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Abstract: Tree beta-diversity denotes the variation in species composition at stand level, it is a key
indicator of forest degradation, and is conjointly required with alpha-diversity for management
decision making but has seldom been considered. Our aim was to map it in a continuous way
with remote sensing technologies over a tropical landscape with different disturbance histories.
We extracted a floristic gradient of dissimilarity through a non-metric multidimensional scaling
ordination based on the ecological importance value of each species, which showed sensitivity
to different land use history through significant differences in the gradient scores between the
disturbances. After finding strong correlations between the floristic gradient and the rapidEye
multispectral textures and LiDAR-derived variables, it was linearly regressed against them; variable
selection was performed by fitting mixed-effect models. The redEdge band mean, the Canopy Height
Model, and the infrared band variance explained 68% of its spatial variability, each coefficient with a
relative importance of 49%, 32.5%, and 18.5% respectively. Our results confirmed the synergic use of
LiDAR and multispectral sensors to map tree beta-diversity at stand level. This approach can be used,
combined with ground data, to detect effects (either negative or positive) of management practices or
natural disturbances on tree species composition.

Keywords: floristic gradient; species composition dissimilarity; nMDS; RapidEye; remote sensing;
LiDAR; linear model; mixed model

1. Introduction

Mexico is the fourth country with the greatest biological wealth, in which approximately between
9% and 12% of the world’s discovered species live, despite representing approximately only 1.4% of
the global territory [1]. Much of this biological wealth is found in its 65 million ha of temperate and
tropical forests [2], and approximately 6.2 million ha are formally managed for timber production [3].

The management of forests for the production of any goods, particularly timber, undoubtedly
impacts their species composition and, consequently, their biodiversity. Especially in the tropics,
many efforts have been done to incentive a more whole use of biodiversity, but it’s yet to accomplish,
considering the existence, for example, of more than 100 timber-yielding species recognized in
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the Mexican Yucatan peninsula [4], but the commercial interest focus on only six [5]. Even when
the national strategy for biodiveristy conservation [6], through forest managment approaches at
habitat scale [7,8], suggests keeping a mosaic representing the natural or historic variation with
its corresponding tree-species mixing [9], it is hard to monitor such a task because of the relative
complexity of describing the dissimilarity in tree species composition between the vegetation patches
of the managed landscape.

Tree community composition is a key indicator of forest degradation [10,11], because it is one of
the last recovering variables after a disturbance [12,13], and consequently it is an excelent measure of
diversity loss. Crown-level assessment of species composition has been increasingly successful for
boreal and temperate forests [14–16], but its applicability remains challenging for the most complex
tropical forests. Alternatively, the stand-level approach provides parameters such as the position of
a specific plot on a floristic gradient of tree species dissimilarities (β-diversity). It denotes the variation
in species composition among sites, giving the possibility of identifying areas with high species
turnover, and planing areas of conservation not exclusively based on α-diversity, but considering
simultaneously the minimum overlap in species composition, and maximizing the number of species
preserved in the whole region [17–19]). While α-diversity is helpful for identifying areas with high
local species richness and is amply documented (even for the study area [20]), β-diversity has seldom
been studied and it is as important as α-diversity.

The tree β-diversity of a region of interest can be summarized in a floristic gradient in which
the more similar the calculated value, the more akin the tree species composition is. It is usually
generated by an ordination method like the detrended correspondence analysis [19,21], or more often
with ordination methods based on Bray–Curtis distances as the non-metric multidimensional scaling
(nMDS) [22–29], or the isomap [30]. It helps to illustrate the mechanistic basis for the interpretation
that is not apparent from high dimensional species composition data, and it is also advantageous
because it preserve the general pattern in the original composition matrix, avoiding problems related
to the large number of zero observations [26,31].

