength) of the bone
tissue to be replaced, an adequate porosity (in terms of size, shape, and distribution of the pores) is
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required. Up to 34 processing routes to fabricate porous materials have been already reported [7–10].
Among them, the use of space-holders stands out. This technique uses particles—such as salt [11,12],
sugar [13], ammonium bicarbonate [14], or magnesium [15]—to reproduce a bone-like porosity structure
in which the space-holder particles can be removed by thermal process or dissolution. This step
can be performed before or during the sintering process. The particle size and morphology are key
factors in the design of the pore structure. One remarkable advantage is that the space-holder is a
cost-effective and non-toxic method, which does not release any toxic agent which could affect cellular
and bacterial behavior.

On the other hand, several authors have reported that surface properties such as the topography,
roughness, chemistry, and free energy of metallic based biomaterials have a strong influence on the
initial adhesion and early differentiation of osteoblast cells [16,17]. In 1987, Gristina was the first author
to use the term “the race” for the surface, regarding the competition established between bacteria and
cells for the biomaterial surface [18]. Also, Gristina remarked that if bacteria attached and colonize
faster than osteoblast cells—i.e., bacteria wins the race—an infection will take place, which will be
almost impossible to remove. This effect is due to the fast process of bacteria to excrete extracellular
polymeric substances (EPS) once they are attached. The size is one the most highlighted difference:
osteoblasts are bigger in size, ranging from 20–30 µm, bacteria such as Escherichia coli (E. coli) or
Staphylococcus aureus (the most common bacteria presented in titanium dental implants) are around
1–2 µm in length [19]. The stiffness, surface topography (i.e., roughness) and surface chemistry can
be tailored in order to promote an advanced cell adhesion process. It has been described the high
stiffness behavior of bacteria compared to osteoblast cells, which can be a potential factor in bacteria
adhesion and colonization [20]. However, the adhesion mechanisms and the proliferation rate of
bacteria are key factors that favor bacteria in the race for the surface. Filia, pili, and the expression
of EPS, which constitute the biofilm formation, are some of the mechanisms that participate in the
interactions between bacteria and the surface. This EPS covers and protects the bacteria under a biofilm.
In this scenario, bacteria becomes more resistant and the antibiotic treatment usually has no effect.
On the other hand, osteoblast cells require a more complex mechanism involving integrin receptors
and proteins to develop focal adhesion (FA) points. The FA are based of filopodia and lamellipodia
cytoplasmatic projections that control and regulate cell to cell interactions and cell surface as well.
Therefore, the control of surface properties may reduce or avoid the bacteria attachment resulting in
the successful application of the implant on bone regeneration [19].

In a previous work, we reported the manufacture of porous substrates by the space-holder
technique which showed a decrease of bacteria attachment [21]. However, the vast majority of studies
which focus on Ti implants made use of either bacteria or celld independently and, thus made it
difficult to analyze of what type of surface properties may enhance infections and/or osseointegration.
Therefore, here we report for the first time the behavior of bacteria and two murine cell lines (myoblast
and osteoblast) on c.p. Ti porous substrates with the aim to design a porous implant able to promote
bone regeneration and avoid bacterial infections. In this context, this work examines a detailed study of
the influence of microstructural characteristics (size, shape, area, and porosity roughness) on the macro
and micro-mechanical behavior, as well as the response of the material in the presence of eukaryotic
cell cultures (C2C12-GFP and MC3T3E1) and E. coli strain bacteria (Gram-negative bacteria).

2. Materials and Methods

2.1. Fabrication of Ti substrates

The blends of medical grade 4 c.p. Ti were supplied by SE-JONG (Materials Co. Ltd. Gojan-dong
Korea). Fully-dense c.p. Ti samples were obtained by conventional powder technology (PM), while
porous substrates were fabricated using space-holder technique (50 vol % NH4HCO3 and different
ranges of particle size: 100–200 µm, 250–355 µm, and 355–500 µm). The green samples were produced
by pressing at 800 MPa by means of an Instron 5505 universal testing machine (Instron, High Wycombe,
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UK). Then, the spacer was thermally removed (firstly at 60 ◦C and, then at 110 ◦C under low vacuum
conditions), both stages of the thermal treatment are carried out for 10–12 h and low vacuum conditions
of 10−2 mbar). Subsequently, the samples (porous and fully-dense) were sintered in a ceramic tubular
furnace during 2 h at 1250 ◦C under high vacuum conditions (~10−5 mbar).

