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Abstract: Pathogens are able to deliver small-secreted, cysteine-rich proteins into plant cells to enable
infection. The computational prediction of effector proteins remains one of the most challenging
areas in the study of plant fungi interactions. At present, there are several bioinformatic programs
that can help in the identification of these proteins; however, in most cases, these programs are
managed independently. Here, we present EffHunter, an easy and fast bioinformatics tool for the
identification of effectors. This predictor was used to identify putative effectors in 88 proteomes using
characteristics such as size, cysteine residue content, secretion signal and transmembrane domains.
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1. Introduction

Fungal phytopathogens are a major threat to food security since they can cause devastating losses
to important crops in agriculture.

These pathogenic fungi secrete diverse small proteins in the infection process which are
pathogenicity or virulence determinants that manipulate the interaction, and thus are commonly
referred to as “effectors” [1–4]. Small, secreted, cysteine-rich proteins constitute a common source of
fungal effectors [3,5–7].

Fungal effector proteins are poorly conserved, and in contrast to oomycetes effectors, where
the presence of conserved amino acid motifs (e.g., RxLR, dEER) has created profile Hidden Markov
Models (HMM), the prediction of fungal effectors has been more challenging. In general, most fungal
effectors do not share significant sequence similarity with each other, which can be attributed to rapid
divergence and host specialization. However, they share structural properties such as a signal peptide
for secretion, absence of transmembrane domains, presence of some motifs, small-medium molecular
weight sizes and cysteine-rich content [8–10]. Additional fungal effector features have been reported
for specific subclasses of effectors, for example, particular genomic locations such as gene clusters,
gene-sparse regions or localization in dispensable chromosomes [11].

Major efforts have been devoted to in silico identification of secreted effectors in large-scale
genome studies. Three principal approaches have been commonly used by different research groups:
(a) analyzing proteomes in different bioinformatic programs that help to filter the secretome, for instance,
SignalP 4.1 [12], WoLFPSORT [13] and TMHMM 2.0 [14]. The use of these programs is usually done
in a separate manner and not as a package; (b) machine learning approaches, which can predict new
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effector proteins based on the extracted features of reported and confirmed effectors [15,16]; and
(c) comparative genomics to search those effectors that belong to families, or to find rare ortholog
effector candidates that might be transferred horizontally [17].

EffectorP 1.0 and 2.0, the first reported machine learning classifiers of fungal effectors [15,16], have
been the most preferred fungal effector prediction tools used to date. Although these approaches are
often successful at identifying effectors, criteria such as small size and enrichment in cysteine require
thresholds manually set by researchers. Therefore, finding an easy and quick tool that led to adjusting
the search criteria used for the prediction of effectors becomes a niche of opportunity.

The present work introduces EffHunter, a pipeline developed to integrate SignalP 4.1 [12],
Phobius [18], TMHMM 2.0 [14] and WoLFPSORT [13] with Perl/Bioperl scripts for filtering protein size
and cysteine content. Running the analysis in a single step, the sensitivity of the prediction was 70%,
defined as the proportion of positives that are correctly identified, and a specificity of 100%, which
is the proportion of negatives that are correctly identified. These values obtained were the same as
those obtained with the step-by-step method of prediction and similar to EffectorP 2.0 values with a
sensitivity of 68% and specificity of 98%.

2. Materials and Methods

2.1. Architecture of EffHunter Pipeline

EffHunter is based on the available software SignalP 4.1 [12], Phobius [18], TMHMM 2.0 [14]
and WoLFPSORT [13] (Table 1). A set of Perl/Bioperl (v5.18.2) scripts was designed to perform these
complementary tasks: the protein length analysis (≤400 amino acids), the cysteine count (≥4 cysteine
residues) and connecting the individual steps into a single pipeline for proteome scale analysis.
EffHunter works as follows: first, all the sequences are put in FASTA format, where each sequence
is filtered with respect to the size indicated by the user, and the result is stored in a new FASTA file.
Second, the first list obtained from the filter by protein size is submitted to the filter by number of
cysteines; in this step, the user indicates the value to filter those proteins that have greater or equal to
the number indicated. Once obtained, the proteins that meet the criteria are stored in a new FASTA file.
Third, the retrieved sequences are searched for signal peptide signatures with SignalP 4.1 and Phobius
programs. Fourth, the resulting FASTA file of protein sequences are searched for transmembrane
domains with TMHMM 2.0, and then WoLFPSORT predicts the subcellular localization. Each analysis
uses a FASTA file as input and generates an output in FASTA format too.

EffHunter is distributed as a compressed file in ZIP format. The source code is available for
download at https://www.cicy.mx/unidad-de-biotecnologia/investigador/blondy-beatriz-canto-canche
and https://github.com/GisCarreon/EffHunter_v.1.0 GitHub repository. Docker image is available at
https://hub.docker.com/r/giscarreon/ubuntu-effhunter. Once the EffHunter_1.0 directory has been
uncompressed, it shows the bin directory, in which the empty subdirectories SignalP, Phobius, TMHMM
and WoLFPSORT are located. The user must download each program from the platforms indicated in
Table 1 and uncompress and install them in each empty subdirectory mentioned above for the correct
execution of EffHunter. To use EffHunter pipeline, the code indicates the necessary path to install each
program and to compile and take the modules. The command to execute EffHunter once it is installed
in a linux/unix terminal is sh ./EffHunter.sh.

2.2. Validation of EffHunter Pipeline in ab Initio Approach

EffHunter was challenged using different protein databases designated as positive and negative
control sets. The positive data set (Table 2) contained a total of 150 effector proteins (Supplementary
data set S1), of which 94 effectors were collected from the literature by Sperchneider et al. [15],
and the other 56 were effector candidates retrieved from the Pathogen-Host Interaction database
(PHI-base) (Supplementary Table S1). These databases comprise, to date, more than 4000 proteins
involved in pathogenicity, from more than 260 plant and animal pathogens; 70% of them being
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phytopathogens [19,20]. The search for protein effectors in the PHI base for the positive data set was
done using the following criteria: length ≤400 amino acids [5,21–25], ≥4 cysteine residues [26,27],
presence of signal peptide and lack of transmembrane domains [1,27,28].

