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ABSTRACT
The extended law of corresponding states was proposed based on the patterns observed in the second virial coefficient for potential models
of variable range. In this work, we propose the use of this law, together with a generalized Lennard-Jones (or approximate nonconformal,
ANC) potential, to predict the critical temperatures of real fluids. To this end, we first observe that the temperatures obtained from the scaling
law are in agreement with those obtained from molecular simulations of ANC fluids. For short ranges, however, validation is performed by
mapping the ANC fluid to the square well fluid because no simulation data have been reported for the former fluid for these ranges. Overall,
the analysis shows the validity of the scaling law and the ANC potential for predicting critical temperatures for any range. With this in mind,
the well depths of the effective binary potentials of atoms and molecules are rescaled to apply a correction for the three-body nonadditive
interaction in order to determine the critical temperatures of fluids.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5123613., s

I. INTRODUCTION

The second virial coefficient (SVC) has been used mainly to
describe the thermodynamic properties of real gases at low den-
sities.1 This virial coefficient is also relevant for the modeling of
intermolecular binary potentials2 and the prediction of protein crys-
tallization.3 Indeed, the latter application leads to empirical observa-
tions that for spherical particles, as the interaction range varies, the
virial coefficient remains constant at the critical temperature. This
constant value has been observed to be the same for several potential
models and is equal to −6v0, where v0 is the volume of the parti-
cles. When this statement is taken to be valid, the SVC gives rise to
the extended law of corresponding states of Noro and Frenkel (NF),4

also called the scaling law. This law allows the SVC to be used instead
of temperature to represent the phase diagram of fluids. However,
it has been applied mainly to describe protein or colloid systems,
in which the component particles have a relatively small interaction
range in comparison with their sizes.5 Because of this, it is desirable
to apply the scaling law in the prediction of the critical temperatures

of atomic or molecular fluids, i.e., systems whose components do not
have short-range interactions.

The approximate nonconformal (ANC) potential is a general-
ization of the Lennard-Jones (LJ) potential that includes a softness
parameter in its formulation for tuning the interaction range. Its
SVC has an exact analytical solution, which is well defined at the
Baxter sticky limit,6 i.e., when the potential has a vanishing range
and infinite depth, its SVC is finite and different from that of the
hard sphere (HS) potential. In this limit, the ANC fluid has an asso-
ciated stickiness parameter, τ, obtained by analogy with the Baxter
SVC.4 The parameter τ has been interpreted as a measure of the
strength of the interaction between particles.7 The same interpre-
tation is associated with the SVC: the dominant interaction between
particles is attractive, null, or repulsive when the virial coefficient
has a negative, zero, or positive value, respectively. However, the
mathematical form of the stickiness parameter based on the ANC
potential is different from that obtained for the square well (SW)
fluid.6 Nevertheless, for any fluid composed of spherical particles of
varying range, the asymptotic behavior at very short ranges can be
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represented by mapping the SW fluid properties in the sticky limit.
In addition, it should be noted that the τ of the SW fluid deviates
from the constant behavior dictated by the scaling law. Namely,
for ranges of less than the 10% of the effective particle size, a lin-
ear dependence of the SW SVC on the potential width can be
observed, as reported in Ref. 8. The same behavior is also observed
for the modified hard core Yukawa (mHCY) fluid.9 Consequently,
it can be expected that the same linear behavior will be main-
tained for other fluids with varying interaction ranges. According
to Refs. 8, 10, and 11, it is well known that in the Baxter sticky
limit, the SVC is equal to −4.696v0, which is different from the
value −6v0 imposed in the scaling law for all ranges. Despite this
deviation, the predictions of the critical temperatures produce the
correct results for the SW12 and mHCY9 fluids when the interac-
tion range is considered to be less than 15% of the effective par-
ticle size. In addition, it is important to know the SVC in the
sticky HS limit because, for example, as mentioned by Gazzillo and
Giacometti,13 this was ignored for the HCY fluid, which led to it
being erroneously considered to be equivalent to the Baxter adhe-
sive HS fluid. This is not true since, in that limit, the HCY SVC
diverges.13 This observation led these authors to propose the mHCY
potential.

The main aim of this work is to apply the scaling law to predict
the critical temperatures of atomic/molecular fluids. For this pur-
pose, we observe that the critical temperatures obtained from molec-
ular simulations of ANC fluids are in agreement with those predicted
by the scaling law.14 Furthermore, the authors of Ref. 15 presented
critical temperatures for ANC fluids; however, in that work, they
used an empirical quadratic function instead of the scaling law to
fit the molecular simulation data.

