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Abstract

Some tropical coastal areas that include mangroves are highly polluted by heavy metals, where lead
(Pb) is prevalent. Few studies document how environment affects soil physicochemical characteristics
and the availability of heavy metals. This study evaluated how different salt concentrations influenced
the accumulation of Pb in plants of Avicennia germinans and Laguncularia racemosa and how salinity
modified the substrate pH. Under unsalted conditions, Pb accumulation occurred continuously,
mainly in L. racemosa, which was more tolerant to its toxic effects. Saltled to a decreased Pb uptake by
the roots and an increase in the substrate pH. In addition, salinity also caused an increase in the
translocation of Pb to the leaves. Because L. racemosa was tolerant to Pb, this species could be a better
candidate for possible remediation and restoration programs in mangrove areas.

1. Introduction

Industrial, agricultural and mining activity, in addition to the rise of solid waste and oil spills, have considerably
increased the environmental contamination by heavy metals (Du Laing et al 2009, He et al 2014). Moreover,
because these pollutants cannot be chemically or biologically degraded, they become highly toxic when they
accumulate in soil and water, causing poor development and death in living organisms (Pdez-Osuna 2005).

Additionally, toxicity of heavy metals depends not only on their concentration but also on their degree of
availability, which is determined by the chemical forms in which these elements are found. The speciation of
metals depends on changes in the physicochemical parameters of soil and water such as pH, cation exchange
capacity, organic matter content, redox conditions, dissolved oxygen concentrations, and lack or excess of
nutrients, among others. At the same time, these parameters are influenced by environmental conditions such as
hydroperiod, salinity, and temperature (Riba et al 2003, Du Laing et al 2009).

Metals with electropositive charges are attracted to surfaces with negative charges given by organic matter or
clay, which determines the cation exchange capacity (CEC). A high CEC increases the retention of metal cations
in the soil, reducing their metal mobility and availability (Du Laing et al 2009). In addition, pH is an important
factor in the availability of metals in the soil. For instance, in acidic soils, where there is a greater release of
hydrogen ions (H"), the competition of the metal cations with these H" can cause the desorption of the metals,
which increases their concentration and solubility in the soil solution and their possible absorption by the plant
roots (Garcia et al 2002).

In the soil, the fate of heavy metals is given by processes of adsorption/desorption, precipitation,/
dissolution, and reincorporation/mineralization, as well as by transport of solutes and extraction by plants
(He et al 2005). In saline environments, the concentration of other cations that compete with metal ions for
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sorption sites increases and metals can then form complexes of high stability and solubility with chloride.
Therefore, CEC decreases and metals increase their mobility in the soil. Conversely, metals can also form
complexes with other anions (e.g. sulfur), which causes low mobility and availability (Leonard et al 2011).
However, the higher the salinity, the more alkaline the soil pH becomes, generating lower metal availability
because they precipitate as insoluble hydroxides (Alloway 1995).

Salinity can affect metal ion absorption and transport to the roots. This is because Na* can be absorbed
through different channels that compete against other ions (e.g. K™) for entrance to cells. Conversely, internal
transport of heavy metals is more limited and specific, so when competing for entrance to the same channel these
are absorbed in lower concentration. This entrance is also influenced by the properties of transport and the
concentration of ions in the soil (Lietal 2012, Mei et al 2014).

In Mexico, for several decades, the coast of the Gulf of Mexico has been the most impacted by heavy metals,
where Pb has a major presence, in the range from 0.28 to 267 ug g~ dry weight of sediment (Villanueva and
Botello 1992, Villanueva and Paéz-Osuna 1996, Botello et al 1999, Medina et al 2004, Garcia 2006, Pdez-Osuna
and Osuna-Martinez 2011, Vazquez et al 2012, De la Cruz-Landero et al 2013, Lépez 2015). Within these
zones are mangroves, which are considered the most productive and diverse natural wetland systems
(CONABIO 2013). However, few studies exist on the effect of these metal pollutants on mangrove species,
despite that this coastal ecosystem helps to mitigate erosion and stabilize the coast by buffering floods and
hurricanes, among other ecosystem services (Ezcurra et al 2009).

Mangrove tree species can accumulate various metals, mainly in their roots (Pulford and Watson 2003,
MacFarlane et al 2007, Gabriel and Salmo II1 2014, He et al 2014, Ochoa et al 2016). However, the influence of
environmental conditions on the accumulation capacity of metals for plant species has been marginally studied
(Riba etal 2003, Hao et al 2012). A previous study shows that plants of Avicennia germinans and Laguncularia
racemosa have a greater capacity for accumulation and tolerance to lead than Rhizophora mangle under low
salinity (Cabanas-Mendoza 2014).