The capability of EffHunter pipeline to exclude non-effectors was challenged with a large list of
negative control proteins (4530 proteins). The negative control set comprises well-known families
of proteins, ABC transporter proteins (2329) (Supplementary data set S2) [29,30], Cyt P450 proteins
(476) (Supplementary data set S3) [31], and 1725 proteins classified as major facilitator transporters
(MFTS) (Supplementary data set S4) [32–34]. The set of negative controls comprises varied proteins:
from 73 to 5000 amino acids; from 0 to 74 cysteines; from 0 to 23 TMDs; with or without signal peptide.
The great variability makes these proteins a robust set of negative controls. In addition, none are
extracellular, and more importantly, no member of these protein families has been described as a
fungal effector. The fasta sequences of all of these candidates were downloaded from the GenBank at
NCBI (https://www.ncbi.nlm.nih.gov/); positive and negative controls were pooled in a single database
containing in total 4680 proteins (Supplementary data set S5).

The search for effectors in this database was performed in the traditional way using each program
separately by sequential analyses and in a single step, using the EffHunter pipeline with the command
described above.

To assess the predictive ability of the EffHunter prediction, the variables sensitivity, specificity,
precision and accuracy were calculated to measure the performance of the EffHunter pipeline:

Sensitivity/Recall
TP

(TP + FN)
(1)

Speci f icity =
TN

(TN + FP)
(2)

PPV/Precision =
TP

(TP + FP)
(3)

ACC =
TP + TN

(TP + FP + FN + TN)
(4)

FPR =
FP

(FP + TN)
(5)

F1 = 2×
precision× recall
precision + recall

(6)

Sensitivity is defined as the proportion of positives that are correctly identified. Specificity is the
proportion of negatives that were correctly identified. Precision or positive predictive value, PPV, is a
measure which captures the proportion of positive predictions that are true. Accuracy analysis can
be used to evaluate the overall performance of a method. In the equations, TP, true positives; TN,
true negatives; FP, false positives; and FN, false negatives. Recall is defined as the proportion of the
positives that are successfully retrieved. F1 Score is widely used to measure the success of binary
classifier and compare performance of different software/pipelines. F1 Score reaches it best value at 1
and the worst score at 0 [16,25,28,35–37].

2.3. Validation of EffHunter Pipeline in Comparative Approach

Criteria to identify effectors are largely discrepant in the literature; therefore, in order to continue
the evaluation of EffHunter, its predictions were compared with three published fungal effector datasets.
Each dataset was obtained by using different strategies to identify the effectoromes.

Two approaches were followed. In the first one, we compared EffHunter prediction with
previous reports of effector prediction, by sequential/separate analyses with different bioinformatics
programs (Table 3). Reports were for Blumeria graminis f. sp. hordei [38], Pseudocercospora fijiensis [39]

https://www.ncbi.nlm.nih.gov/
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and Mycosphaerella graminicola [40]. It is important to emphasize that in those reports, different
combinations of bioinformatic tools were used. Details about such tools are provided in Table 4.

For Blumeria graminis f. sp. hordei and Pseudocercospora fijiensis, EffHunter analyses ran on the
same bioinformatic databases used by the authors, but for Mycosphaerella graminicola, EffHunter ran on
the nonredundant dataset of proteins for this pathogen at JGI (https://mycocosm.jgi.doe.gov/Mycfi2/

Mycfi2.home.html) because the database reported by authors is not publicly available. In the search
for effectors, the length cutoff was set equal to that used in each one of these reports, respectively.

The second approach was a comparison between the resulting list of protein effectors produced by
EffHunter with those of Sonah et al. [10], since the authors used the bioinformatics tool, SECRETOOL [41],
a program that integrates the use of SignalP 4.1, TMHMM 2.0 and WoLFPSORT to analyze and identify
secreted proteins. Using SECRETOOL, the authors predicted effectoromes in 12 proteomes: Alternaria
brassisicola, Blumeria graminis, Cladosporium fulvum, Colletrotrichum gramnicola, Fusarium oxysporum,
Leptosphaeria maculans, Magnaporthe oryzae, Mycosphaerella graminicola, Ustilago maydis, Puccinia graminis
f. sp. tritici, Pyrenophora tritici-repentis and Phytophthora infestans. Comparison among in silico
identification of effectors by EffHunter, SECRETOOL and EffectorP 2.0 was carried out for these
pathogens. For this and further analyses, cutoff size was fixed at ≤400 amino acids and the cysteine
residues ≥4 in EffHunter analyses.

As a final test for validation, the predictive performance and limitations of EffHunter were
compared with EffectorP 2.0 on noncanonical effectors (which are effectors hard to predict), such as
SAD1, Mg3LysM, BEC1054, BEC1011, BEC1019, CSEP0055, Bcg1, CSEP0105, SIS1, Xyla, PIIN 08944,
AvrPm3 and AvrSr35.

2.4. Prediction of Effector Proteins in Fungal Genomes

Deduced proteomes from 87 fungi and 4 oomycetes were downloaded from the databases of Broad
Institute and Joint Genome Institute (https://jgi.doe.gov/) [42] and from the resource for genome-scale
data, Ensembl Genomes (https://fungi.ensembl.org/index.html), developed by the EBI and the Welcome
Trust Sanger Institute [43] (Supplementary Table S2).

3. Results

3.1. EffHunter: A Pipeline to Predict Fungal Effectors Proteins

The EffHunter pipeline was constructed for the in silico identification effectors in fungal proteomes.
The architecture of EffHunter consists of four modules: (1) analysis of the protein length and cysteine
count, (2) detection of signal peptide, (3) transmembrane domains and (4) subcellular localization.

Length estimation and the counting of cysteines in each protein are performed by a set of
Perl/Bioperl scripts on the subject proteins; the programs listed in Table 1 accomplished the other
bioinformatics analysis.

Table 1. Bioinformatics tools integrated into EffHunter.

Program Features Website Reference

Perl/Bioperl International association of users and developers of open-source
Perl tools for bioinformatics, genomics and life science. https://bioperl.org/ [44]

SignalP 4.1
Predicts the presence of signal peptides and the location of their

cleavage sites in proteins from gram-positive bacteria,
gram-negative bacteria and eukarya.

http://www.cbs.dtu.dk/
services/SignalP/index.

php
[12]

Phobius This server is for the prediction of transmembrane topology and
signal peptides from the amino acid sequence of a protein. http://phobius.sbc.su.se/ [18]

WoLFPSORT
Converts protein amino acid sequences into numerical localization

features, based on sorting signals, amino acid composition and
functional motifs, to predict protein subcellular location.

https://wolfpsort.hgc.jp/ [13]

TMHMM 2.0 Predicts trans-membrane (TM) domain helices in proteins. http://www.cbs.dtu.dk/
services/TMHMM/

[14]

https://mycocosm.jgi.doe.gov/Mycfi2/Mycfi2.home.html
https://mycocosm.jgi.doe.gov/Mycfi2/Mycfi2.home.html
https://jgi.doe.gov/
https://fungi.ensembl.org/index.html
https://bioperl.org/
http://www.cbs.dtu.dk/services/SignalP/index.php
http://www.cbs.dtu.dk/services/SignalP/index.php
http://www.cbs.dtu.dk/services/SignalP/index.php
http://phobius.sbc.su.se/
https://wolfpsort.hgc.jp/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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The EffHunter pipeline compiles the SignalP 4.1, Phobius, TMHMM 2.0 and WoLFPSORT
programs, together with a set of scripts in Perl, to execute the analyses of length and content of cysteine
residues in a single step for each polypeptide sequence of fungal proteomes (Figure 1).
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Figure 1. Complete EffHunter workflow for the prediction of effectors in fungal proteomes. Red square,
custom tools (user parameters); blue square, pre-installed prediction tools. RFS, retrieved FASTA
sequences. The pipeline works correctly either on total proteomes or secretomes.