It is worth mentioning that the same reference presents a well
parameter characterization of the ANC potential in order to repro-
duce the thermodynamic quantities of real gases. Given the previous
evidence, we assume that the scaling law is valid for application
to atoms and molecules. This extends the applicability of the scal-
ing law since, as mentioned above, its validity has previously been
assumed only when the interaction ranges are less than 15% of the
effective particle size. Furthermore, considering data from real flu-
ids allows us to gain insight into molecular complexities such as
dispersion forces, polar moments, hydrogen bonds, and quantum
behaviors, which are relevant for lighter particles, e.g., He, H2, and
D2.

This work is organized as follows. In Sec. II, the theoreti-
cal aspects concerning the scaling law are presented. Thereafter, in
Sec. III, an analysis of the ANC fluid in the framework of the scaling
law is presented; then, the critical temperatures of atomic and molec-
ular fluids are predicted based on the scaling law and compared with
experimental data from the literature. Finally, in Sec. IV, conclusions
are drawn.

II. BASIC EQUATIONS
In this study, we use the SVC of the ANC potential in the basic

equations of the scaling law. The ANC potential u(r) between par-
ticles at a distance r depends on three parameters: u = u(r; rm, ε, s),
where rm is the distance to the minimum of energy ε and s is the
softness of the potential. Its mathematical expression is as follows:

u∗(z) = [ 1 − a
ξ(z) − a

]
12

− 2[ 1 − a
ξ(z) − a

]
6

, (1)

where u∗ = u/ε, z = r/rm, a = 0.095 74, and ξ3(z) = (z3 − 1)/s + 1. This
potential leads to the following expression for the SVC:6

B∗(T∗) = 1 − s + sa3 + 3s(1 − a)[1
3
(1 − a)2F3(T∗)

+ a(1 − a)F2(T∗) + a2F1(T∗)], (2)

where B∗ ≡ B/(2πr3
m/3), T∗ ≡ kBT/ε (kB being the Boltzmann

constant), and

Fk(T∗) = (
2

T∗
)

k/12
Γ(6 − k

6
)e1/(2T∗)Dk/6[−(

2
T∗
)

1/2
],

where k = 1, 2, or 3 and the Dy[x] are the parabolic cylinder
functions.

We use Eq. (2) in the reduced SVC proposed by Noro and
Frenkel (NF) in Ref. 4. This reduced SVC is given by

B∗NF(T∗) ≡ [σ∗eff (T∗)]
−3B∗(T∗), (3)

where the reduced effective size, σ∗eff ≡ σeff /rm, is calculated from the
relation

σ∗eff (T∗) = ∫
∞

0
{1 − e−u∗rep(z)/T

∗

}dz, (4)

where, in turn,

u∗rep(z) =
⎧⎪⎪⎨⎪⎪⎩

u∗(z) + 1, for z ≤ 1,

0, otherwise,

In addition to the effective size, it is also possible to calculate an
effective potential range,

δ∗eff (T∗) = {1 − B∗NF(T∗) − 1
e1/T∗ − 1

}
1/3

− 1, (5)

FIG. 1. The ANC potential for different values of s. The interaction range decreases
as the s value decreases.
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obtained by mapping Eq. (3) to the SW SVC (reduced with the HS
SVC, which is expressed as BHS = 2πr3

m/3).
In Ref. 4, it is empirically shown that the critical temperatures

T∗c obtained for varying potential ranges are such that the following
relation holds:

B∗NF(T∗c ) ≈ −1.5. (6)

This observation is valid for several potential models of variable
range.4 From Eq. (1), we have u∗ = u∗(z; s), where s is the parameter
of nonconformality, i.e., the interaction range of the reduced poten-
tial depends on s (see Fig. 1). In a similar way, B∗NF = B∗NF(T∗; s),
σ∗eff = σ∗eff (T∗; s), and δ∗eff = δ∗eff (T∗; s) also depend on the softness
parameter. Finally, to investigate the validity of B∗NF(T∗) = −1.5 in
the critical state, the following temperaturelike parameter has also
been used:4

τ(T∗) ≡ 1
4
{1 − B∗NF(T∗)}

−1. (7)

III. PREDICTIONS OF CRITICAL TEMPERATURES
In this section, we present an analysis of the scaling law for any

softness of the ANC potential; special emphasis is placed on short
ranges (s < 0.2), where no critical temperatures have been reported
for the ANC fluid. Subsequently, we present a simple prediction of
the critical temperatures of atomic/molecular fluids.