2.2. Microstructural and Mechanical Characterization

Different techniques were employed to characterize the porosity at different levels (superficial
and volumetric), as well as the pore distribution, shape, and roughness previously reported [3–5,14].
Total porosity was determined by both Archimedes’ method and image analysis (IA), using a Nikon
Epiphot optical microscope (Japan) coupled with a Jenoptik Progres C3 camera and Image-Pro Plus 6.2
analysis software. Confocal laser and scanning electron microscopy (SEM, JEOL JSM-6490LV, JEOL,
Tokyo, Japan) were used to evaluate the roughness. Considering the importance of pores roughness
on bacterial adhesion, X-ray micro-computed tomography (M-CT) was also performed due to its
capability to provide three-dimensional (3D) surface roughness data, among other parameters. These
measurements were performed using a custom made X-ray scanner composed mainly of a micron
focused X-ray source L8121-01 (with a W-target) from Hamamatsu, Japan [22]. Scans were performed
at 100 kV and 100 µA, with a spot size of 5 µm and were recorded with a flat panel detector C7943
(120 × 120 mm, 2240 × 2368 pixel), also from Hamamatsu. A 3D reconstruction of the specimen
was obtained by acquiring a certain number of X-ray projections during sample rotation over 360◦,
followed by software reconstruction of these projections. This method allowed for the qualitative and
quantitative exploration of the interior structure of the porous Ti samples, with a pixel size down to
6.4 µm at a 7.8-fold magnification. Parameters such as equivalent diameter (Deq), total porosity (Pt),
and interconnected porosity (Pi) was determined by M-CT. All these analytical techniques have been
implemented, following the procedures described in previous works [3–5,14].

On the other hand, the macro-mechanical behavior of Ti substrates was evaluated by ultrasound
technique (dynamic Young’s modulus, Ed) and uniaxial compression test (Young’s modulus, Ec;
yield strength, σy). For mechanical compression testing, the specimen dimensions were fixed to
standard recommendation (height/diameter = 0.8). The tests were carried out with a universal
electromechanical Instron machine 5505 by applying a strain rate of 0.005 mm/mm/min. All tests
finished for a strain of 50 pct. The Young’s modulus estimation from the compression stress–strain
curves was corrected with the testing machine stiffness (87.9 kN/mm). On the other hand, conventional
microhardness studies (Vickers indenter Shimadzu, model HMV-G, Japan) at two different applied
loads (HV0.3 and HV1) were performed. All the measures were taken three times per substrate type
and applied load.

2.3. In Vitro Cellular Experiments

2.3.1. Analysis of Bacterial Behavior of Porous Substrates

E. coli strain Bacterial behavior on porous and fully-dense c.p. Ti substrates is studied, following
the protocol summarized in Figure 1. The used E. coli was a lyophilized form from Ielab, Spain
(E. coli; ATCC 25922). The culture solution was prepared with Peptone Water (dehydrated culture
media, from Panread AppliChem, Spain) and E. coli-Coliforms Chromogenic Medium from Conda
Laboratories S.A. The initial concentration of colony-forming units per 100 mL (CFU/100 mL), was
determined by membrane filtration, followed by incubation of the membrane on a Petri plate containing
E. coli-Coliforms Chromogenic Medium at 37 ◦C for 24 h. Specifically, the study includes three initial
concentrations: 7.8·104 (C1), 3.3·103 (C2), and 4.3·102 (C 3) CFU/100 mL, respectively.
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Figure 1. Analytical procedures employed to E. coli bacteria analyses.

For E. coli bacterial behavior studies, fully-dense and porous substrates were placed in 10 mL
test tubes containing each bacterial concentration and these were incubated at 37 ◦C for 1 h. One tube
containing only bacteria was used as reference (R).