Compositional ordination has been widely used along with remote sensing methods because,
contrary to field mapping, it proffers the potential to extrapolate the floristic gradient over space,
from the plots to the surrounding area in a continuous way [22,28,32]. In some studies, it is
just an intermediated step to ulterior purposes like analyze topics on vegetation ecology [33,34],
predict the pertinence probability of each pixel to certain habitat types [27] or classify intact and
degraded forest with multispectral imagery [10]. Some other studies have focused specifically on
modeling compositional ordination, in order to propose a predictive map of the floristic gradient,
which can directly give us an intuitive access to dissimilarity patterns, very difficult to discern
from categorical maps [11]. Several pieces of research have been done in grasslands [21,27,29,30],
and temperate [22,24,26] or tropical forested landscapes [19,23,25].

Many remote sensing covariates are recognized as valuable for biodiversity mapping [8,35–38].
Among them, multispectral textures have proven to be a tool of great worth [20,25,39], because they
quantify the variability in reflectance values among pixels and this spectral heterogeneity is expected
to be related to the heterogeneity of resource distribution or ecological variability, so that an increase
in complexity allows more variability of habitat niches, as well as a higher number of species to coexist
(spectral variation hypothesis) [18,40,41].

On the other hand, active sensors are widely used to derive forest structural features for many
purposes [42] as biomass estimations [43], successional stages characterization [44], or biodiversity
mapping [45]. LiDAR metrics like canopy height are also directly related to the complexity of vegetation
structure. Having low values of canopy height will indicate a simple vegetation structure (generally
associated with low α-diversity values and certain characteristic species mixing), whereas high values
will indicate a more complex structure generally associated with higher species α-diversity and
a different tree species mixing [46,47]. Active sensors have been used alone and complementing
passive instruments, frequently outperforming either when used on its own [16,22].
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We hypothesized that β-diversity, summarized in a floristic gradient through an nMDS ordination,
can be efficiently modeled with variables derived from LiDAR, and multispectral textures and that
the common disturbance history areas will have less inner dissimilarity. It was supposed because
as a result of the disturbance, a variation in tree species composition occurs and forest general
attributes change [25], being some of the changing traits, like leaf structure, foliar chemistry or stand
structure [21] trackable from remote sensing tools [23,48]. Our objectives were to map β-diversity as
a floristic gradient in a continuous way with remote sensing technologies over a tropical landscape,
and to relate it to different disturbance histories.

2. Materials and Methods

2.1. Study Site

The site is located in the Ejido Felipe Carrillo Puerto (18◦53′ N–88◦14′ W) in central Quintana Roo,
México [49]. The topography is karstic and varies from flat to undulating at less than 20 m of elevation
above sea level [50]. It has a tropical warm climate with summer rain, its mean annual temperature is
26 ◦C, and has an annual average rainfall of 1200 mm [51]. Dominant species are Gymnanthes lucida,
Manikara zapota, Bursera simaruba and Psidia psipula, with two or three canopy layers and a maximum
canopy stature of 25 m.

The 900 ha study area consists of a semi-evergreen tropical forest mosaic after slash-and-burn
agriculture (Ac: 8–23 years ago), selective logging (Fs: 43–53 years ago), and selective logging and
forest fire (Fc: 21–28 years ago). We have sum up some features of stand structure (basal area, height,
biomass and tree density) and α-diversity metrics (species richness and Shannon-Wiener index) in
Table 1 in order to give a general context around the dissimilarities in species composition. The whole
pipeline for data analysis is depicted in Figure 1.

Figure 1. Flowchart representing the whole procedure. Log-transformed percentage Importance Value
Indexes (IVI%) of the species at plot level were ordinated onto a 2-D non-metric multidimensional
scaling ordination (nMDS). Differences between disturbance histories were tested for each axis-scores,
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and the axis sensitive to that was linearly modeled. As predicted variables, textures of the five
bands and two vegetation indexes were calculated from RapidEye Multispectral imagery and 95
LiDAR-derived variables. Spearman’s correlations were calculated between the response variable and
the predictor variables, and the variable selection was performed using iteratively a linear mixed model
that includes as fixed effect the covariate to be tested, and a random effect that takes into account that
there exists other covariates that needs to be considered. We finally rank the variables from the lower
p-values, and apply a stepwise selection procedure to the top ten covariates. Linear dependencies were
explored by computing the variables’ variance inflation factors (VIF). The relative importance of LiDAR
and RapidEye derived variance was assessed. Model predictive ability was assessed via ten-fold
cross-validation and the final model was used to map it for the study area extent, each disturbance
history with a characteristic position in the compositional ordination space (β-diversity).