A. The ANC fluid and the scaling law
We show that the critical temperatures of the ANC fluid can be

obtained using the scaling law for any range. In Fig. 2, the results
of the scaling law are compared with previously reported data from
molecular simulations. Figure 2(a) shows the critical temperatures
of the ANC,14,15,17 LJ,16 sticky hard sphere (SHS),8 and SW8 fluids.
We can observe that for the ANC fluid, the predictions and molecu-
lar simulation data are in agreement. We notice that the qualitative
trend of the T∗c (s) curve is similar to those exhibited by other flu-
ids: SW,8,9,18,19 HCY,18,19 and mHCY.9 On the other hand, Fig. 2(b)

FIG. 2. (a) Critical temperature as a function of the softness parameter and (b)
values of τc evaluated at T∗c (s). In both panels, the solid lines correspond to the
case in which the NF SVC is equal to −1.5, while the other results are reported
values from molecular simulations. The symbols are as follows: blue dots for the
ANC fluid,14 an orange diamond for the LJ fluid,16 a red star for the SHS fluid,8

and empty squares for the SW fluid.8 The discrete data in (b) were computed using
Eq. (3) and were evaluated at the T∗c (s) values indicated in panel (a).

presents the results obtained by evaluating τ at T∗c (s), i.e., τc. As we
can see, there is a deviation between the values assumed based on the
scaling law, τc = 0.1, and the τc values obtained from ANC computer
simulations. Larger differences are systematically found at smaller
values of s. An analysis of Fig. 2 leads us to infer that the SW data
show convergence behavior similar to that of the ANC fluid as the
softness value decreases. The figure shows an equivalence between
the range of the SW fluid and the softness of the ANC fluid, which
deserves a brief explanation: We find the s and T∗c values such that
δ∗eff (T∗c ; s), Eq. (5), reproduces a given δ∗SW value (where δ∗SW is the
dimensionless SW range, reduced with the HS diameter). Therefore,
under the assumption that the equality δ∗eff (T∗c ; s) = δ∗SW holds, this
equivalence is obtained. However, it is worth noting that the critical
temperatures of the equivalent ANC and SW fluids are different, as
seen in Table I. This table gives the critical temperatures for vari-
ous ranges δ∗SW

8 as well as their equivalent s and T∗c (s) values. This
information is used to graph the SW data in Fig. 2, for which τ is
computed using the following expression:

τ−1(T∗c ) = 4[(1 + δ∗SW)3 − 1][e1/T∗c − 1]. (8)

Figure 2 also includes the results for the LJ and SHS fluids,
which are analyzed below. The LJ potential is recovered from the
ANC potential when s = 1.13 because in the ANC theory, a fixed
value of a = 0.095 74 is considered in Eq. (1). For this parameter
value, the scaling law predicts T∗c = 1.3238, which is close to the
accepted value of 1.3126.16 This result is included in Fig. 2, as indi-
cated by the orange diamond symbol. The prediction obtained from
the scaling law provides a closer approximation than those obtained
through more sophisticated theoretical computations based on virial
expansion of the equation of states20 (T∗c = 1.300) and the Binder
parameter21 (T∗c = 1.100). Moreover, Fig. 2 also includes the result
for the SHS fluid. For the ANC SVC, the Baxter sticky limit can be
expressed as6

TABLE I. Mapping of the ANC fluid to the SW fluid. Note that the s and T∗c values of
the ANC fluid are such that δ∗eff (T

∗
c ; s) = δ∗SW .