Afterwards, the bacterial growth was analyzed by three protocols (Figure 1). Protocol 1 (P1)
quantified the amount of E. coli per tube and per initial concentration by membrane filtration (pore size
of the membrane: 0.45 µm) of the solution of each tube [23]. Protocol 2 (P2) evaluated the E. coli density
on the Ti substrate using a sterile swab to smear the total surface of the Ti samples. P2 was applied on
the flat surface, meaning the areas of the samples without pores. Then, the swab was applied following
a zigzag pattern on a Petri dish containing E. coli-Coliforms Chromogenic Medium and incubated at
37 ◦C for 24 h. Protocol 3 (P3) analyzed the E. coli proliferation inside the pores by re-immersing the
swabbed substrates in test tubes with 10 mL of sterile Peptone water. This solution was mixed using a
vortex mixer for 1 min and cooled at 4 ◦C for 2 h. Tube contents were again mixed with the vortex mixer
to detach the bacteria from the cavities and to quantify them using membrane filtration. To guarantee
the complete detachment of bacteria from the cavities, the process was repeated three times instead
of doing it only once as recommended by ISO 11737:1:2007 standard [24]. The bacterial growth was
expressed in total number of CFU for each substrate and concentration. Several measurements were
made for each condition (protocol, substrate, and initial concentration).

2.3.2. Evaluation of Cell Adhesion and Proliferation of Eukaryotic Murine C2c12-Gfp Premioblast Cells

Attachment and proliferation of C2C12-GFP were analyzed by inverted fluorescence microscopy
(Olympus IX51) and CellD Software (Olympus). To that end, C2C12 murine premioblastic cell line was
purchased to America Type Culture Collection (ATCC®CRL-1772™) and transfected, via lentivirus,
to self-express constitutively green fluorescent protein (GFP). The presence of this GFP group in cells
membrane allowed us to detect the cells and follow the adhesion and proliferation process. The routing
passage was performed using DMEM (Dulbecco’s modified Eagle medium, Sigma Aldrich), completed
with 10% fetal bovine serum (FBS) and 1% of penicillin/streptomycin (100 U/mL, Invitrogen, Germany).
For adhesion and proliferation studies, cells were seeded at an initial density of 10,000 cells/cm2,
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and after 24 h samples were transferred to new 24-well plates and inverted fluorescent images were
taken after day 1, 4, 7, and 10 of cell incubation. The complete medium was changed every 2–3 days.
This protocol is summarized in Figure 2.
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2.3.3. Cell adhesion and Proliferation Studies of Murine MC3T3E1 Osteoblast

A bone cell line, MC3T3-E1 (ATCC CRL-2593), was employed to evaluate the effect of porosity
in cell viability, cell proliferation, and cell morphology of osteoblast. The subculture routing was
performed in MEM (minimum essential medium, Sigma Aldrich, Germany), completed with 10%
fetal bovine serum (FBS) and 1% of penicillin/streptomycin (100U/mL, Invitrogen, Germany). 75 cm2

culture flasks were placed in a humid atmosphere with 5% CO2 at 37 ◦C. Ti substrates were seeded at
10,000 cells/cm2 and after 24 h samples were transferred to new 24-well plates. Figure 2 summaries the
protocol for this study.

Cell Viability of Murine MC3T3E1 Osteoblast

Cell metabolic analysis was measured in order to evaluate the cell viability at day 4 of cell
incubation. To that end, AlamarBlue assay (DAL1100, Thermofisher, USA) was performed following
the manufacturer’s instructions. For this, samples previously seeded with cells were transferred to
new 24-well plates and fresh media containing AlamarBlue dye added (10% of culture media volume).
After 1.5 h of incubation in darkness at 37 ◦C, samples were removed and fluorescence signal was read
in a microplate reader (Synergy HT, Biotek) using an excitation wavelength of 530 nm and emission
wavelength of 590 nm. Fully dense surface was considered control surface as 100% viability. Assays
were carried out by triplicate for each sample condition.

Cellular Morphology Evaluation of Murine MC3T3E1 Osteoblast

After 10 days of cell incubation, osteoblast cells attached to the substrates were washed twice with
PBS, and subsequently, fixed using 4% paraformaldehyde (PFA) solution. Fully-dense and porous Ti
samples were rinsed carefully with PBS twice, permeabilized with 0.1% (v/v) Triton X-100 and, finally,
washed again with PBS. The actin cytoskeleton was stained with Texas Red®-X phalloidin (Molecular
Probes). To that end, the commercial solution was prepared in PBS and left in dark conditions for 20 min
at room temperature (RT). Hoechst (Invitrogen, Molecular Probes) was employed as a contrast marker,
to detect cell nuclei. Fully-dense and porous substrates were analyzed using an inverted fluorescence
microscope (Olympus IX51) with a TRICT filter (λex/λem = 550/600 nm) for Actin, and DAPI filter for
Hoechst (λex/λem = 380/455 nm) and images were treated by CellD analysis software (Olympus).
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Statistical Analysis