Table 1. Vegetation patches characterization by disturbance history.

Attribute Agriculture Selective Logging S Logging + Fire

Tree density 669± 16 stems/ha 988± 4 stems/ha 1306± 2.5 stems/ha
Basal area 10.7± 19 m2/ha 30.6± 6 m2/ha 32.6± 3.6 m2/ha

80p Biomass 164± 18.2 kg/ind 261.7± 9.1 kg/ind 215.5± 6.7 kg/ind
Height 9.5± 5.1 m 14.2± 1.5 m 13.8± 2

Richness 24± 10 species 37± 3.6 species 45± 3.8 species
Shannon index 2.5± 10 2.8± 2.8 3.1± 2
IVI% dominant Bursera simaruba Gymnanthes lucida Gymnanthes lucida

species Psidia psipula Manilkara zapota Bursera simaruba

IVI% = Importance Value Index of the two most important species, 80p = 80th percentile.

2.2. Field Data Collection and Processing

Twenty eight sample units, located under a systematic sampling design, with a few modifications
to represent all the vegetation patches present in the area, were surveyed. Each unit consisted of
four 400 m2 circular subunits, on an inverted Y array, similarly to Mexico’s national forest inventory
and soils design [52]. Ground data were collected between March and August 2013. For all woody
plants that had a DBH >10 cm, height, and diameter at breast height (DBH) were measured, and the
taxonomic identity was determined. Botanical nomenclature followed The Plant List [53].

The ecological importance of the surveyed species was assessed through the percentage
Importance Value index (IVI(%)) [54] at 400 m2 level. Compositional ordination of the floristic data
collected was performed using the non-metric multidimensional scaling (nMDS) technique computed
over the log-transformed IVI(%) for the 112 subunits using the “metaMDS” function of the “vegan”
package [55] in the R statistical software [56]. The log-transformation was applied to reduce the
importance of very high values [31].

This ordination technique is widely used for synthesizing the typical matrix of a large number of
species by plots, into a reduced dimensional space (two metric variables in this case), that could be
regressed against remotely sensing data. nMDS is a non-parametric technique based on Bray–Curtis
distances that preserves the ranked dissimilarity in the compositional space [57,58], with precedent in
both ecology and remote sensing [11,22,25,59]. The ordination results were evaluated using the stress
function [55], which characterizes the disagreement between the rank-order of distances in the original
multidimensional data, relative to the distances given by the ordination in the bidimensional space.
The lower the stress, the closer the ordination to the original distribution is [58].

The normality of the floristic gradient was tested with the Shapiro–Wilk’s goodness-of-fit test
using the function “saphiro.test”, and the differences in the ordination axes scores between the three
vegetation patches were tested using a Kruskal-Wallis and a Wilcoxon test for paired comparisons
using the functions “kruskal.test” and “pairwise.wilcos.test” all implemented in the R base package
“stats” [56].
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2.3. Remotely Sensed Data

2.3.1. Multispectral Imagery

We acquired the 1,649,010 scene of RapidEye satellite imagery in 3A processing level.
It has a spatial resolution of 5 m, and a spectral resolution of five bands: blue (440–510 nm),
green (520–590 nm), red (630–685 nm), redEdge (690–730 nm) and infrared (760–850 nm). The presence
of the redEdge channel is a unique feature of RapidEye imagery that was found to be dependent on
chlorophyll concentration, and leaf and canopy structure [60,61]. The 16 bit raw digital numbers were
transformed to top of atmosphere reflectance after a radiance transformation [62]. With this procedure
illumination variations were corrected [63] assuming a uniform atmosphere.