SWa ANC

δ∗SW T∗c s T∗c

0.005 0.2007 0.0320 0.1954
0.01 0.2328 0.0566 0.2260
0.02 0.2769 0.0984 0.2678
0.03 0.3106 0.1350 0.3002
0.04 0.3398 0.1685 0.3283
0.05 0.3658 0.1998 0.3540
0.10 0.4780 0.3389 0.4659
0.20 0.667 0.5782 0.6714
0.30 0.847 0.7937 0.8868
0.40 1.029 0.9916 1.1245
0.50 1.220 1.1715 1.3906
0.60 1.430 1.3314 1.6894
0.70 1.665 1.4703 2.0242
0.80 1.940 1.5877 2.3982

aThese data are taken from Ref. 8.
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lim
T∗→0
s→0

B∗(T∗) ≈ 1 − 1
4τsANC

, (9)

where

τ−1
sANC ≡

√
πA[(1 − 1

2
δ(s))

3
− 1]T∗1/2e1/T∗ (10)

and

A = 2(1 − a)/([2−1/6(1 − a) + a]3 − 1),
δ(s) = 2[1 − σ(s)],

σ(s)3 = s{[2−1/6(1 − a) + a]3 − 1} + 1,

(11)

where σ(s) is the distance at which u∗(σ) = 0. Equation (10)
defines the stickiness parameter τsANC of the adhesive HS fluid
obtained from the ANC fluid. The form of Eq. (9) allows the
ANC SVC to remain finite in such a way that the Baxter sticky
limit is reached, i.e., τsANC is a measure of the strength of adhe-
sion between particles.7 According to the work of Largo et al.,8 the
accepted value of τc is 0.115, while according to the scaling law,
τc is equal to 0.1. Other theoretical results for the critical sticki-
ness parameter are 0.0976 and 0.1185, as obtained via the Percus-
Yevick compressibility7 and energy22 routes, respectively, using the
Baxter potential; other values include 0.1200, 0.1150, and 0.1070,
as obtained from self consistent Ornstein-Zernike approximation
using the mHCY,9 SW,23 and HCY23 potentials, respectively. How-
ever, we should recall at this point that the HCY SVC diverges in
the limit of the SHS fluid, and therefore, these latter fluids cannot be
equivalent.13

For the ANC fluid, we must indirectly estimate T∗c when
0 < s < 0.2 (or 0 < δ∗eff < 0.05) because for these short ranges,
no corresponding data have been reported in the literature. To this
end, we take advantage of the SW data in Table I for δ∗SW < 0.05.
Thus, we must prove that the well forms of the ANC and SW poten-
tials are very similar, i.e., their ranges are close to each other. First,
the δ parameter defined in Eq. (10) allows us to estimate the well
width when the range approaches that of sticky spheres.6 Conse-
quently, for short ranges, this width is expected to be equivalent to

FIG. 3. The solid line is the graph of δ∗eff obtained using Eq. (5). The dashed line
is the δ well width defined in Eq. (10). The inset shows a close-up view of the plot
for s < 0.1.

that of the SW potential,8 which has no ambiguities in its definition.
Graphs of δ and δ∗eff (T∗c ; s) are shown in Fig. 3, providing evidence
that they have similar values when s ≲ 0.1 or δ∗eff ≲ 0.02 (see the
inset figure). Beyond this range, we can observe that the difference
between δ and δ∗eff increases as the softness value increases. We note
also from Table I that the percentage error between the T∗c values
obtained from the SW molecular simulations and the ANC predic-
tions is less than 1% for s ≤ 0.2, while it is approximately 5% for
s = 0.3. Therefore, the scaling law works well when s ≤ 0.1. Based
on this information, we can say that for short ranges, the ANC and
SW fluids are equivalent, having critical temperatures that are very
similar to each other.

In summary, the scaling law predictions of critical temperatures
obtained using the ANC potential are in agreement with the molec-
ular simulation results for ANC fluids. This is true even though the
constraint in Eq. (6) is not exactly fulfilled because τ shows devi-
ations of up to 15% relative to computer simulation results as the
interaction range tends toward zero. Consequently, τ is highly prone
to deviate from the scaling law as s varies, while T∗c (s) does not.

B. Application to real fluids
In this section, the critical temperatures of real fluids are pre-

dicted using the scaling law. For this purpose, we use the effec-
tive ANC potentials of atoms and molecules, considering that their
parameters include only the effects of the two-body interaction.15

The characteristic values of the parameters s and ε are given in
columns 2 and 3, respectively, of Table II.15

The predictions for the fluids in Table II are obtained by finding
the value of T∗c for the associated softness value. From εT∗c /kB, we
obtain predictions of the critical temperatures that overestimate the
experimental values.24,25 We attribute these inconsistencies to the
fact that the ε values, given in the third column, did not consider the
three-body or higher order N-body contributions. Moreover, there
is sufficient evidence to indicate that the three-body forces are neces-
sary to calculate the critical temperatures of real fluids; for instance,
molecular simulations of fluids in dense phases have been done to
estimate their critical point. In-depth studies in this regard have been
done for argon, which take into account exact binary potentials and
effective three-body interactions.26–28 These studies showed that the
best predictions of the critical temperature are achieved when the
three-body interactions are included. In fact, molecular simulations
of real liquid are regularly done with binary potentials, on the under-
standing that they include the contribution of three-body or higher
order N-body contributions in an effective way.29