Plants of A. germinans and L. racemosa can grow in a large spectrum of salinities, ranging from 0 to 100 %o
and 0 to 90 %o, respectively (Wang et al 2011). In addition, these species have specialized structures in the leaves
such as glands (A. germinans) or small protuberances on the petioles (L. racermosa) to excrete saline solution,
which, when water evaporates, forms crystals on the leaf surface that are wind-dispersed (Sobrado 2001 and
2004, Francisco et al 2009, Esteban et al 2013). Moreover, leaves accumulate salt as a function of the increase of
salinity in the soil (Sobrado and Greaves 2000, Sobrado 2004) and, at maturity, they could accumulate salt even
in the last stage before their abscission (Cram et al 2002).

The aim of this study was to evaluate how different salinity gradients can cause a change in the pH of the
substrate and affect the accumulation of lead in the species A. germinans and L. racemosa. The information
obtained can be used as a basis to understand some of the factors that regulate the mobility of heavy metals in
saline conditions, such as those where mangroves grow, and identify the responses of the species to lead
contamination.

2. Materials and methods

2.1.Plant material and growth conditions

Black (Avicennia germinans) and white (Laguncularia racemosa) mangrove propagules (about 400 of each
species) were collected in the Ria Celestun Biosphere Reserve (the points of collection were 20.857874,
—90.383454, and 20.856782, —90.376828; supplementary figure 1). This is a pristine preserve in Yucatan,
Mexico, and our group has been working there for about 10 years and has the required collection permits.
Propagules were transported in plastic bags with water from the lagoon to a greenhouse. From the pool of
propagules, we selected 240 individuals per species, washed them with distilled water, and placed them
individually in black plastic bags (20 x 10 cm) with silica sand 20/30 and agrolite (1:1). Bags with plants were
then set into plastic boxes, so they had a shared medium of water and nutrients. Boxes were located in a
greenhouse under an average temperature of 20 °C at night and 27 °C during the day, an average relative
humidity ranging from 55% to 84%, and an average total daily photon flux density of 5.4 mol m 2. The photon
flux density was measured with a light meter (Photosynthetic Light PAR, Smart Sensor, S-LIA-M003, Onset,
EEUU), air temperature and relative humidity with a Temp Smart Sensor (S-TMB-M003, Onset). All variables
were recorded simultaneously every 10 s and 10-min averages were stored with a data acquisition system
(HOBO U30-NRC Weather Station Starter Kit, Onset). Plants received water weekly with the commercial
fertilizer Miracle-Gro (1 g1™", 200 ml of solution per plant).
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2.2. Acclimatization of plants to salinity

After 4 months, plants were randomly assigned to different saline treatments, with salt concentrations similar to
those where species commonly grow under natural conditions. Each week, 80 plants of each species were
watered with 0,7 and 15mg1 ™" of commercial sea salt, during a period of two months; simultaneously, plants
were irrigated with commercial fertilizer (Miracle-Gro; 1 g1, 200 ml of solution per plant).

2.3.Lead treatments

After the 2-month period, individual plants were assigned to lead treatments within each salt treatment. For each
salt treatment, 20 individuals of each species were irrigated with deionized water prepared with 0, 40, 80 and

160 uM of PbNOj3. During the experiment, plant leaves were fertilized weekly with a nutritive commercial
solution (Miracle-Gro; 1 g1~ ).

2.4. Concentration of lead in tissues

Root, stem and leaf samples were taken at 0, 2, 7, 15 and 30 days after exposure for the Pb quantification (n = 4).
Samples were rinsed with distilled water to remove the external metal; only leaves of plants that were grown
under salinity conditions were not washed to avoid the loss of the salt crystals. The complete tissue or, when
appropriate, one gram of dry tissue was placed in crucibles inside a muffle furnace at 600 °C until obtaining
white ash.

This ash was then diluted in 4 ml of 3 M hydrochloric acid; each sample was adjusted to 6 ml with 1% nitric
acid v/v (Horwitz et al 1970, Perkin-Elmer Corporation 1996) to finally be centrifuged at 4000 rpm for 10 min
All samples were measured in an atomic absorption spectrometer (model 55 AA, Agilent Technologies, EE.
UU.), using a wavelength of 217 nm and a calibration curve of 0, 1, 5, 25, 50 and 100 ppm of PbNO;. Results were
expressed based on 1 gram of dry weight; for the concentration of Pb in the plant, the total dry weight of each
tissue was used.