The analysis with the EffHunter pipeline involves the automatic sequential analysis of the FASTA
file output from the previous module until the creation of the final output file.

3.2. Validation ab Initio

The evaluation of EffHunter’sperformance was done by employing the positive data set (Table 2),
comprising 56 effectors available in the PHI-database and the 94 effectors used for the initial positive
training of EffectorP 2.0 [15]. The final list comprises 150 protein effectors, which include 140 effectors
from fungi and 10 protein effectors from oomycetes (Supplementary data set S1).

As negative controls, a subset of 4530 proteins was used, comprising P450 proteins, MFTS and ABC
transporters, most of them large, integral membrane proteins. The set of negative controls comprises a
large number of proteins to challenge EffHunter, in order to prevent false positive identification as
much as possible. Using the same data set with positive and negative controls, we compared our
pipeline with EffectorP 2.0, a machine learning classifier for fungal effector prediction.
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Table 2. Positive data set of effector proteins used in this work.

Species Effector Proteins

Alternaria alternata Aapg1
Alternaria citri Acpg1

Aspergillus flavus PECA
Aspergillus fumigatus CfmB, CfmC

Beauveria bassiana BbCHIT1
Bipolaris maydis Ppt1
Bipolaris oryzae Ppt1
Bipolaris zeicola PGN1

Blumeria graminis f. sp. hordei Avrk1, Avra1, Avra13, CSEP0105, BEC1005, BEC1040
Blumeria graminis f. sp. tritici AvrPm2

Botrytis cinerea CUTA, Nep1, PGIP2, BcPGA1, BcPG2
Botrytis elliptica BeNEP2
Candida albicans BGL2, SAP1, sap1, SAP2, SAP3, sap3, Pga26, RBT4
Candida tropicalis ACP

Cladosporium fulvum Avr2, Avr4, Avr4E, Avr5, Avr9, Ecp1, Ecp2, Ecp4, Ecp5, Ecp6
Claviceps purpurea CPPG1, CPPG2

Colletotrichum graminicola CgEP1, Cgfl
Fusarium graminearum FGL1

Fusarium oxysporum Avr3, PG1, XYL3
Fusarium oxysporum f. sp. lycopersici Six1, Six2, Six3, Six4, Six5, Six6, Six7, Six8

Fusarium solani cutA
Histoplasma capsulatum CBP1

Laccaria bicolor MiSSP7
Leptosphaeria maculans AvrLm1, AvrLm4–7, AvrLm6, AvrLm11, AvrLmJ1, SP1

Magnaporthe oryzae

Avr1-CO39, Avr-Pia, AvrPib, Avr-Pita, Avr-Pii, Avr-Pik, AvrPi9, AvrPiz-t,
Bas1, Bas2, Bas3, Bas4, Bas107, Bas162, GAS1, GAS2, Iug6, Iug9, MC69,
MHP1, MoCDIP1, MoCDIP2, MoCDIP3, MoCDIP4, MoCDIP5, MPG1,

MoHEG13, Msp1, Pwl1, SPD2, SPD4, SPD7, SPD9, SPD10, XYL-6
Melampsora lini AvrL2-A, AvrL567-A, AvrM, AvrM14, AvrP4, AvrP123,

Metarhizium anisopliae Pr1
Monilinia fructicola MfCUT1

Parastagonospora nodorum SP1
Phakopsora pachyrhizi PpEC23
Phytophthora cactorum PcF

Phytophthora capcisi Pc129892, Pcipg2
Phytophthora infestans EPI10, INF1, INF2A, INF2B
Phytophthora parasitica CBEL, Ppxyn1

Phytophthora sojae GIP2
Puccinia graminis f. sp. tritici AvrSr50, PGTAUSPE-10-1

Puccinia striiformis f. sp. tritici Pec6, PstSCR1
Pyrenophora tritici-repentis ToxB

Rhynchosporium secalis NIP1, NIP2, NIP3
Sclerotinia sclerotiorum SsSSVP1
Stagonospora nodorum ToxA, Tox1, Tox3

Trichoderma virens Sm1
Uromyces fabae RTP1
Ustilago hordei UhAvr1
Ustilago maydis Cmu1, eff1-1, Mig1, Mig2-1, Pep1, Pit2, Tin2, See1

Verticillium dahliae Ave1, PevD1, Vdlsc1, VdSCP7
Zymoseptoria tritici AvrStb6, Zt6

* One hundred fifty effector proteins were pooled from the list (94) collected by Sperschneider et al. [15] and
56 effectors retrieved from the PHI database (labeled in bold). All these effector proteins have been published in
peer-reviewed journals.

EffHunter positively identified 105 from 150 effectors (70%); meanwhile, 45 were false negatives
(30%). The missing 45 effectors could not be identified because some of them contain transmembrane
domains or less than four cysteine residues, two criteria that EffHunter uses for the prediction. From
the total subset of proteins evaluated (4680), no false positive was retrieved (Table 3). Sequential
analyses with the programs and scripts that make up EffHunter produced the same results as the
automatic analysis with EffHunter (Table 3), showing that the pipeline worked as expected.
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Table 3. Validation of EffHunter for prediction of effector proteins and comparison with EffectorP 2.0.