In general, each experiment was performed in triplicate with each bacteria or cell line, media,
and sample. Mean values and standard deviation are reported. A p-value of < 0.01 was deemed to be
statistically significant. For in vitro cells, mean and standard deviation are presented and a one-way
ANOVA followed by a post Tukey analysis was performed in which values were be statistically
significant when p-value was < 0.05.

3. Results

3.1. Microstructural Characterization

Results concerning to the microstructural characterization of the porous substrates can be observed
in Figures 3 and 4. Particularly, Figure 3 (top) shows micro-images of the fabricated samples while
Figure 3 (bottom) displays details about the aspect of the pores, size, and distribution as obtained by
IA. So, by the micro-image we have an overview of the fabricated samples, while by IA details about
the aspect of the pores, size and distribution can be determined. Figure 4 shows data obtained by
M-CT which provides three-dimensional information, quite useful to determine the distribution of
inner pores as well as the roughness volume percentage of the eroded pore compared to the virtually
smoothed pore in dependence of the pore equivalent diameter. The presence of micro-scale roughness
pattern within the pores was revealed by M-CT, so total inner surface was calculated analyzing a
M-CT representative fraction of total sample volume, taking into account the local deviation of the
gray values perpendicular to the contour line within a search distance of 20 µm. Data obtained by
the analyses of the images contained in Figures 3 and 4 are summarized in Tables 1 and 2, such as
porosity and parameters to characterize the pores (equivalent diameter of pores, Deq, shape factor,
and roughness).

Table 1. Total, interconnected, and isolated porosity evaluated by different characterization techniques.

Samples
PT (%) Pi (%)

Archimedes’
Method IA M-CT Archimedes’

Method M-CT

Fully-dense 2.3 ± 0.1 1.2 ± 0.2 – 2.1 ± 0.1 –

Spacer size
(µm)

100–200 44.8 ± 0.1 50.3 ± 1.3 52.2 ± 10.7 43.1 ± 0.2 51.3 ±10.6

250–355 45.9 ± 0.2 48.7 ± 1.9 – 41.0 ± 0.1 –

355–500 46.0 ± 0.1 47.1 ± 4.3 56.4 ± 11.1 41.2 ± 0.2 55.6 ±10.2

Table 2. Morphological features of the pores: size, shape factor, and roughness of the pore walls.

Samples AI M-CT

Deq (µm) Shape factor Deq (µm) Roughness, Ra (%)

Fully-dense 5.5 ± 0.2 0.99 ± 0.01 –

Spacer size
(µm)

100–200 161.1 ± 28.5 0.67 ± 0.03 191.8 ± 6.1 11.3 ± 2.5

250–355 261.5 ± 9.0 0.67 ± 0.01 311.9 ± 8.2 7.3 ± 2.0

355–500 293.4 ± 28.2 0.71 ± 0.03 368.4 ± 9.1 3.3 ± 0.6
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3.2. Mechanical Behavior

The macro-mechanical (stiffness, yield strength) and micro-mechanical (Vickers hardness) behavior
of porous c.p. Ti is summarized in Table 3. Young’s modulus has been measured by ultrasound
and uniaxial compression test. These results have been discussed in terms of the advantages and
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disadvantages of both techniques. On the other hand, the influence of the indentation load and its
relationship with the size of the remaining Ti matrix among pores is evaluated. In this context, it should
be noted that, for a fixed percentage of total porosity, an increase in pore size implies an increase in the
mean distance between pores (the size of the titanium matrix increases).

Table 3. Macro and micro-mechanical behavior of porous substrates.