2.5. Growth parameters

After exposure to Pb and for both species, fresh weight, dry weight, and total length of individuals from all
treatment were obtained at 0, 2, 7, 15 and 30 days. Total plant length was measured with a measuring tape from
the tip of the longest root to the highest leaf, which was generally above the apical meristem of the stem. Total
fresh weight was obtained with an analytical balance; subsequently, tissues were placed in a tumble dryer at 50 °C
for 3 days to obtain the total dry weight. During the period of exposure to Pb, photographic evidence was also
taken to register any physical change in the plants.

2.6. Physicochemical parameters

Samples of substrate of each plant were taken at a depth of approximately 5 to 7 cm procuring the area of greatest
interaction with the roots; substrate was then dried at room temperature before measurements. Electrical
conductivity and pH were measured according to the methodologies proposed by USDA (1999) and by
NOM-147-SEMARNAT /SSA1-2004 with some modifications. Fifty grams of substrate were placed into a
beaker, 50 ml of distilled water were added and solution was stirred for 5 min; samples were then allowed to
stand for one minute for the sedimentation of solids and supernatant was placed in plastic tubes for
measurement. Parameter measurements were made using the Ysi Pro model 2030 (Professional Series, YSI
Incorporated, EE. UU.) with the sensor calibrated for conductivity with a 10,000 S cm ™! calibration solution,
and SM Titrino 702 (Metrohm AG, Switzerland) calibrated with pH solutions of 7 and 4. Measurements were
made every 7 or 15 days, before and during the salt acclimation and at 0, 7, 15 and 30 days during lead treatment.

2.7. Statistical analysis

Factorial analyses of variance were carried out to compare the means across the factors Pb treatment, salinity
treatment, time of exposure, and tissue of each species for the response variables Pb tissue concentration, total
fresh weight, total dry weight, total plant length, and substrate pH. Tukey comparison tests were performed to
identify treatment differences. In addition, simple linear regression analyses were applied to explore the
relationship between soil physicochemical parameters as well as the relationship of Pb concentration with the
other variables analyzed. All analyses were determined at a confidence level 0f95% (p < 0.05) using the
statistical package R version 3.5.1 for Windows.

3
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Table 1. Concentration of endogenous lead (g g~ ' dry weight) found in plants exposed to different concentrations of lead, grown in the
absence of salt (0 mg1~") during a 30-day exposure period. Data are means =+ standard error.

Avicennia germinans A Laguncularia racemose B
Day 40 uM 80 uM 160 M 40 uM 80 uM 160 M
Root 2AA 814+ la 269 + 44a 58.7 £ 8.3b 42.8 +9.3a 63.5 + 12.4a 155.9 £+ 26b
7ABAB 17.5 + 1.8a 63.2 £5b 89.1 £ 5.5¢ 48.2 £ 11.9a 138.1 £+ 20.3b 293.5 + 21.2¢
15BAB 40.2 = 7.6a 72.8 £ 10.1a 172.8 £ 13.8b 58.9 &+ 14.5a 2269 £ 17.2b 336.4 £ 8.5¢
30BB 449 £+ 10a 78 £7.8a 206.1 £ 17b 61.5 + 12.2a 331.9 £ 20.7b 488.2 £ 24.2¢
Stem 2AA 58 £ 1.3a 11.8 + 2.4ab 12.6 £ 1.2b 139 £ 4.1a 14.8 £ 5.2a 17.5 + 1.6a
7AA 10.8 + 1.4a 12.5 &+ 2.5a 79 £ 09a 16.3 = 9a 18.1 £ 1.6a 20.7 & 4.4a
15AA 10.5 + 1.5a 11.1 &+ 2.5a 13.7 £ 2.5a 174 + 3.3a 19.1 &+ 2.5a 22,5+ 54a
30AA 10.2 + 1.5a 11.9 + 1.4a 142 £ 2.2a 20.6 & 3.5a 20.1 £+ 3.3a 23 £27a
Leaf 2AA 11.6 £ 1a 12.1 & 0.4a 12.2 + 0.4a 10 £ 1.5a 104 £ 1.1a 125 + 3.4a
7AAB 104 + 1a 125 £ 0.7a 12.3 + 14a 12.3 + 3a 18 £ 3.4a 21.2 £ 4.2a
15AAB 12.6 + 0.6a 12.9 + 3.4a 15.6 + 4a 14.7 £ 3.3a 209 £ 6.7a 21 £45a
30AB 128 £ 1a 14.1 £ 1.5ab 185 £ 1.6b 147 £ 1.5a 22.7 £ 5.3ab 29 +3.1b

Different lowercase letters indicate significant differences among Pb treatments (columns) for each day of exposure, for each tissue and for
each species (n = 12). Different capital letters indicate significant differences for comparisons among tissue/species (bold, n = 288), and
among exposure days (rows) for each tissue and for each species (roman for A. germinans and italicized for L. racemosa, n = 48).