Step-by-Step Prediction

Data* Proteins in Data set Total Proteins Length
(30—400aas) >4 Cysteine Signal peptide by

SignalP/Phobius
Proteins without TMD

with TMHMM Total prediction Results Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 150

4680 765 435 107 105 105

105

70% 100% 100% 99% 0.00% 0.82
Set 2 2329 0

Set 3 476 0

Set 4 1725 0

EffHunter

Data* Proteins in data set Total proteins Total prediction Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 150

4680 105

105

70% 100% 100% 99% 0.00% 0.82
Set 2 2329 0

Set 3 476 0

Set 4 1725 0

EffectorP 2.0

Data* Proteins in data set Total proteins Total prediction Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 150

4680 166

102

68% 98% 61% 97% 1.41% 0.64
Set 2 2329 41

Set 3 476 22

Set 4 1725 1

EffectorP 1.0

Data* Proteins in data set Total proteins Total prediction Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 150

4680 164

91

60% 98% 55% 97% 1.6% 0.57
Set 2 2329 49

Set 3 476 20

Set 4 1725 4

Sonah et al. [10] (SECRETOOL and filter by length <300 amino acids)

Data* Proteins in data set Total proteins Total prediction Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 150

4680 72

72

48% 100% 100% 98% 0.00% 0.64
Set 2 2329 0

Set 3 476 0

Set 4 1725 0

* Set 1: Positive dataset of true effectors (positive dataset comprises effectors retrieved from pathogen-host interaction (PHI) and the list collected by Sperschneider et al. [15]); Set 2: ABC
transporters; Set 3: cytochrome P450; Set 4: proteins classified as major facilitator transporter superfamily. Sen/Rec: Sensitivity/Recall; Spe: Specificity; PPV/Prec: Positive Predictive
Value/Precision; ACC: Accuracy; FPR: False positive rate; F1 score: Measure of the success of binary classifier (score reaches its best value at 1, and worst score at 0).
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EffectorP 2.0 identified 166 effectors; 102 of them were true effectors (68%), but 48 true effectors
were missing, i.e., 32% of false negatives. The larger difference observed between both predictors was
the number of false positives, e.g., 64 for EffectorP 2.0 (41 ABC transporters, 22 cytochrome P450, and 1
MFTS) and none for EffHunter. Furthermore, sensitivities are similar (76% and 75%), but specificity
was larger for EffHunter (100%) in comparison with 98% for EffectorP 2.0. Precision of EffHunter
was 100% vs. 97% for EffectorP 2.0. Accuracy value was 99% for EffHunter and 97% for EffectorP 2.0
(Table 3).

In addition, following the strategy of Sonah et al. [10], i.e., using the pipeline SECRETOOL and
then selecting proteins with maximum length of 300 amino acids, 72 true effectors were recognized and
78 true effectors were discarded (false negatives). No false positive was retrieved in this prediction.

Estimation of the F1 score for these predictions was carried out considering their results on the
same set of 4680 proteins (containing 150 true effectors and 4530 negative controls). The scores were 0.57
for EffectorP v1.0, 0.64 for EffectorP v2.0, and SECRETOOL/300 amino acids and finally, for EffHunter,
0.82. These results support EffHunter as a good predictor for fungal canonical effectors.

EffHunter and EffectorP 2.0 shared 61 candidates. Non-shared predicted candidates were 44 for
EffHunter and 41 for EffectorP 2.0 (Figure 2a). All of the 44 EffHunter specific candidates meet the
established criteria for effector prediction. From the 41 candidates predicted only by EffectorP 2.0, 9%
have no signal peptide, 26% have TMDs and 87% have less than four cysteine residues (Figure 2b).
Since effectors are so diverse, it is ambiguous how many of the specific candidates of each predictor
are true effectors, but candidates of Effhunter highly meet its own established criteria. The algebraic
sum in Figure 1 is greater than 100% because some candidates have two or more characteristics, e.g.,
no signal peptide and have TMD at the same time.
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Figure 2. Effector prediction of positive control set. (a) Venn diagram showing the distribution of
shared and non-shared predicted effectors by EffHunter and EffectorP 2.0. (b) Pie chart summarizing
the characteristics of the 41 non-shared effectors protein predicted by EffectorP 2.0.

3.3. Validation of EffHunter with Fungal Proteomes and Comparison with Other Effector Prediction Tools

EffHunter is versatile and allows the user to set cutoff values for the protein sequence length
and number of cysteine residues. To continue the validation of EffHunter in the prediction of effector
proteins, additional analysis was carried out on a few economically important plant pathogens whose
effectoromes have been previously analyzed. Parameters and software used in each case are described
in Table 4. For EffHunter, the length of proteins was set according to the reported criterion in each case.
The number of cysteines was fixed at ≥4 per protein since is difficult to set a proper percentage, as the
number of cysteines varies with the size of the protein.

In the plant pathogen Blumeria graminis f. sp. hordei, EffHunter predicted 490 effector candidates
in comparison with the 494 reported by Liang et al. [38] using diverse criteria presented in Table 4;
404 of them were common in both predictions. EffHunter identified 82 proteins which were not
retrieved by the other study. These 82 proteins were then analyzed with different programs that are
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not included in EffHunter but were used by other authors (i.e., TargetP 1.1 [45] and big-PI [46]). In
addition, the analysis of Liang et al. [38] used one additional criterion, searching for secreted proteins
that show similarity only with proteins from powdery mildews. These analyses identified 12 false
positives in EffHunter candidates because they did not meet this additional criterion, but 70 of them
met all the author’s criteria. On the contrary, Liang et al. [38] identified 86 candidates, which were not
recognized by EffHunter. Sixty-two of them were larger than 400 amino acids; 19 had no signal peptide
and 5 were predicted as GPI-anchored. Therefore, these 86 candidates identified by Liang et al. [38]
seem to be false positives according to their own criteria (Table 4).

The second comparison was with a list of candidate effectors reported by Chang et al. [39]
from Pseudocercospora fijiensis, the causal agent of black Sigatoka disease in banana and plantain.
Chang et al. [39] reported 105 candidate effectors for the fungus, while EffHunter predicted 136, with
78 of them shared between both analyses. From the 27 candidates exclusive of the results of Chang et al.,
15 appear to be false positives since they do not meet some of their criteria; 12 were ambiguous.
Ambiguity arises because both predictions have different settings for some criteria (i.e., they accepted
one TMD in the proteins, but EffHunter does not). Since effectors are so diverse, the criterion of having
one or no TMD has a similar probability of being acceptable. In the ambiguous candidates, seven
have one TMD and five candidates have only two cysteines in their sequence, but they present the 2%
cysteine because those are peptides with 60 amino acids or less. EffHunter parameters filtered those
proteins. EffHunter predicted 58 effectors that were not enlisted in the reference data; 32 of them may
be false negatives for the reference since they meet all their parameters. Sixteen EffHunter candidates
were probably false positive, and 10 were ambiguous (Table 4).