It is important to mention that the effect of including the three-
body interaction in a binary potential, either explicitly or effectively,
is to decrease the force between molecules, i.e., the three body inter-
action has an attractive character.30,31 This latter point has been
proven, even when nonrealistic potentials are used in modeling, e.g.,
the square well potential of argon is more deep for low density prop-
erties32 than for the critical point.33 In addition, the virial expansion
of the equation of state has the ability to predict critical tempera-
ture with good accuracy as long as binary and three-body energy
contributions are considered.34,35

Considering the aforementioned phenomena, we make a sim-
ple correction based on the observation that the three-body inter-
action effectively decreases the well depth ε by approximately 10%
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TABLE II. Critical temperatures of real fluids obtained with the scaling law.

Fluida sb (ε/kB) (K) Tc (K) Tc,Exp (K) PE

Ne 1.05830.43586 40.447 44.781 44.4918 0.649
Ar 0.99930.40406 145.906 150.687 150.687 0.000
Kr 0.99930.40406 202.846 209.493 209.48 0.006
Xe 0.99930.40406 280.643 289.839 289.733 0.036
Rn 0.99930.40406 365.000 376.960 377 0.011
N2 0.91720.36135 132.744 124.385 126.192 1.432
O2 0.94320.37469 160.280 154.903 154.581 0.208
F2 0.91080.35809 150.426 139.882 144.41 3.136
Cl2 0.78970.29806 507.965 407.974 417 2.165
CH4 0.90730.35631 210.468 194.899 190.564 2.275
CF4 0.65580.23502 325.410 220.611 227.54 3.045
C2H6 0.80880.30733 361.088 296.888 305.36 2.774
C3H8 0.70080.25584 515.021 370.047 369.9 0.040
n-C4H10 0.61480.21637 671.420 431.173 425.2 1.405
n-C5H12 0.55030.18767 805.645 473.703 469.7 0.852
n-C6H14 0.51190.17097 929.867 517.741 507.5 2.018
n-C7H16 0.46930.15281 1059.178 553.978 540.1 2.570
n-C8H18 0.43880.14006 1174.158 586.304 568.7 3.095
C2F6 0.57420.19821 487.175 296.098 292.9 1.092
C3F8 0.49430.16342 653.650 354.762 345.03 2.821
n-C4F10 0.43820.13981 808.025 403.106 386.3 4.350
n-C5F12 0.39460.12199 957.750 445.973 421.8 5.731
n-C6F14 0.35840.10758 1094.775 480.089 451 6.450
n-C7F16 0.32940.09634 1230.646 513.246 477 7.600
NH3 0.45100.14513 820.728 417.561 405.56 2.959
HCl 0.54340.18465 561.283 326.846 324.7 0.661
e-NO 0.54450.18513 317.318 185.066 180 2.815
CO 0.88760.34635 145.246 131.370 132.86 1.121
CO2 0.59940.20945 486.120 305.779 304.13 0.542
C2H4 0.80880.30733 341.791 281.022 282.35 0.470
SF6 0.60680.21277 479.891 304.887 318.723 4.341
H2O 0.36920.11184 1591.186 710.590 647.14 9.805
D2O 0.32010.09279 1700.261 697.457 643.847 8.327
H2 1.31920.59187 22.183 33.593 32.938 1.988
D2 1.31920.59187 23.984 36.320 38.2 4.921
He 1.11520.46755 7.264 8.601 5.1953 65.547

aThe values of the ANC parameters and the experimental critical temperatures are taken from Refs. 15 and 24 respectively (note
that Tc,Exp for D2 is taken from Ref. 25).
bThe subscripts are the corresponding δeff values calculated with Eq. (5).

for the LJ fluid.36 This correction is a well approximation for the
ANC fluid modeling the argon (Ar), for which the critical tem-
perature is exactly obtained when the well depth is rescaled by
Δε/ε = 0.0898. Column 4 of Table II presents the predictions
obtained using εc = ε − Δε for the potential energy in the critical
state. Rescaling ε in this way yields excellent predictions for most of
the fluids. The deviations of the theoretical results from the experi-
mental data are given in column 6. These deviations are calculated
as the absolute percentage errors,