Table 2. Concentration of endogenous lead (ug g~ * dry weight) found in plants exposed to different concentrations of lead, grown under
7 mgl ™" of salt during a 30-day exposure period. Data are means + standard error.

Avicennia germinans A Laguncularia racemose B
Day 40 uM 80 uM 160 M 40 uM 80 UM 160 M

Root 2AA 12 + 3.3a 155 £ 29a 356 + 7b 123 £ 09a 243 £ 6.4a 48.8 + 8b
7ABA 247 £ 0.5a 274 £ 1a 38.7 + 4.6b 228 £ 1a 357 £ 8a 65.1 + 8.9b

15BA 29 + 6.6a 31 £1.7a 49.3 + 8.2a 249 + 24a 50.7 £+ 16.5ab 65.2 + 7.5b

30AA 12.3 + 4.4a 22 £+ 3.7ab 28 £+ 3.8b 29.4 + 3.7b 51.3 £ 8.4a 50.5 + 4.8a

Stem 2AA 62+ 1a 10.5 £ 2.5a 11.6 £ 4.4a 8.8 £ 13a 9.7 £ 1.2a 11.9 £+ 2.8a
7AAB 11.5+ 3.1a 11.9 + 1.9a 12.1 +2.7a 15.9 + 3.5a 16.8 + 3.2a 18.3 £ 6.5a

15AB 11.8 £ 2.2a 12.5 + 1.8a 17.4 + 4.8a 18.1 £+ 2a 18.7 £ 5a 19.7 + 4.6a

30AB 6.9 £0.8a 16.2 £+ 3a 19.1 £ 6.5a 19.4 £3.7a 199 £ 2.1a 22.8 £ 34a

Leaf 2AA 8.6+ 0.7a 13.3 £ 29a 13.8 + 1.6a 10.3 + 1.7a 125+ 2.1a 16.1 £+ 0.6a
7ABAB 16.9 + 4.7a 17.3 + 4a 23.2 + 3.8a 17.1 £ 49a 21.8 £ 4.8a 24.2 £ 2.8a

15ABAB 17.4 £ 3.3a 16.9 £+ 3.2a 27.5 £ 6a 182 £3.9a 22.1 £ 3.6a 228 £4.7a

30BB 16.8 + 1.6a 28.1 £53a 272 + 6.6a 20.2 + 4a 25.1 + 1.5ab 354 £ 6b

Different lowercase letters indicate significant differences among Pb treatments (columns) for each day of exposure, for each tissue and for
each species (n = 12). Different capital letters indicate significant differences for comparisons among tissue/species (bold, n = 288), and
among exposure days (rows) for each tissue and for each species (roman for A. germinans and italicized for L. racemosa, n = 48).

3. Results

3.1. Concentration of lead in tissues

Tissues of L. racermosa had the highest Pb concentrations in all salt treatment, compared to tissues of

A. germinans (p < 0.05; tables 1-3, Table Sl is available online at stacks.iop.org/ERC/2/061004 /mmedia).
For both species, roots were the tissues that accumulated the highest Pb concentrations.

In the absence of salt (table 1), in both A. germinans and L. racemosa Pb uptake by the roots increased
significantly with time, as the Pb concentration in the substrate increased. Lead translocated to the leaf was
accumulated in proportions similar to those found in the stem, but leaf showed significant increases and the
highest Pb concentration at the end of the experiment in both species.

Salinity significantly affected the Pb uptake capacity of both species. Accumulation of Pb by roots decreased
and translocation of Pb to the leaves increased (highest values in A. germinans at 7 mgl~" of salt and in L. racemosa
at 15mgl ™" of salt); the translocation to the stem was similar in all treatments (tables 2 and 3).

During the first 15 days, the Pb concentration in the roots for plants of A. germinans and L. racemosa growing
under 7 mg 17! of salt increased as Pb concentration in the medium increased (table 2); however, at the end of the
experiment
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Avicenniagerminans Lagunculariaracemosa
Control 160 uM Pb Control 160 pM Pb

Figure 1. Morphological damage and salt excretion in individuals of both species.