We also calculated the RedEdge Enhanced Vegetation Index (reEVI, Equation (1)) and the RedEdge
Normalized Difference Vegetation Index (reNDVI, Equation (2)).

reEVI = G
redEdge− red

redEdge + C1 × red− C2 × blue + L
, (1)

reNDVI =
redEdge− red

redEdge + redEdge
. (2)

where G is the gain factor (2.5), C1 and C2 are the aerosol resistance weights (6 and 7.5 respectively) and
L is the canopy background adjustment factor (1). In this index the blue band is used to stabilize aerosol
influences in the red band, being less prone to saturate in high biomass scenarios. It is designed to
extract canopy greenness, independent of the underlying soil and atmospheric spray variations [64,65].

The texture, or spatial arrangement of the reflectance values within the image [66] of the five
original bands and the indexes, was used as a proxy for spectral heterogeneity, which has long
been recognized as a key landscape characteristic with strong relevance for biodiversity [39,67,68].
Several surface metrics were extracted from each band. The Mean metric is considered an occurrence
metric because it only quantify the tone and variation of the reflectance values within the window.
While variance, homogeneity, contrast, dissimilarity, entropy, and angular second moment, are known
as co-occurrence or Haralick’s texture metrics, because those consider all the spatial relations between
groups of adjacent pixels.

The co-occurrence metrics derive from a gray-level co-occurrence matrix (GLCM), which is
a tabulation of how often different combinations of gray levels occur at a specified distance and
orientation in an image object [66]. It was computed in 64 gray levels, with an offset of three pixels
(15 × 15 m window size considering the rapidEye spatial resolution) in order to approach the plot
size without exceeding it. Four matrices for each one were calculated (directions: 0◦, 45◦, 90◦, 135◦)
and then averaged to obtain a single textural directionless metrics. Using the plots coordinates and
size, we extracted the mean values of each layer by plot. The data was processed using the R statistical
software and the “raster” [69] and “GLCM” [70] packages.

2.3.2. LiDAR

LiDAR data were collected on January of 2013, by a private contractor, CartoData, operating
a Cessna T202 aircraft with an airborne laser scanner, RIEGL-QV-480 LiDAR, equipped with a NovAtel
GPS/IMU. The system was operated at an average height of 396.2 m above ground level, a 30◦ field of
view and a pulse repetition frequency of 200 kHz, for which the aircraft maintained a ground speed
between 80 and 90 kph. Flights had an approximate overlap of 50% between adjacent flight lines,
averaged more than five pulses per square meter and included up to five returns for each pulse.

After ground normalization, the clouds of points were clipped to 400 m2 and a set of 95 LiDAR
metrics were extracted from them. To reduce the noise within the near-ground cloud of returns we use
a 1 m threshold as a minimum height above ground. We also calculated metrics by strata (1–10 m and
above 10 m) in order to found metrics reliable to depict the canopy of vegetation patches at different
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heights (lower at slash and burn agriculture antecedent, and higher at extensive logging antecedent).
Some of those are metrics based on height statistics, as mean, mode, maximum and minimum
elevation, metrics of dispersion of return height (as variance, standard deviation), and statistical
height distribution (as percentiles or L-moments). The others describe the density of the return cloud
and are mainly counts of returns (number of first returns above 10 m, number of returns above mean),
and ratios (Canopy Relief Ratio, All returns above 10 over total first returns). We also considered the
metrics extracted from the smothered Canopy Height Model (CHM), the Digital Terrain Model (DTM)
and cover metrics at different thresholds: 5 and 7 m for assessing the understory cover, and 10 and
15 m for the canopy cover. LiDAR data were processed using FUSION software [71], and the CHM
were smoothed with a gaussian filter with a window size of 3 × 3, in order to eliminate spurious local
maxima caused by tree branches with the “rLIDAR” [72] package in R.

2.4. Correlation Test

Spearman’s coefficients were calculated to evaluate the magnitude and significance of the
correlations between the remotely sensed covariates and the nMDS axis-1 scores (α = 0.05). We have
chosen this association measure considering that our response variable was calculated with a rank
based method (nMDS), and likewise, it was used to mitigate the outliers effect, and facilitate the
application to non-normal data distributions [73].