Samples
US Uniaxial Compression Test Microhardness

Ed (GPa) Ec (GPa) σy (MPa) HV0.3 HV1

Fully-dense 101.2 ± 0.3 95 ± 1.0 628 ± 5 377 ± 26 342 ± 52

Spacer size
(µm)

100–200 20.8 ± 0.1 26.0 ± 0.9 127 ± 21 401 ± 42 167 ± 81

250–355 22.8 ± 0.2 23.1 ± 1.0 118 ± 14 356 ± 35 152 ± 72

355–500 20.0 ± 0.7 19.7 ± 1.2 98 ± 18 350 ± 36 138 ± 70

3.3. Bacteria Behavior

The number of CFU of E. coli on titanium substrates as a function of initial bacteria concentration
following Protocol 1 is depicted in Figure 5a. It was observed that E. coli initial concentration affected
the number of CFU on the substrate i.e., the higher the initial concentration the higher the number
of CFU. However, as porosity increased (fully-dense vs. porous c.p. Ti) the number of CFU was
significantly increased, especially at the lowest initial bacteria concentration (C3). E. coli bacteria
concentration of the medium could influence the medium-substrate interaction. After incubating
the samples for 1 h at 37 ◦C, the number of CFU in the corresponding solutions was determined by
membrane filtration. Protocol 2 revealed no bacteria attached onto the flat surface. By Protocol 3,
bacteria inside the pores was quantified and its normalization by the surface is shown in Figure 5b,c,
respectively. As the size of the spacer increased the number of CFU also increased at both initial
bacteria concentrations (Figure 5b).
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Figure 5. Bacteria quantification following protocols described (P1, P2, and P3). (a) CFU of E. coli
bacteria after membrane filtration (Protocol 1), CFU of E. coli bacteria inside the pores measured
following Protocol 3: (b) absolute values and (c) normalized values by the inner pores surface. Inset:
magnification view of the concentration view for the normalized values.
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3.4. In Vitro Cell Studies

The different studied substrates were tested in vitro conditions using two murine cell lines. In first
place, C2C12-GFP premioblastic line was used to evaluate the process of cell adhesion and proliferation
after 1, 4, 7, and 10 days of cell culture compiling the results in Figure 6. C2C12-GFP cells were capable
to attach and proliferate over the surface and inside the pores, increasing the cell density presented on
the samples over time. In the first 24 h, the inverted fluorescence images showed similar cell density
between fully-dense and porous substrates. After 4 days, several small green dots which correspond
to small alive cell clusters were observed totally dispersed on the surface. Furthermore, at longer
incubation periods, cells were able to proliferate, showing an increased cell density over the entire
surface. Indeed, at day 10 C2C12 GFP cells were covering the entire porous structure, even filling the
pores attaching on pore’s walls and arriving to the edge of the samples (see Figure 7 after 10 days,
255–350 µm sample). Figure 7 showed a higher magnification of C2C12-GFP cells growing at 4 days to
analyze the cell morphology on c.p. Ti samples. A clear different cell shape was observed between
cells growing on flat surfaces and inside pores. Premioblastic cells growing on fully-dense samples
showed fusiform morphology, with an elongated cell shape. This cell morphology, most frequent of
fibroblastic phenotype, was also observed in flat surfaces of porous substrates independently of pore
size (see Figure 7).
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Figure 7. Higher magnification of microphotographs of C2C12-GFP cells growing after day 4 of cell
incubation. Common scale bar.

Cell viability determination was performed after 4 days using osteoblast cells and the results were
compiled in Figure 8. Cell viability was expressed as percentage of fully dense samples, showing an
increased cell viability of osteoblast growing on the three porous structures compared to the control
surface (fully-dense). Although cell viability results are slightly higher for porous samples respect to
fully-dense substrates, this observed trend was not statistically significant and, therefore, no differences
in cell viability could be observed between surfaces (p > 0.05).
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Figure 8. Cell viability quantification of preosteoblast MC3T3 growing on fully-dense and porous
substrates after 4 days of cell incubation. Percentages of cell viability are coupled with representative
images from a macroscopic point of view. No statistics differences were observed between surfaces
(p > 0.05), however, porous substrates reached higher percentages than the control fully-dense surface.
Common scale bar for all the images.