The third comparison was with a list of deduced effectors from Mycosphaerella graminicola, a fungus
causing septoria leaf blotch in wheat [40]. In addition to some software previously mentioned (i.e.,
SignalP 3.0, TargetP 1.1, big-PI, WoLFPSORT), these authors included in their analysis the use of
LocDB [47], ProtComp v8.0 and PotLocDB [48] and designed a script to set cysteine at 5%. The list of
candidates was filtered to exclude those proteins that have any functional annotation. They reported
171 effector candidates vs. 183 by EffHunter.

One hundred ten were common in both results; among the 61 candidates exclusive for the
reference, 60 failed to meet some of the authors’ criteria (they may represent false positives), but one
was true positive for their result and false negative for EffHunter. Curiously, this protein (ID 82029) is
not present in the nonredundant set of M. graminicola proteins in the JGI database. For this reason,
EffHunter did not analyze it.

EffHunter predicted 74 candidates in addition to the common set. Fifty of these candidates are true
positives, according to all criteria from authors, including the search for candidates with no relation
with proteins with functional annotation. These 50 candidates are true effector candidates for EffHunter
and false negatives for the reference. It is probable that EffHunter had 24 false positives since four have
GPI, ProtComp predicts seven non-extracellular proteins, and 13 have homology with proteins with
functional annotation in Pfam. EffHunter does not include the search of GPI, the ProtComp program
and the Pfam database in the pipeline.

In summary, EffHunter performed well in these comparisons. In the three cases, the number of true
positives was higher, and the false positives were lower with EffHunter. The number of false negatives
for EffHunter was negligible; meanwhile, in the other reports, it was 14% in the Liang et al. [38]
effectorome prediction for B. graminis f. sp. hordei, 30% in Chang et al. [39] prediction for P. fijiensis and
29% in Morais do Amaral et al. [40] prediction for M. graminicola, supporting the robust and reliable
prediction by EffHunter.
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Table 4. Data analysis of the set of fungal effector proteins between EffHunter and other reports.

Species Criteria in Reference Genome Size
(Mbp)

Total
Proteome Secretome Effectors Prediction in

Reference
EffHunter
Prediction Shared

Difference in:
Reference(R)
EffHunter(E)

Observations for Effectors Predicted by
Reference or by EffHunter

Summary of True or False
Positives or Negatives, or

Ambiguous in the Specific Sets
of Effectors

(Considering Both Predictions)

Blumeria graminis
f. sp. hordei

[38]

Secretion signal with SignalP 4.1 and
SecretomeP, no TMD with TMHMM

2.0, no hits outside powdery
mildews with Blastp; subcellular

localization with TargetP 1.1 and GPI
anchors by Big-PI.

124.49 7118 726 494 490 408

R = 86

Negatives (86): 62 proteins are larger than 400
amino acids, 5 proteins have GPI binding and 19
proteins have no signal peptide and have TMD.

Therefore, all 86 are false positive in this set.
TP = 0; FP = 86

Reference
TP = 0
FP = 86
FN = 70
TN = 12

E = 82

Negatives (12): 3 proteins were predicted by
TargetP 1.1 as mitochondria target, 6 proteins

were predicted with GPI anchors by big-PI and 3
proteins have homologs in fungal species that are

not powdery mildew.
Positives (70): 70 meet all criteria of authors;
Blastp retrieved homologs only in powdery

mildews.
TP = 70; FP = 12

EffHunter
TP = 70
FP = 12
FN = 0

TN = 86

Pseudocercospora
fijiensis

[39]

Secretion signal with SignalP 4.1, one
or no TM domains with TMHMM
2.0, subcellular localization with

TargetP 1.1 and WoLFPSORT, no GPI
anchor with PredGPI, length

<250aas, >2% cysteine residues

74.1 13,107 584 105 136 78

R = 27

Negatives (15): 2 proteins are larger than 250
amino acids, 2 have no clear localization

prediction with TargetP 1.1, 7 have no signal
peptide, 4 have no extracellular location.

*Ambiguous (12): 7 have one TMD and 5 small
proteins (<60 amino acids) with less than 4

cysteine, but ≥2% cysteine.
A = 12; FP = 15

Reference
TP = 0
FP = 15
FN = 32
TN = 16
A = 12

E = 58

Negatives (16): 11 proteins are GPI-anchored, 5
proteins have mitochondria target (by TargetP 1.1).

Positives (32): 30 meet all criteria and have
2.0-8.2% cysteine; 2 proteins are predicted with

signal peptide by SignalP 4.1 and Phobius, and as
extracellular with WoLFPSORT, but TargetP 1.1

(reference) fails to predict localization.
*Ambiguous (10): 10 are >200 amino acids and

have 4 (but <2%) cysteine. Meet all other criteria.
TP = 32; FP = 16; A = 10

EffHunter
TP = 32
FP = 16
FN = 0

TN = 15
A = 10

Mycosphaerella
graminicola

[40]

Size <200 amino acids; secretion
signal with SignalP 4.1, one or no TM
domain with TMHMM 2.0, secreted
by TargetP 1.1, no GPI-anchor with
big-PI, subcellular localization with
WoLFPSORT and ProtComp, and no

functional information

39.7 10933 492 171 183 110

R = 61

Negatives (60): 37 proteins are larger than 200
amino acids; 3 do not have signal peptide; 6 are

GPI-anchored, 14 are not predicted as secreted by
ProtComp.

Positives (1): Protein ID 82029 matches all
criteria. This protein is not in the nonredundant
set of M. graminicola database at JGI, therefore

EffHunter could not analyze it.
TP = 1; FP = 60

Reference
TP = 1
FP = 60
FN=50
TN=24

E = 74

Negatives (24): 4 proteins have GPI anchors; 1
has mitochondria target; 6 are predicted cytosolic,

mitochondrial or nuclear by ProtComp and 13
proteins have functional annotation in PFAM

Positives (50): 50 match all criteria and have no
functional annotation or known protein domains.

TP = 50; FP = 24

EffHunter
TP = 50
FP = 24
FN=1

TN=60

* Ambiguous: Those candidates that meet criteria from one prediction (positive for this analysis), but do not meet criteria of the other analysis and criteria from one or the other are not
definitive for assigning them as positive or negative. Databases analyzed in the references and by EffHunter were the same, except for M. graminicola. The authors did not provide that
database; the nonredundant protein models from M. graminicola at JGI were downloaded in that case.
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In another report, Sonah et al. [10] used the bioinformatics tool SECRETOOL on 12 proteomes [41]
to obtain the respective secretomes and then retrieve the small proteins (≤300 amino acids), proteins
that they classified as effectors (Table 5). One of these pathogens (M. graminicola) was analyzed also by
Morais do Amaral et al. [40] and compared here with EffHunter (Table 4), which is interesting because
this expands the comparison among the different predictive tools for fungal effectors. Comparison
among effectoromes predicted by SECRETOOL, EffHunter and EffectorP 2.0 was conducted for these
pathogens (Table 5). Sonah et al. [10] did not provide a link to the databases that they used; as such,
the first attempt in our analyses was conducted on total proteomes of these species. EffHunter works
properly on total proteomes, but we observed an elevated number of false positives with EffectorP 2.0.
Using a total proteome as input, EffectorP 2.0 identified 1663 candidates for C. fulvum vs. 151 candidates
with a secretome as input (data not shown). For this reason, the secretome for each pathogen was first
obtained submitting the proteomes to the SignalP 4.1to reduce the number of false positives for the
EffectorP 2.0 analysis. Table 5 shows the prediction of effectors by the three programs. The numbers
of effectors are similar between Sonah et al. [10] predictions and EffHunter; in general, EffectorP 2.0
predicted in some cases a lower number of candidates than EffHunter and SECRETOOL [10].