2.5. Model Fitting

LiDAR and RapidEye metrics altogether were used as the predictor variables for estimating the
spatial variability of the nMDS axis-1 scores, our proxy to β-diversity, meaning the dissimilarity scaling
in tree species composition. In order to map β-diversity for the entire area of study, we fitted a linear
regression model with the nMDS axis-1 scores of surveyed plots as the response variable, and the
remote sensing metrics as covariates. Note that there is a regression coefficient associated with each
metric, that once that is estimated can be used to predict β-diversity.

The variable selection was based on a preliminary ranking of the explanatory variables through
a mixed model (Equation (3)).

y = µ1 + X jβ j + u + e, (3)

where y is the response vector nMDS-1, µ is an intercept, X j is the jth column of X matrix wich
contains all covariates, β j is a regression coefficient for the jth covariate, and u is a random effect,
u ∼ NM(0, σ2

g G), where G is XX′.
The linear mixed model includes as fixed effect the covariate to be tested and a random effect

that takes into account that there exists other covariates that needs to be taken into account to avoid
correlation issues, a strategy similar to this is used in genome wide association studies in genetics [74].
The model was fitted in R using the “BGLR” package [75]. We tested H0 : β j = 0 vs. H1 : β j 6= 0,
j = 1, ...., p (number of covariates), and asses iteratively the significance of each variable without
multicollinearity damage, having a number of covariables that exceeds sample size (n).

Then, a backward stepwise multiple linear regression of the top ten variables was performed to
select the best explanatory variables. Linear dependencies were explored by computing the variables’
variance inflation factors (VIF). The “lmg” function in the “Relaimpo” package [76] was used to
assess the relative importance of LiDAR and RapidEye derived variables. This function calculate the
proportion of contribution of each variable makes to the R2, considering both, its direct effect and its
effect when combined with the other variables in the regression equation. Metrics were normalized to
sum to 100% of the explained variance, and 95%-bootstrap confidence intervals of the relative weights
were calculated using the “boot.relimp” function [76] with 1000 bootstrap replications.

Model predictive ability was assessed via a ten-fold cross-validation, with 100 repetitions. Random
samples of the full dataset were iteratively split into ten training and validation subsets to test the fit of
predicted versus observed values. The model was qualified over the Pearson’s correlation coefficient
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between observed and predicted values (r), coefficient of determination (R2), the root mean squared
error (RMSE), and the Mean Absolute Error (MAE). Normality of residuals were checked graphically
and with the Kolmogorov-Smirnov test, and its randomness were assessed through a residual vs. fitted
values plot. The final model was applied in a cell-by-cell basis to the 3 km2 study area, using the
function “predict” available in the “raster” package [69]. For modeling it, the LiDAR selected variables
were gridded from the cloud points at the same extent and spatial resolution of the rapidEye imagery
layers. All analyses were performed in the R statistical analysis environment [56].

3. Results

3.1. Species Compositional Ordination

The nMDS scores had not a normal distribution (Shapiro-Wilk test, p > 0.0001). There were
significant differences in the nMDS axis-1 scores among patches of vegetation with different disturbance
antecedents (Kruskal-Wallis test, p > 0.0001, Wilcoxon test, p < 0.0001), but the axis-2 showed no
evidence for significant differences among patches (Wilcoxon test, p > 0.05), so there is not a clear
ecological effect to report, and we considered the nMDS axis-1 alone as the representation of the
floristic gradient, and henceforth we will be referring to it when writing β-diversity.

The plots located in the vegetation patch with slash and burn agriculture antecedent have the
highest scores of nMDS, whereas the lowest values were observed for the vegetation patch with the
antecedent of extensive logging without forest fire disturbance (Figure 2). There is an overlapped
area between plots with extensive logging, with and without forest fire disturbance, coherent with the
shared land use antecedent and the IVI% of the most dominant species (Gymnanthes lucida). Even in
this case, there is a significative difference between means scores of the gradient.
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Figure 2. Non-metric Multidimensional Scaling (nMDS) ordination scatter plot, for the study plots by
disturbance history. Stress value = 0.23.