Figure 9 presents the images of preosteoblast MC3T3E1 cell cytoskeleton morphology, showing
actin fibers (in red) and cell nuclei of stained osteoblast (in blue) after 10 days of cell culture. Firstly,
it was observed that, the entire surface of fully-dense and porous substrates was completely covered by
osteoblast. Some flat areas in samples prepared with higher space-holder particles size (355–500 µm)
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were not totally covered and a heterogeneous random distribution was observed compared to the
homogeneous cell spread of osteoblast in the other three surfaces. Images on the middle and bottom
depict porous structures in Figure 9 corresponds to a higher magnification area (using 10× and 20×
lenses). These micro-photographs showed the same area with focusing in two different points, on flat
surface and inside pores. As it is shown, the cell nuclei of MC3T3E1 cells in the three porous substrates
were covering the total flat surface exposed and the elongated actin fibers connecting between cells
almost producing a cell sheet. In contrast, fully-dense surfaces revealed more than one cell monolayer
growing on top of another cell sheet. This situation might reduce the corresponding cell viability of the
cell culture and promote the detachment of the cell sheet.
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Figure 9. Immunofluorescence images of cell actin cytoskeleton (in red) and cell nuclei (in blue)
of preosteoblast MC3T3 growing for 10 days. Medium and lower images correspond to higher
magnification of areas focusing in same area on flat and inside pores of the studied specimens. Bottom
images show the cells attached inside pores and medium the same cells well focused on flat areas.

4. Discussion

As it is shown in the optical microscopy images (Figure 3), all porous c.p. Ti substrates present
two different ranges of pore sizes; pores with a size below 50 µm were generated during the sintering
process. In addition, they are not critical in mechanical and biological behavior of the substrates.
Otherwise, the larger pores correspond to the former spacer particles, showing a Deq in the range of the
size of these particles (161.1 ± 28.5 µm for 100–200, 261.5 ± 9.0 µm for 250–355, and 293.4 ± 28.2 µm
for the 355–500 µm of the spacer particles size, as it was determined by IA). Porosity results obtained
by the different techniques (Table 1) differ due to the inherent characteristics of them: Archimedes’
is a volumetric method, IA analysis is superficial while M-CT only takes into account a volumetric
fraction of the sample. The total porosity is slightly below the expected 50%. Nevertheless, different
factors can influence. For instance, remaining small amount of undissolved NH4HCO3, which are
enclosed in the isolated pores, and the slight reduction of the volume associated with the space-holder
during sintering would contribute to reduce the porosity while an increase on the porosity could be
also expected because of the additional micro-pores generated during the sintering.
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Total inner surface has been calculated analyzing a M-CT representative fraction of total sample
volume. The lowest value was obtained for the intermediate size 255–350 µm (260.1 ± 29.6 mm2), while
similar values were calculated for the other samples (321.0 ± 44.8 and 311.9 ± 29.9 for 100–200 µm and
350–500 µm, respectively). Similarly, roughness quantification by the analysis of confocal microscopy
images revealed an increased roughness in porous surfaces compared to flat surface, as it has been
described above.

Concerning the pores, Deq, analyzed by IA and M-CT (see Table 2), a similar tendency was
observed for both techniques. In the case of IA, also information about the shape factor has been
obtained, revealing high symmetry of the pores, since it is close to one for all the substrates. By M-CT,
the roughness has been analyzed (Table 2), the higher pore size (355–500 µm), the smoother surface.
Roughness improves cellular adhesion [3,5], so it is desirable for osseointegration; however, depending
on the roughness values it can affect bacteria adhesion.

Additionally, the mechanical behavior of the substrate is an important feature since the ideal
implant should be mechanically similar to the bone. The mechanical properties of the fully-dense
substrates are far from those of cortical bone tissues. However, all porous substrates present a Young’s
modulus similar to the one of the cortical bone [25]. The yield strength values of the porous samples
are lower than that of the bone, but they remain closer to the ideal values compared with fully-dense
substrates [26].

Microhardness has been evaluated by two load levels that reveal different results: HV0.3 and HV1
(Table 3). Comparing the results, the differences in terms of applied load for one substrate could be
related to the localized microplasticity phenomena and indentation size effects. The microhardness and
the local stiffness of the porous c.p. Ti substrates depend on the remaining material and the surrounding
pores (size and distribution). For low load (HV0.3), the microhardness of porous substrates and
fully-dense samples is similar due to the Ti matrix remaining sufficiently large between the pores
(i.e., no porosity influence). However, for higher load (HV1), an effect of the pore and porosity on
the micro-mechanical behavior (material collapse, buckling, etc.) can be appreciated. The pore size
influences the microhardness in an opposite way, it means, the samples with a higher pore size present
a lower microhardness value due to the larger area of the Ti-matrix among the pores. However,
a detailed study may be required to determine the main influential parameters to the results as the
mean free path between pores and the number of indentations.