Table 5. Effector prediction data from the different predictions tool across 12 proteomes.

Species Lifestyle
Genome Total

Proteins

Effector Predictions Effectors in
Reference

Reference
GenomeMb Coverage EffHunter EffectorP 2.0 *SECRETOOL

Alternaria brassicicola Necrotroph 31.03 120× 10688 227 113 228 139 [49]
Blumeria graminis Biotroph 158.94 13× 6526 255 109 143 437 [50]

Cladosporium fulvum Biotroph 61.11 21× 14127 342 151 296 271 [51]
Colletotrichum

graminicola
Hemibiotroph 51.6 9× 12006 364 159 352 177 [52]

Fusarium oxysporum Hemibiotroph 55.72 186.1× 17726 474 256 361 364 [53]
Leptosphaeria maculans Hemibiotroph 44.81 8.31× 12469 290 162 263 529 [54]

Magnaporthe oryzae Hemibiotroph 41.7 7× 12755 273 368 528 163 [55]
Mycosphaerella

graminicola
Hemibiotroph 39.7 8.9× 10933 286 166 235 NS [56]

Phytophtora infestans Hemibiotroph 228.54 7.6× 17787 355 404 343 563 [57]
Puccinia graminis f. sp.

tritici
Biotroph 88.64 6.9× 15979 659 605 612 1106 [26]

Pyrenophora
tritici-repentis

Necrotroph 37.84 98× 12169 322 182 328 317 [58]

Ustilago maydis Biotroph 19.66 10× 6785 113 107 142 426 [59]

* Prediction in Sonah et al. [10]; NS: Not specified

For example, in the case of Puccinia graminis f. sp. tritici, 659 effector candidates were predicted by
EffHunter, 612 reported by SECRETOOL and 605 predicted by EffectorP 2.0. In the latter, 110 proteins
have one or more transmembrane domains and cannot be classified as positive or negative, but as
ambiguous. In the list of 94 validated effectors shown in Table 2 [15], 11 have one TMD and 83 have no
TMD. In general, in each effectorome, EffectorP 2.0 retrieved few candidates with no signal peptide or
possessing transmembrane domains. False positives or false negatives from Sonah et al. [10] could
not be calculated because of the lack of the datasets of their sequences. Step-by-step analyses of all
candidates retrieved by EffHunter showed that they meet all EffHunter criteria, suggesting no false
positives in our sets of putative effectors.

To further evaluate EffHunter, its performance on nonconventional known effectors of five species
of phytopathogens was analyzed and compared with EffectorP 2.0 (Table 6). PIIN 08944 and AvrSr355
are elusive effectors, and neither EffHunter nor EffectorP 2.0 can recognize them. SAD1 and BEC1054
are not recognized by EffHunter, but they are predicted as effectors by EffectorP 2.0. On the contrary,
EffHunter recognizes Mg3LysM, BEC1019 and CSEP0105, which are not recognized by EffectorP
2.0. These results show that EffHunter has strengths and limitations, as does EffectorP 2.0, which is
currently the predictive tool for fungal effectors most widely used in the literature. Even with this
limitation, EffHunter’s performance is acceptable to search for effectors in fungal proteomes and has
the characteristic of being able to perform the analyses on total proteomes without prior filtering of the
protein set to retrieve the secretome. The results show that EffHunter is a tool that makes the search for
effectors friendly, making it a better tool.



Biomolecules 2020, 10, 712 12 of 21

Table 6. Comparison of prediction between EffHunter and EffectorP 2.0 on noncanonical effectors.

Species Effector Length
No. of

Cysteine
Signal

Peptide *TMD EffHunter EffectorP 2.0

Sporisorium
reilianum SAD1 626 4 No 0 Non-effector Effector

Zymoseptoria tritici Mg3LysM 232 9 Yes 0 Effector Non-effector

Blumeria graminis f.
sp. hordei

BEC1054 118 2 Yes 0 Non-effector Effector
BEC1011 118 3 Yes 0 Non-effector Effector
BEC1019 316 8 Yes 0 Effector Non-effector

CSEP0055 122 3 Yes 0 Non-effector Effector
Bcg1 146 2 Yes 0 Non-effector Effector

CSEP0105 128 6 Yes 0 Effector Non-effector

Rhizophagus
irregularis SIS1 149 2 Yes 1 Non-effector Effector

Fusarium
graminearum Xyla 231 1 Yes 0 Non-effector Effector

Piriformospora
indica PIIN 08944 120 0 Yes 0 Non-effector Non-effector

Blumeria graminis f.
sp. tritici AvrPm3 130 2 Yes 0 Non-effector Effector

Puccinia graminis f.
sp. tritici AvrSr35 577 3 Yes 0 Non-effector Non-effector

* TMD: Transmembrane Domain.

3.4. Prediction of Effector Proteins in Several Fungal and Oomycetes Proteomes with EffHunter

The prediction of candidate effectors with EffHunter was carried out on 95 proteomes downloaded
from the JGI Genome Institute Mycocosm and FungiEsembl platform (Supplementary Table S2).

Since effectors have been defined as pathogenicity-related proteins, effectoromes were compared
among 40 phytopathogens with different lifestyles: 9 species of biotrophs (blue bars), 20 species of
hemibiotrophs (green bars) and 11 species of nectrotrophs (red bars). In general, the highest number
of predicted effectors was in the group of hemibiotrophs (close to 400 on average), with the lower
number in the necrotrophs (around 200 effectors), followed the biotrophic group (around 300 effectors).
In each group, there are fungi with an expanded or contracted set of effectors, such as the necrotroph
Penicillum digitatum, the hemibiotrophs Verticillium dahliae and the oomycete Phytophthora capsici, and
the biotrophs Blumeria graminis f. sp. tritici and Ustilago maydis, with smaller effectoromes than the rest.