3.2. Correlation Analysis

Spearman coefficients of the textural metrics achieved higher correlations than the coefficients
of the LiDAR metrics (Table 2). Mean and variance of the red, green, reNDVI and redEdge channels
were all significantly positively correlated (rs > 0.70, p < 0.0001) with β-diversity values. The higher
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correlation of the LiDAR variables was found with the Canopy Relief Ratio (rs = −0.616, p < 0.0001).
Then appears one metric of statistical height distribution (Height elevation L3 moment; rs = 0.537,
p < 0.0001), one of height dispersion (Height skewness; rs = 0.537, p < 0.0001), and a metric of density
(All returns above mean over total of first returns × 100; rs = 0.537, p < 0.0001). The cover metric with
7m threshold also achieved negative correlation (rs = −0.51, p < 0.0001), closely followed by a metric
derived from the CHM (rs = −0.517, p < 0.0001). The other metrics of height distribution such as the
n-percentiles also showed statistically significant correlations (rs > 0.428, p < 0.0001).

Table 2. Spearman correlation coefficient (rs): Remote sensing predictors versus nMDS-1 ordination
scores. All correlations were statistically significant (p < 0.0001).

Textural Variable rs LiDAR Variable rs

b3 variance 0.780 Canopy relief ratio −0.616
b3 mean 0.767 Height L3 moment 0.547

b2 variance 0.747 Height skewness 0.537
b2 mean 0.738 All above mean/first × 100 0.537

reNDVI mean −0.736 Height L skewness 0.535
reNDVI variance −0.735 Canopy height model −0.517

b4 variance 0.721 Cover 7m threshold −0.510
b4 mean 0.704 All returns above mean 0.461

b5 variance −0.440 Height at 80th percentile 0.437

b2 = green band, b3 = red band, b4 = redEdge band, b5 = infrared band.

3.3. Predictive Model

The final model explained 68.5% (RMSE = 0.20, MAE = 0.14) of the spatial variability of the
β-diversity (Equation (4)).

ˆnMDS = −0.7276− 0.02068× Canopy height model + 14.0307× b4 mean− 0.0009207× b5 variance (4)

The three most highly significant predictors (p < 0.01) were the redEdge band means (RapidEye
derived), the CHM (LiDAR-derived), and the infrared band variance (RapidEye derived) (VIF < 1.5).
Each coefficient represented in average 49.04, 32.47 and 18.48% of the explained variability, respectively
(Figure 3).

b4_m pchm b5_v

Method LMG

 

%
 o

f R
2

0
10

20
30

40
50

60

Relative importances for d2a1
with 95% bootstrap confidence intervals

R2 = 68.71%, metrics are normalized to sum 100%.

b4 mean Canopy height model b5 variance

Figure 3. Relative importance for nMDS-1 with 95% bootstrap confidence intervals, b4 = redEdge band,
b5 = infrared band.
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The residuals are distributed normally (Kolmogorov-Smirnov test, p = 0.675), and spread
randomly around the 0 line indicating homogeneity of error variance, no residual is visibly away form
the random pattern of residuals (Figure 4). The correlation between the observed and predicted values
was 82.3% (Figure 5).

  

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0

Fitted Value

R
es

id
ua

l

Residual vs Fitted Values

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0

Fitted Value

R
es

id
ua

l

Residual vs Fitted Values

Figure 4. Residual vs. fitted values.

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0

predicted

ob
se

rv
ed

Figure 5. Cross-validated observed versus predicted values for all the repetitions.