Once the mechanical properties have evaluated, next the bio-functional behavior is studied.
Following Protocol 1, the bacteria concentration of the medium was measured. As it is shown in
Figure 5a, both fully-dense and porous substrates inhibited the bacterial growth for the three studied
concentrations compared to the reference solution (bacteria only). This reduction was particularly
significant for fully-dense c.p. Ti substrates and lower initial bacteria concentrations (C3) while for
bacteria solution (C1), the substrate influence was irrelevant. This difference between the fully-dense
and the porous samples can be explained by two possible factors: the growth rate is higher for lower
bacteria concentrations in the media, achieving a stationary state and/or higher concentrations of
bacteria mean that the bacteria thronged the cavities, hampering penetration into the pore.

Measurements obtained by Protocol 2 for the E. coli strain showed no bacteria growth and adhesion
onto the flat surfaces. For the porous samples, the flat surface corresponds to the polished c.p. Ti matrix
surface that remains among all the pores. After incubating the Petri dish where the swab was smeared,
no bacteria grew. For this same strain, Protocol 3 revealed bacterial presence inside the pores (Figure 5).
This difference in terms of behavior between the two surfaces could be related to the micro-roughness
pattern of the porous surface. A similar pattern has been reported for osteoblasts [4,5]. As it is shown
in Figure 5b, the number of CFU inside the pores was larger for porous substrates with larger pore
size and at higher concentrations. A higher initial bacteria concentration implies higher probability of
bacteria attaching inside the pores. The influence of the pore size could be ignored compared to the
effect of the concentration for absolute values. Nevertheless, once the number of CFU was adjusted in
relation to the area (Figure 5c), it was relatively insignificant.
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To compare the bacteria behavior and the studied substrates different factors have been considered.
On the one hand, the presence of pores and, on the other hand, the real surface, which is related to
pores inner roughness. In this context, it has been observed that the presence of pores promote bacteria
proliferation. Otherwise, normalized values by real surface area reveals that the value was not higher
than expected. Pore number, size, shape, and surface roughness inside the pores are also relevant.
At higher pore size (368.4 ± 9.1 µm) as measured by M-CT, more bacteria are adhered into them.
In contrast, bigger pores present smoother walls (3.3 ± 0.6 µm), which would make more difficult the
bacteria adhesion. However, the obtained results for this bacteria strain show that pore size is more
significant than roughness.

Regarding the behavior of mammalian cells such as myoblast or osteoblast cell lines, several
studies have been performed. Cell viability, adhesion, proliferation, and differentiation of osteoblast
are key factors for bone tissue reconstruction purposes [27] and these processes can be influenced by
tailoring the surface properties of the medical device such as hydrophilicity, roughness, pore size,
morphology, and distribution. Pore size is one key parameter that has been deeply reported in several
studies suggesting pore size between 20 µm to 500 µm are appropriate for bone regeneration [28].
These values covered a wide range of pore sizes, however, if the pores are quite small, the blood vessel
network cannot exchange nutrients and oxygen to new bone tissue. Conversely, if the pore is too large,
the mechanical properties may compromise the internal stability of the implant. Although the most
suitable pore size for bone regeneration process is still controversial, for Ti implants a pore range from
150 to 500 µm has been established, taking into account the role of the interconnected pores in the
proper development of the new vascularization system [29]. During the course of this study, all porous
surfaces showed a non-toxic behavior and a good cell adhesion for C2C12GFP achieving similar cell
density after 24 h compared to the fully-dense control surface (Figure 6). In fact, the presence of cells
attached on the surface on all c.p. Ti substrates serves as an indicative factor of biocompatibility of the
manufacturing process of porous structures by powder metallurgy and space-holder techniques which
have been previously described as safety technologies to develop non-toxic 3D porous structures [30].