Table 3. Concentration of endogenous lead (g g~ " dry weight) found in plants exposed to different concentrations of lead, grown under
15 mgl ™" of salt during a 30-day exposure period. Data are means =+ standard error.

Avicennia germinans A Laguncularia racemosa B
Day 40 uM 80 uM 160 M 40 uM 80 uM 160 M
Root 2AA 14.5 + 2.5a 20.7 £ 1.6a 539+ 5b 39.2 + 6a 449 £5.7a 130.7 + 7.6b
7ABAB 31 £42a 434 + 1.4b 80.2 + 3.4c¢ 47 £ 5.6a 65.6 = 12.8a 186.9 £ 27.8b
15BAB 356+ 7.1a 67.8 £+ 6.4a 157.2 £ 17.9b 49 +£9.9b 169.3 & 33.6a 208.6 + 16.3a
30AB 334 +49a 34.7 &+ 3.5a 50.6 &+ 14.6a 58.7 £ 18.5a 179.9 £+ 14.2b 266 £ 5.2¢
Stem 2AA 6.8 £ 0.5a 72 £ 0.8a 9.5+ 2a 155 + 1.2a 17.1 £ 1.2a 222 £09b
7BA 10.3 £ 1.1a 11.5 £ 1.9a 11.8 £ 1.6a 16.1 £ 2a 185 + 3.4a 239 +39a
15BA 11.5 + 1.6a 122 + 1.7a 125+ 1.7a 16.9 + 3.7a 185+ 6.3a 35.6 + 2.8b
30BA 139 £ 1.5a 143 £ 2.2a 152 £ 2.3a 21.3 £ 3.2a 21.2 &+ 4.8a 24 £4.6a
Leaf 2AA 9.4 £ 1.6a 13.1 £ 1.8a 142 £ 2a 123 £ 4.1a 19.7 £ 3.8ab 26 £2.5b
7AA 122 £ 0.5a 14.1 + 2.3a 19.4 & 59a 16.2 + 1.8a 20.4 £+ 5.4ab 46 £ 12.2b
15AA 149 £+ 2.4a 154 + 3.4a 18 £ 19a 18.8 £ 5.5a 21.3 £ 6.7a 51.1 +10.2b
30AA 28.7 = 16.8a 17.6 £2.3a 185+ 2.2a 18.9 £ 4.9a 28.6 & 7.9ab 50.1 & 9.6b

Different lowercase letters indicate significant differences among Pb treatments (columns) for each day of exposure, for each tissue and for
each species (n = 12). Different capital letters indicate significant differences for comparisons among tissue/species (bold, n = 288), and
among exposure days (rows) for each tissue and for each species (roman for A. germinans and italicized for L. racemosa, n = 48).

the tissue concentration was maintained or even decreased. For both species, the translocation of Pb to
the stem was similar among the different treatments and days of exposure. The Pb accumulation in leaves for
A. germinans was significantly greater as the time of exposure passed, but it was similar among Pb treatments. At
the end of the experiment, in L. racemosa the leaf Pb concentration values increased significantly.

Plants of A. germinans and L. racemosa under 15 mgl ™" of salt had a greater root Pb accumulation than
atlow salinity (table 3). For L. racemosa, Pb accumulation increased significantly as Pb treatment concentration
increased. For A. germinans this also occurred, but after day 15 Pb root concentration decreased. Only
L. racemosa had the highest Pb concentrations in the leaf, which was greater than those found in the stem.

3.2. Effect of Pb accumulation on plant morphology

Although L. racemosa showed the highest Pb accumulation in all treatments, there were no visible symptoms of
toxicity in any of the individuals analyzed even under high concentrations of Pb and at the end of the experiment
(figure 1). Only some individuals of A. germinans that grew with or without salt showed leaf yellowing and
wilting from day 7, but most damage occurred at 15 and 30 days of exposure, and at the highest Pb concentration
(figure 1). In both species, salt crystals in leaves were observed in plants under halophytic conditions because of
the mechanism of excretion characteristic of these species.

3.3. Effect of Pb and salinity on plant growth
The species with the highest weight and length was A. germinans, but L. racemosa values varied less with salinity
than those of A. germinans at the end of the experiment (table 4). In both species, although some plants exposed
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Table 4. Growth parameters during 30 days of Pb treatments in plants of A. germinans and L. racemosa grown under different salinity
conditions. Data are means =+ standard error.