3.4. Composition Mapping

The β-diversity values ranged from −1.13 to 6.94 but highly concentrated between −1 and 2
(Figure 6). The few values higher than 2 were found along the road located at the southeast corner of
the study area, followed by the south vegetation patch which has the most recent disturbance history
(slash and burn agriculture). While the lowest values were observed in the areas that just experienced
extensive logging. This patch seems to share space with the extensive logging plus forest fire patch,
but in general, the latter area showed higher predicted values (Figure 7).
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Figure 6. Distribution of the nMDS-1 predicted values.
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4. Discussion

The ordinated biplot (Figure 2) demonstrated less dissimilarity in tree species composition among
plots that belong to a common vegetation patch, observable in the clustering effect by disturbance
history. It was efficiently extended into the modeled geographic domain (Figure 7), where we see
less dissimilarity in β-diversity values between pixels belonging to the same disturbance history,
as a confirmation of the reliability of the β-diversity map (summarized in a floristic gradient) for
studying in a continuous way, how dissimilar is the tree species composition between two pixels,
or even between stands with different forest management, land use history or successional state,
as other studies had found [77].
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The discretization of the plots according to the negative or positive nature of the β-diversity scores
has been reported before, also relating biomass mean values to certain classes [10]. The previous study
and other related [11,45] had found a clear link between community taxonomic diversity and carbon
stock through patches with human disturbances. Our findings support that relation, because the
greatest differences in biomass and beta diversity were found between the same areas. In other words,
the scores higher than 0.5 were associated with plots in vegetation patches with extensive logging
antecedent (higher biomass, Table 1), while lesser and negative scores, were related to the plots with
slash and burn agriculture history (lower biomass, Table 1).

Even when a large number of remote sensing variables achieved statistically significant
correlations, as suggests the assumption of the variation in the tree species composition will be
related to variations in canopy traits such as reflectance spectra or canopy form [26,48], the relative
superiority of the RapidEye derived metrics were evident. Other research that compares the
performance of multisensor metrics for predicting compositional ordination [26] and taxonomic
indices of biodiversity [20] also found the textural variables of multispectral imagery more useful.
Those metrics by themselves has proved to be an invaluable tool for the study of biodiversity, as other
studies had been reported in temperate [14,25] and tropical landscapes [39,78].

Between the textures, the infrared band has been traditionally considered relevant for vegetation
classification and monitoring, because the light waves of this region of the electromagnetic spectrum
are reflected in order to avoid the overheating of the leafs [79]. A large variance in this wavelength may
indicate low uniformity in the exposed foliar tissue, in the vigor of the vegetation, or in the species
mixing. The redEdge band were also found significant, its mean values was found to be dependent on
chlorophyll concentration and the structure of the leaf and canopy [60,61].

The LiDAR strongest correlation (Canopy relief ratio) is a quantitative descriptor of the relative
shape of the canopy surface inherited from topography studies previous to the LiDAR blooming,
defined as the mean height minus the minimum height divided by the maximum height minus the
minimum height [80]. This metric reflects if the canopy is mostly in the upper or lower portions of
the height range, and has also been considered as important variable on other models of community
composition [28] and biodiversity [20,45].

It is relevant to notice that the model selected variables are not exactly the highest correlated
variables with the β-diversity, as another study reported [23], partially because of the high collinearity
among the β-diversity strongest related variables, evident in the rise of the variance inflation factor
of the models including them. Actually, even with the relatively lower correlation of the LiDAR
metrics, the addition of the CHM variable to the model improved its predictive power, representing
almost a third of the total explained variability. Height variables had been considered before as key
measures for evaluating variations in community composition [11], and in this study, the canopy
height was especially momentous for distinguishing the dissimilarity in tree species composition
between the shorter areas with agriculture disturbance history, and the taller areas with selective
logging disturbance history (Table 1).

Most studies mapping β-diversity as a floristic gradient through ordination techniques have
found similar results. Many considered LiDAR descriptors, whether in joint with hyperspectral data
(random forest modeling, temperate forest, R2 = 0.71) [22], or just LiDAR metrics (linear modeling,
tropical rainforest, R2 = 0.71) [23], and others had focused on multispectral textures with LiDAR
(random forest modeling, temperate forest, R2 = 0.61) [24], and without LiDAR (linear modeling,
tropical forest, R2 = 0.60–0.74 [25], kriging-regression, tropical forest, R2 = 0.71) [19], or even with
imaging spectroscopy alone (linear modeling, temperate forest, R2 = 0.67) [26]. The major amount of
studies of community composition modeling without using LiDAR metrics are addressed to grasslands.
Those also concentrate the major variation in calibration; even though some studies considering
hyperspectral data presented similar results (partial least squares modeling, R2 = 0.71) [21,27],
or (partial least squares modeling, R2 = 0.74) [30]. Others showed much less fitting (random forest
modeling, R2 = 0.36) [28], or a great improvement (partial least squares modeling, R2 = 0.92) [29].