The performance of EffHunter predicts expanded effectoromes in Melampsora larici-populina,
Puccinia graminis f. sp. tritici, Colletotrichum higginsianum, Fusarium oxysporum f. sp. lycopersici,
Magnaporte oryzae and Phytophthora sojae (Figure 3 and Supplementary Table S3).

In Figure 3, the graphic shows the number of effectors predicted in different types of fungi: yeast,
brown and white rot fungi, ectomycorrhiza, opportunistic, mycoparasites, human pathogens, plant
pathogens, entomopathogens and saprotrophs (Supplementary Table S4).

The lowest numbers of effectors were predicted in yeast. Curiously, the number of effectors in
human pathogens was lower than in the nonpathogenic group, such as ectomycorrhiza and saprotrophs,
revealing that pathogens have diversity in the number of predicted effectors. The number of effectors
predicted in other pathogens was congruently larger. The groups of fungi with more effectors were
plant pathogens and entomopathogens. However, it is not exclusive for pathogens to have the largest
effectoromes, because in the case of saprotrophs, EffHunter predicted a similar number of effectors
than in phytopathogens and entomopathogens.
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4. Discussion

Effectors are key molecules in pathology since they enable the pathogen to modify host cell
structure, physiology and metabolism to permit pathogen growth and colonization in the host. Most of
the available knowledge has emerged from the study of plant–pathogen interactions where it has been
discovered that effectors play diverse functions. Many effectors work as plant immunosuppressors,
but others can trigger sugar transport in benefit of the pathogen [60], block or inactivate plant receptors
preventing its detection [61] or, on the contrary, activate the immune plant receptors to kill the host [62].
Research on effectors is at its peak, and surely many other roles of effectors remain to be discovered.

In agriculture, fungal diseases cause major losses in several high-value crops such as bananas,
coffee, cacao, legumes and spices, provoking ~20% of annual crop yield losses worldwide [63].
Effector proteins are potential biotechnological tools to assist in developing disease control strategies,
for example, to select effector-assisted tolerant or resistant plants in breeding programs [64] or to
identify plant targets and protein cognates for genetic engineering [65].

High-throughput technologies can currently provide us with high-quality transcriptomes from
plant–pathogen interaction and pathogen genomes, meaning powerful data output for effector discovery.
However, although progress has been achieved in functional validation of effectors, and multiple
candidates can be tested [66], the experimental validation requires experience in genetic engineering.
Moreover, this validation is expensive and time-consuming. Currently, less than 200 effectors have
been identified and characterized [15]. Hence, robust effector mining from genomic data is key.

EffHunter is a pipeline created in our group by integrating SignalP 4.1, Phobius, WoLFPSORT,
TMHMM 2.0 and two scripts for filtering small size (≤400 amino acids) and cysteine-rich (≥ 4) proteins.
EffHunter identifies canonical effectors, i.e., secreted, apoplastic, small size and cysteine-rich. To test
EffHunter, we used a positive subset of 94 effectors for the initial positive training of EffectorP 2.0 [15]
and 56 effectors available in the PHI-database. A large set of negative controls (4530 proteins) was used
to challenge EffHunter. No protein in the negative control set is extracellular and, more importantly,
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none has been described as a fungal effector. In addition, they are highly variable in length, content
of cysteine, TMDs and presence or absence of signal peptide, in order to prevent false positive
identification by EffHunter as much as possible.

Performance of EffHunter was compared with other effector predictors, running the analysis on
the same set of data (4680 proteins, comprising 150 true effectors and 4530 negative controls). F1 score
for EffHunter was 0.82, superior to F1 scores for EffectorP v1.0 and effector prediction following the
strategy of Sonah et al. [10] (Table 3). EffectorP v2.0 showed a lower F1 score than EffHunter (0.64).
The larger difference observed between EffHunter and EffectorP v2.0 was the number of false positives,
64 for EffectorP 2.0 and none for EffHunter.

The positive set of proteins used for developing and training EffectorP 2.0 comprised effectors
with transmembrane domains (11 proteins), effectors with no signal peptide (2 proteins), effectors
larger than 400 amino acids (2 proteins) and 37 proteins with less than four cysteine residues [15]. This
training enables that algorithm to identify effectors with these noncanonical characteristics; however,
according to our analysis, it also results in a higher percentage of putative false positives, in contrast
to the zero false positives obtained with EffHunter. Another advantage of EffHunter is its suitability
for total proteomes or secretomes as input, retrieving the same number of candidate effectors, while
EffectorP 2.0 requires a secretome as input. We found that effector prediction using a total proteome
in EffectorP 2.0 increases the rate of false positives by almost 10 times (data not shown). EffHunter
demonstrated a very good performance as it relates to sensitivity, specificity, precision and accuracy,
which were similar to or better than those of EffectorP 2.0.

The ability to predict fungal effectors by the EffHunter pipeline was compared later with reports
that used different strategies to predict effectors in Blumeria graminis f. sp. hordei [38], Pseudocercospora
fijiensis [39] and M. graminicola [40]. We found that similar numbers of effectors were predicted between
EffHunter and each of these reports where distinct strategies and criteria were used. For instance, to
predict effectors of the different fungi with EffHunter, the length of amino acids was set according to
each report. The number of cysteines was not changed because, in the case of the report for B. graminis
f. sp. hordei, the number of cysteines was not defined, and in the case of Pseudocercospora fijiensis and
Mycosphaerella graminicola, authors used, respectively, 2% and 5% cysteine as cut off. However, 2% and
5% would discard many promising candidates. Then, since both extremes are not adequate, the number
of cysteines for EffHunter searching was set at ≥4 as used in other analyses in this manuscript,
reinforcing the EffHunter evaluation against other analyses, which use different parameters.

EffHunter performed well on each comparison. In the three cases, their number of true positives
was higher and the number of false positives (candidates that do not meet the criteria established by
the respective authors) was lower in comparison with these reference works. EffHunter false positives
resulted from additional criteria used by the authors, for example, discarding candidates that have
homologs in fungi phylogenetically distant from the model under study or that exclude those that
have homologous proteins with any functional annotation. These criteria are good, but we do not
recommend including these criteria in automatic analysis, to prevent elimination of many potential
true effectors since 18% of true effectors have functional annotation (e.g., hydrophobin, protein with
CFEM-domain, cerato-platanin, etc). In the case of false negatives (those candidates proposed only
by the other predictor, which largely qualify as potential effectors), the number was negligible for
EffHunter; meanwhile, it was 70 in the Liang et al. [38] effectorome prediction for B. graminis f. sp.
hordei, 32 for Chang et al. [39] for P. fijiensis and 50 for Morais do Amaral et al. [40] prediction for
M. graminicola. Such diversity of approaches used with other fungi presented a great challenge to
EffHunter; however, we demonstrated its capacity to perform smoothly with different data.