PE = 100 × ∣Tc,Exp − Tc

Tc,Exp
∣, (12)

where Tc,Exp is the experimental critical temperature and
Tc = εcT∗c /kB is the prediction obtained from the scaling law. From
the PE values, it is clear that the greatest errors are observed for (1)
atoms and molecules with quantum effects (He, H2, and D2), (2)
light and heavy water (H2O and D2O), and (3) molecules contain-
ing fluorine (F2, SF6 and perfluoroalkanes). Regarding the molecules
with quantum effects, the incorrect predictions can be attributed
to the inversion of the potentials. The parameters in columns 2
and 3 are obtained by fitting a classical theory to experimental data
for gases with a significant quantum contribution. Consequently,
although it is possible to obtain a curve that can well represent the
SVC experimental data, the resulting parameters are meaningless.
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For light and heavy water, it is interesting to note that good pre-
dictions can be obtained by simply multiplying by 0.828 93, which
is equivalent to decreasing the well depth ε for water by approxi-
mately 18%. This reduction is consistent with the estimate obtained
in Ref. 37 for the contribution of the many-body terms in liquid
water; in that study, it was found that two-body interactions con-
tribute 75%–80% of the total interaction energy, while three-body
nonadditive interactions contribute 15%–20%. Notably, the three-
body contribution is greater than 10% because water molecules have
a high polarization.38 Taking this argument to be valid, an analo-
gous observation can be made for other molecules with a high degree
of polarization, for example, molecules containing fluorine. On the
other hand, for n-alkanes, an increase in the error is observed when
the number of carbons in the molecules increases. Therefore, we can
attribute the increase in PE for perfluoroalkanes to the longer chain
length as well as to the saturation of fluorines around an atom; for
example, the discrepancies in the predictions are (1) greater for CF4
than for C2F6 and (2) greater for SF6 than for CF4. Regarding the
PE value, roughly, we consider a prediction to be good when this
quantity is close to or less than 3%. Given this criterion, we can say
that good estimates of Tc, using the scaling law, are achieved for
the following fluids containing fluorine: F2, CF4, C2F6, and C3F8.
Similarly, we can also include the n-alkanes in the classification of
fluids for which good predictions are obtained. In summary, 26 of
the predictions are in agreement with the experimental critical tem-
peratures, while the remaining 10 predictions have PE values greater
than 3%. However, we attribute the deviations of these latter fluids
to the presence of quantum effects or the fact that the effective three-
body nonadditive interaction shows a significant deviation from the
assumed contribution of 10%. Namely, such a deviation may indi-
cate the effective magnitude of the three-body energy, which could
be determined by the Δε/ε value that leads to a correct predict of Tc
using the scaling law.

IV. CONCLUSIONS
This work aims to encourage the use of the scaling law as an

alternative means of predicting the critical temperatures of atomic
or molecular fluids. For this purpose, a generalized LJ potential
is used in the NF SVC; see Eq. (3). We validate the predictions
against the results obtained from molecular simulations of ANC
fluids. Similarly, the results for the SW fluid are used to vali-
date the scaling law for short-range interactions with respect to
the equivalent ANC fluid. It is worth mentioning that the relation
B∗NF(T∗c ) ≈ −1.5 does not hold in general; for example, for the adhe-
sive HS fluid, we have B∗NF(T∗c ) ≈ −1.207. Despite these deviations,
which are mainly observed in a range of less than 10%, very good
predictions of critical temperature can be obtained via the scaling
law.

With a 10% rescaling of the well depth of the binary interac-
tion, the scaling law can be used to predict the critical temperatures
of real fluids. We have analyzed 36 fluids; for 26 of them, the predic-
tions are in agreement with the experimental critical temperatures,
meaning that the percentage error is less than 3%. The remaining
10 fluids show deviations greater than 3% because of either (1) the
application of a classical theory to fluids with significant quantum
effects or (2) the molecular polarity, which is highly sensitive to the

presence of a third body. Even so, for these latter fluids, the cor-
rections needed to predict their critical temperatures may indicate
the effective contribution of the three-body interaction to the poten-
tial energy. If this is so, the extended law of corresponding states
could be used as an indirect method of calculating such three-body
contributions.
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