Forests 2019, 10, 419 12 of 17

Considering the background, it is evident that tropical landscapes have relatively few pieces of
research [19,23,25]. And as far as we know, there are no record of sensors synergic use for mapping
β-diversity in the tropics, being a specially important tool for monitoring Latin American tropics
recovery, a region dominated by second-growth forest [81]. Even when as a result of the synergy,
we derived many covariates, we have attached to the Ocamm’s Razor principle of parsimony because,
beyond the computationally demanding issues, for forestry applications like this, each argument
is a remotely sensed covariate that may function as tacit reference to a process involved in the
phenomenon under investigation, in our case, the variation in tree species composition. In this study,
just three remote sensing variables were enough to map almost the same variability represented by
the models of the literature reviewed, even when many of the suggested models required dozens of
covariates [21,22,24,27–30].

Besides that, most of the studies suggesting few-variables models are focused on just one sensor,
allowing them to use efficiently the stepwise variable selection method [19,23,25]. However, in genomic
analysis or cases like this, the number of predictors (p) is larger than the number of records available
(n), and if we think the prediction problem from the regression perspective, the parameters are not
likelihood identifiable neither from the classical nor the Bayesian point of view in statistics [82]. So,
we didn’t find another remote sensing research using the pre-selection variable strategy that we used
in this study. None adjusted one linear mixed model for each covariate for assessing its individual
significance and rank them. That was meaningful because each model includes as fixed effect the
covariate to be tested, and a random effect that takes into account that there exists other covariates,
in order to avoid issues of colinearity.

Finally, we want to highlight that one of the main reasons for considering forest structure and
α-biodiversity (as species richness or biodiversity indexes) instead of dissimilarity in community
composition, is the relative complexity of the latter, but nowadays it is recognized the potential of
this metric, assessed as simple as the first axis of nMDS ordination, like a sensitive and effective tool
for monitoring recovery on tropical managed landscapes [11,26,59]. One of the research topics that
ought to consider β-diversity standardly, is the tropical forest restoration. There are studies promoting
passive restoration as an effective or better alternative to active restoration in the tropics [83], and at
global scale [84]. Their conclusions are based primarily on ecological metrics of abundance and species
richness, and forest structure that take far less time to achieve restoration success than dissimilarity
on specific composition, particularly for canopy trees due to their slow turnover time [12,13,85,86].
Otherwise, most of the research that considered community composition encourage active restoration
in order to assist more complete and faster recovery of old-growth biodiversity [87,88], highlighting that
differences are long lasting. But even highly disturbed forests could, with appropriate management,
provide important opportunities for better conserving and using tropical forest [89]. Aside from them,
other research considering species richness, biomass, and composition dissimilarity, had found passive
restoration fast and effective [90]. More studies that take into account dissimilarity in tree species
composition over succession are needed.

5. Conclusions

Our findings support compositional ordination as a reliable tool to represent the general
dissimilarity pattern of the whole species assemblage in a single metric of β-diversity (nMDS axis-1
scores), with significative differences among the means of the scores corresponding to vegetation
patches with different disturbance histories.

The hypothesis were confirmed. The floristic gradient (nMDS-1) variability is strongly correlated
with some LiDAR metrics and RapidEye textures. It could be mapped for the whole study area when
knowing the values of CHM, the mean reflectance of redEdge channel, and the variance of the infrared
one. Besides, the areas with common disturbance histories have lesser inner dissimilarity.

This strategy for assessing β-diversity, could be an important tool to monitor and understand
forest succession, as to advise forest management decisions makers, with spatially explicit information.
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