Even though the cell density attached on the surface after day 1 is low, C2C12GFP cells could
proliferate and grew further after 4, 7, and 10 days, increasing the cell density, which was observed
as a higher fluorescence intensity signal (Figure 6). After 4 days, C2C12-GFP density increased
compared to day 1. However, premioblastic cells grew in clusters randomly dispersed, leaving flat
areas empty without cells attached on the surface. This behavior evolved, and after day 7, a continuous
cell monolayer was developed covering the center and, in some cases, reaching the edges of the c.p.
Ti samples, and thus, reducing the flat areas with no cells attached. Some pores were covered by
osteoblast after 10 days which appeared as intense green fluorescence signal. Here, many areas were
totally covered, including flat and inside pores, in which cells were expanded and connected forming
a cell monolayer. At this time, the presence of pores offers a different surface (increased roughness
values and surface contact area) which may allow the proper growth of both myofibroblast/osteoblast
and E. coli as we have previously described. In case of fully-dense surfaces, the presence of more than
one cell monolayer could reduce the cell viability, but bacteria may take advantage and spread and
migrate to new sites over the medical implant.

Several authors have reported that the presence of pores (and their size, morphology, roughness,
and interconnectivity), the surface chemistry, and surface free energy of metallic based biomaterials
have a strong influence on the initial adhesion and early differentiation of osteoblast lineage cells [31–33].
Although the aim of this study was to evaluate the bacteria behavior on porous c.p. Ti structure
compared to cell adhesion and proliferation of in vitro cell lines, both C2C12GFP and MC3T3 cells
shared some similar points. Firstly, both cell lines were able to attach and proliferate confirming the
cell viability values of osteoblast which were higher on porous surfaces over the samples after 4 days
(see Figure 8). Even where there were not statistically differences on cell viability, the three porous c.p.
Ti substrates achieved higher percentages than control fully-dense surface (113.89%, 112.28%, 117.74%,
and 100%, respectively). The larger pore size, 355–500 µm, offered higher cell viability percentage
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which was also correlated to the higher attached E. coli, confirming the higher pore surfaces structure
as an advance surface to promote cellular and bacteria adhesion.

Secondly, the specific tailored microstructure of porous scaffolds by space-holder have a strong
impact on cell adhesion which one can observe in the differential cell morphology showed in Figures 7
and 9. The cell morphology of osteoblasts is usually a response to the surface properties of the inner
material. Inside the pores, osteoblast cells showed a more cuboidal cell cytoskeleton compared to a
more fusiform cell shape on flat surfaces (either fully-dense or flat surface of porous c.p. Ti samples).
This distinction in cell morphology can be correlated to an advanced cell adhesion state which also
can affect other cellular processes such as osteoblast cell differentiation growing inside pores as it was
described in the literature [33].

Some reports have described the influence of surface properties on cell morphology and how the
shape of the cells is also connected with other cellular functions such as cell adhesion, proliferation,
differentiation, and mineralization processes [34,35]. Furthermore, the increased inner roughness
values of pores compared to flat surface (of fully-dense or even flat surface of porous samples) has been
described as a key factor for osteoblast adhesion and differentiation studied [5,33]. Inside the pores,
osteoblast cells attached on the wall perceive higher load transfer and this local stress will promote cell
differentiation and mineralization, and therefore, the need for bone ingrowth [33]. However, these
cells growing inside pores presented a different cell morphology, revealing a more cuboidal structure,
round shape, and less elongation.

The cell morphology observed inside the pores could be related to an advance cell adhesion, being
the 100–200 µm porous substrate the best pore size to promote cellular adhesion and reduced bacteria
attachment compared to larger pore size 355–500 µm and fully-dense substrates.

5. Conclusions

The microstructural parameters of titanium porous samples fabricated by space-holder technique
are consistent with the initial design criteria (characteristics of the spacer holder particles: volume
fraction and size range), supporting the viability and reliability of this economic route of manufacturing
substrates with controlled porosity. The porous substrates obtained with this technique, in the range
of 100–200 µm, presented the best mechanical balance (higher Young’s modulus, yield strength, and
microhardness). Besides, this substrate also revealed the highest interconnected porosity, potentially
improving the bone in-growth. It is worth to highlight that both, spacer particle size and pores inner
surface topography, have a strong influence on adhesion of osteoblasts and bacteria proliferation (E. coli
strain). However, the results revealed that the predominant parameter in bacteria behavior is pore
morphology (equivalent diameter). Therefore, the bigger pore size showed higher bacteria attachment.
To summarize, substrates with smaller pore sizes can be considered the most suitable, since this range
of pore sizes can assure the best biomechanical, cellular, and antibacterial behavior.
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