Salt treatment Pb Fresh weight Dry weight DW/FW Plant
Species (mg/L) treatment (1tM) (gFW) (gbw) ratio (%) length (cm)
Avicennia A 0 15.7 £ 1.5a 42 +04a 27.3 £ 0.6a 723 £ 2.1a
germinans
A 40 13 + 1.3ab 3.8 £03a 30.1 + 1.6a 67.8 £2.2a
0 A 80 9.1 £1.3b 2.5+ 0.3b 284 + l4a 55+ 2.7b
160 9.1 £ 0.8b 2.5 £ 0.2b 28.5 £ 1.3a 56.5 + 2.4b
B 0 18.7 £ 1.9a 4.6 £ 0.5a 24.1 £ 0.3a 70.2 £ 3.1a
A 40 151 £ 1.5ab 3.6 = 0.4ab 23.8 £ 0.4a 64.8 £ 3.6a
7 A 80 16.3 £ 1.5ab 3.9+ 0.3ab 67.1 £ 44a
160 12.6 £ 1.3b 3.1 £03b 24.824.6 + 0.5 61.9 £+ 34a
at05a
B 0 13.7 £ 0.8a 3.5+ 0.2ab 25.8 £ 0.4a 64.6 £ 2.3a
A 40 159 £ 14ab 3.9+ 03ab 24.7 £ 0.4ab 625+ 2.7a
15 A 80 18.5 £ 1.4b 45+ 0.4a 242 £ 0.3b 68.7 £ 19a
160 13+ 1.1a 32 +0.2b 25.1 £ 0.3ab 62.6 £ 2.6a
Laguncularia A 0 9.9 £ 1.5a 2.1+£03a 204 +0.7a 499 £ 2.7a
racemosa
AB 40 12.1 £ 1.7a 2.6 £04a 19.9 £ 0.7a 49.2 + 3.2a
0 A 80 109 £ 1.5a 24 +04a 21 £ 0.8a 49.5 £ 2.8a
160 9.7 £ 1.3a 2.1+03a 20.6 £ 0.8a 475 £ 2.7a
A 0 13.3 + 1.6a 29 £+ 04a 21.7 £ 0.4a 54.2 £ 2.6a
A 40 12+ 1.1a 2.6 £02a 21.6 £ 0.3a 53.5 £ 2.1a
7 A 80 113 £ 1.3a 25+ 03a 229 £0.7a 49.5 £ 2.7a
160 103 £ 1.1a 2.3 £ 0.2a 24 + 1.4a 50.3 £ 2.9a
B 0 99 £ 2.2a 22+ 05a 218+ 1a 432 £+ 3.3a
B 40 74 +12a 1.7 £ 0.3a 21.6 £ 0.7a 413 £ 2.3a
15 B 80 7.8 £ 1.1a 1.7 £ 03a 234+ 1.7a 38.9 £ 24a
160 82+ 12a 1.8 £0.3a 21.5+ 09a 432 £ 23a

Different lowercase letters indicate significant differences for comparisons among Pb treatments for each parameter within each salinity and
each species (n = 80). Different capital letters indicate significant differences for comparison among salinity treatments (underlined for fresh
weight, italicized for dry weight and bold for plantlength) for each species (n = 240).

to 15mgl~ ' of salt had a lower weight and length, there was no significant correlation between the growth
variables studied and the electrical conductivity values of the substrate (R* < 0.1), so that salinity did not
influence growth.

For A. germinans, the higher the Pb concentration the lower the biomass and length for the plants. In all salt
treatments, the ratio of length and dry weight with respect to the total accumulation of Pb in the plant was
negative (figures 2 and 3(a)—(f)); but, only in plants that were kept under 7 mg1~" of salt was the correlation
significant. In addition, some decreasing tendencies in the growth values were observed for L. racermosa, but
none was significant.

In addition, for the treatments of 0 and 15 mg1 ™" of salt in L. racemosa, most of the obtained correlations
between Pb tissue concentration and plant biomass or length were positive, but not significant. Larger plants of
this species accumulated higher Pb concentrations but toxic effect in this species was not visible (figures 2 and 3).
However, in both species, it appears that small-sized plants tend to accumulate lower Pb concentrations
(~10-40ug g~ ' in treatments with 40 and 80 M of Pb).

3.4. Effect of salinity on pH and its relation to Pb uptake

In both species, as expected, electrical conductivity (EC) was proportional to the amount of salt in the substrate.
Plants grown without salt presented the lowest EC values, which decreased significantly in the last weeks of the
experiment (figures 4(a) and (c)). With 7 and 15 mg1 ™" of salt, EC increased drastically and gradually; when
irrigating with salt and Pb, EC values first decreased and later gradually increased again. In both species and for
both treatments with salt, EC values of all weeks of measurement differed statistically.

Substrate pH for plants of A. germinans growing without salt maintained an average range of 4.9 to 5.8, being
the lowest among all treatments (figure 4(b), table S1). For the salt treatments, pH increased gradually and
significantly four weeks after starting the salt irrigation and stabilizing at the end of the experiment. Plants of
L. racemosa that grew without salt initially had a higher pH (>6) than plants of A. germinans, but gradually
decreased until the end of the experiment (average range of 5.4 to 6.1, figure 4(d)). Under salinity conditions, the
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Figure 2. Average total concentration of Pb found in plants exposed to 40 M (g ), 80 uM (.) y 160 1M (&) Pb treatment over
30 days of exposure, for each salt treatment in A. germinans and L. racemosa. Data are means =+ standard errors.

former species grew in a less acidic environment compared to A. germinans, since some plants showed point
values of pH > 7 when the plants were acclimated to 15 mg1 ™" of salt.

In both species, the relationship between EC and pH was significant showing that an increase in the salinity
of the substrate can increase the pH; although, the correlation was low (R* = 0.26 for A. germinans and
R? = 0.21 for L. racemosa; figure 5). Also, EC and pH were related to the roots Pb concentration as well as the EC
with the leaf Pb concentration (figures 6 and 7).

For A. germinans, an increase in EC and pH, as well as alonger exposure time to the metal, leads to alower
accumulation of Pb in the roots. Also, L. racemosa had a negative relationship between EC and pH, which
increase the first 15 days of exposure. However, correlation values were lower compared to those of
A. germinans. Furthermore, for both species, the higher the salinity and longer the time of exposure, the higher
accumulation of Pb in the leaf was, especially for L. racemosa at day 30.

4. Discussion

We found that Avicennia germinans and Laguncularia racemosa accumulated Pb, mainly in the roots, and
translocate it in low concentrations towards the aerial parts (phyto—stabilization), which has already been
reported for other mangrove species (Nirmal Kumar etal 2011, Wang et al 2013, Cabafnias-Mendoza 2014
Pérez-Sirvent et al 2017, Qiu and Qiu 2017). This mechanism is common in tree species because it allows them
to be more tolerant to the toxic effects (Diez 2008, Trejo-Calzada et al 2015, Salas-Luévano et al 2017). Under no
salinity conditions, Pb accumulation tends to be higher when the level of contamination and the time of
exposure to the Pb is higher.

In all Pb treatments, L. racemosa not only had the highest accumulation capacity but also the highest
tolerance without showing any visible damage; both biomass and length did not change for this species, even
though some plants accumulated high Pb concentrations. Our results showed that A. germinans could have a
greater vulnerability to the toxic effects of Pb as time of exposure passed.

We corroborated that pH increased in the substrate at higher salinities, but the relationship between these
two variables was low. Few studies have shown the influence of salinity on pH (Saraswat et al 2015). More
experiments with longer residence times and higher salt concentrations in the soil are required to show an
evident relationship. Besides, other environmental variables can also influence changes in pH, such as
temperature which, when increases, causes a decrease in pH (Dotro et al 1994).

At higher salt concentrations there is an increase in the uptake of Cd, Zn and Pb in some plants, due to
competition with other cations (Na™, K™, Ca*™t, Mg”) for sorption sites. This could increase the formation of
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Figure 3. Relationships between tissue Pb concentration and dry weight (a)—(c), (g)—(i) and plant length (d)—(f), (j)—-(1) for the 40 M
(&), 80 uM (-) y 160 M (#3¥) treatment of Pb over 30 days of exposure, for each salt treatment in A. germinans and L. racemosa.

complexes with chloride anions, causing desorption of metals and their mobility (Fritioff et al 2005, Manousaki
and Kalogerakis 2009, Manousaki et al 2009, Gharaibeh et al 2015). Additionally, some studies on sediments and
different plant species show that higher salinity leads to a decrease in the mobilization and accumulation of Ni,
Cu, Zn, Cd and Pb in plant tissues (Smolders and McLaughlin 1996, Riba et al 2003, Fritioff et al 2005,
Manousaki and Kalogerakis 2009, Leblebici ez al 2011). These last studies support our results, because we found
that salinity caused a lower accumulation of Pb in the root. In addition, in this study, the greater the exposure
period, a decrease in Pb availability of the metal occurred, mainly in A. germinans. This can occur because metals
can also bind to other anions forming less soluble complexes that can limit the absorption of the metal through
coagulation, precipitation and flocculation (Smolders and McLaughlin 1996).
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racemosa (B).

Few studies mention the influence of environmental variables on the uptake of metals for mangrove species
(Daietal 2017, Pittarello et al 2018). For instance, Cheng et al (2012) reported that an increase in salinity reduces
the loss of radial oxygen, which stimulates the lignification of the exodermis, and alters the permeability of the
root, influencing a lesser accumulation of metals (Pb, Zn and Cu) at low salinity. Our results agreed with these
findings, since at low salinity in the substrate there was the lowest Pb tissue accumulation.
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Figure 6. Relationships between tissue Pb concentration (roots and leaves of Avicennia germinans) and substrate electrical conductivity
(EC)and pH, for the three salinity treatments at 2, 7, 15 and 30 d for Pb treatments of 40 M ( 44), 80 uM (i) y 160 1M (@)

Nevertheless, some studies show that the transformation of free ion metals to complexes, and their low
availability, is not the only reason why metal accumulation in plants decreases in the presence of salt. Mei et al
(2014) show that a blockage in the Ca*" channels significantly decreases the absorption of Na™, K™, Ca®™,
Mg** and Cd** by the root of amaranth plants grown under different concentrations of NaCl. This study also
reports that a blockage of the K™ channels diminishes the uptake of Na',and K" butnot of Ca*™, Mg“, and
Cd*", which suggests competition between the Na™ and Cd*" for passage through the channels of Ca®". This
affinity of Na™ for the sites of sorption in the walls of the root cells displaces other ions and, consequently,
results in alow accumulation of the metal in the roots. These findings can help explain the decrease of metal in
mangrove roots, which can lead to more studies on the specificity of the transporters in the accumulation of
metals in mangroves.

Our results showed that the accumulation of Pb in roots was associated with pH changes; and that the
decrease in the availability of Pb in the roots is more evident at longer time of exposure to the metal. A study also
reports that the accumulation of metals in plants is more effective when the pH is low, since acidification releases
metals associated with sediments (Riba et al 2003). But further studies are needed to know how pH increase of
the substrate affects Pb availability.
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Figure 7. Relationships between tissue Pb concentration (root and leaves of Laguncularia racemosa) and substrate electrical
conductivity (EC) and pH, for the three salinity treatments at 2, 7, 15 and 30 d for Pb treatments of 40 M ( &), 80 M (JiiD y 160 1M
().

An interesting finding in our study was that salinity also influences a greater translocation of Pb to the leaves.
This can occur because these species excrete salt through their leaves. MacFarlane and Burchett (1999, 2000)
show that the mangrove species Avicennia marina, treated with Zn and Cu, has an increase in these metals in the
leaf and in the salt crystals on leaf surfaces, suggesting a strategy of the plant to deal with excess micronutrients by
eliminating them through the glandular trichomes of the epidermis. This could help explain the lowest root Pb
concentration values at the end of the experiment for mangrove plants in the low salinity treatment.

Soils in mangrove ecosystems, in addition to having a wide salinity gradient, are also flooded either
temporarily or permanently and are rich in organic matter, which influences changes in pH and other
physicochemical variables, such as processes of oxide reduction (Lugo and Medina 2014, Naidoo 2016). Plants
of A. germinans and L. racemosa can co-exist in basins or semi-flooded areas, but when salinity is high,

A. germinans dominates, whereas when salinity is low the dominant species can be L. racemosa (Reese 2009,
Zaldivar-Jiménez et al 2010). Both species are distributed within bands or plots along the Gulf of Mexico and the
Pacific coast (Lopez-Portillo and Ezcurra 2002). Based on our findings, L. racemosa has several advantages that
would allow it to be a better candidate for the remediation of Pb in these ecosystems. However, more studies
under higher salinities need to be done to show the potential of A. germinans.
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5. Conclusion

Salinity, and the changes caused in pH, influenced the availability, accumulation and translocation of Pb

in A. germinans and L. racemosa, which was more evident under prolonged periods of time. Nevertheless,

L. racemosa not only had a greater capacity for Pb accumulation and tolerance, but this species also occurs in
conditions where the availability of Pb discharges may be greater, which makes it more efficient for
phytoremediation. Additionally, A. germinans can be more efficient for phytoremediation in places with low
pollution. The contamination by heavy metals in coastal lagoons of Mexico is worrisome so it is urgent to carry
out more studies on how these species, and other mangrove species, can coexist and cope with these pollutants
and if this could somehow help heavy metal pollution remediation.
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