Another advantage of the program is its versatility since the user can set the cut-off for the length
(number of amino acids) and the number of cysteines.

The next evaluation was to compare with the report from Sonah et al. [10] since these authors used
another bioinformatics tool, SECRETOOL [41] to predict effectoromes in proteomes of 12 fungi; they
filtered first by the SECRETOOL pipeline and then selected the proteins ≤ 300 amino acids. The number
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of effectors predicted by EffHunter was consistent with the number of predicted effectors by the
SECRETOOL pipeline used by these authors, probably because both predictors share similarities in
their constructions (both comprise analyses by SignalP 4.1, TMHMM 2.0 and WoLFPSORT). However,
they are not identical, since SECRETOOL does not analyze the content of cysteine and EffHunter does
not integrate TargetP 1.1 and PredGPI as SECRETOOL does. Results obtained with both tools were not
similar for all organisms, revealing differences between both predictors. Unfortunately, coincidences,
differences, false positives and false negatives in the predictors for both bioinformatics tools could
not be checked, because Sonah and colleagues did not provide the sequences or ID of their effector
proteins. In the case of the candidates predicted by EffHunter, all of them met EffHunter’s criteria,
reinforcing its high accuracy and its low false positive rate. EffectorP 2.0 predicted a lower number of
effectors in all these cases.

Altogether, EffHunter demonstrated that it is a highly efficient bioinformatics tool for fungal
effector prediction, and it can be a suitable tool to search effectoromes in fungal proteomes.

Then, EffHunter was used to predict effectors on different types of fungi. The lowest numbers of
effectors were predicted in yeast (Figure 4), consistent with what was reported by Sperschneider et al. [16].
These authors proposed that nonpathogenic fungi have less effectors than ectomycorrhiza and
saprotrophs. EffHunter predicted a similar number of effectors in ectomycorrhizal as in white and
brown rots. In congruence with these findings, recent literature evidences that small-secreted effectors
participate in all types of microbial interactions, and the concept “effector” seems to be rapidly
evolving [67–72].
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the available knowledge has emerged from the study of plant‒pathogen interactions where it has been 
discovered that effectors play diverse functions. Many effectors work as plant immunosuppressors, but 
others can trigger sugar transport in benefit of the pathogen [60], block or inactivate plant receptors 
preventing its detection [61] or, on the contrary, activate the immune plant receptors to kill the host [62]. 
Research on effectors is at its peak, and surely many other roles of effectors remain to be discovered.  

In agriculture, fungal diseases cause major losses in several high-value crops such as bananas, coffee, 
cacao, legumes and spices, provoking ~20% of annual crop yield losses worldwide [63]. Effector proteins 

Figure 4. Predicted effectors in fungal and oomycetes proteomes using EffHunter.

In plant–pathogen interactions, effectors can be recognized by the cognate R proteins and trigger
a hypersensitive response to prevent the spread of the pathogens. Some virulence factors are shared
between plant and human fungal pathogens [73], but mammals have authentic immune systems, and
their interactions with pathogens are different in comparison with plants. It is likely that some effectors
from animal pathogens have different characteristics than phytopathogen effectors, and as a result,
EffHunter could not identify them.
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The highest numbers of effectors were predicted for plant pathogens and entomopathogens,
suggesting that interactions with host producing toxic, antifungal metabolites demand a larger inventory
of effectors. Consistent with this interpretation, Metharrhizium anisoplae, a generalist entomopathogen,
has 68% more effectors than the specialist Metarrhizium acridum, enabling M. anisoplae to face more
divergent challenges. The next group according to the number of effectors was the saprotrophic fungi.
Effectors in saprotrophs are probably used for antagonism or in the interaction with microorganisms
which inhabit decaying wood. Another explanation is that saprotrophs have effectors because when
circumstances change, they could become pathogens [74,75].

Although fungi with small genomes (i.e., yeast) have a smaller number of effectors (30-50 effectors),
and the size of effectoromes is not related with the size of the genome. For instance, Puccinia graminis
f. sp. tritici (88Mbp) has 659 effectors, Blumeria graminis f. sp. tritici (158 Mpb) has 161 effectors,
Magnaporthe oryzae (41 MbP) has 486 effectors and Melampsora lini (189 Mbp) has 175 effectors.

The sizes of effectoromes seem to be related with lifestyles of the fungi: the lower number of
effectors was observed in necrotrophs (average ~200 effectors). More complex interactions of biotrophs
and hemibiotrophs require larger effectoromes (~300 and ~400 effectors, respectively). Evasion of host
perception, suppressing host defense responses and keeping the host alive demand large catalogs of
effectors in biotrophic and hemibiotrophic fungi.

As mentioned above, some fungi have unusual large effectoromes (600-700 effectors). The largest
effectoromes were predicted for Auricularia subgrabra (708), Puccinia graminis f. sp. tritici (659) and
Melampsora larici-populina (603) (Supplementary Table S2). Largest sets of effector candidates in Puccinia
graminis f.sp. tritici and Melampsora larici-populina are consistent with predictions by different programs,
reported by Sperschneider et al. [15]; these authors proposed that these large effectoromes exist because
these pathogens require two host species to complete their cycle of life. Recently, Liang et al. [38]
investigated evolutionary features of the genes in obligate biotrophic fungal pathogens and reported
that secreted effectors in powdery mildews of monocots have been subjected to positive selection, which
explains the expansion of effectoromes in P. graminis f.sp. tritici and M. larici-populina. On the contrary,
the families of secreted effectors in powdery mildews of dicots have been under strong purifying
selection, resulting in the contraction in the number of effectors, e.g., Melampsora lini (175 effectors).
The number of effectors in Auricularia subgrabra is large, probably also by expansion of the family of
secreted proteins.

On the other hand, it is known that the characteristics of the fungi and oomycete effectors are
different, but we took advantage of the fact that both of their effectors have signal peptides for secretion,
and we used EffHunter to predict effectors in oomycetes. The number of candidates predicted by
EffHunter in P. infestans (355) was similar to the prediction reported by Sonah et al. [10] (343 candidates).
Supporting EffHunter’s prediction, 295 candidates contain the motif RxLR, very common in oomycete
effectors. This suggests that EffHunter is suitable for searching effectors in oomycete proteomes.
Haas et al. [57], using Hidden Markov Models to retrieve proteins with oomycete motifs, predicted
563 effectors in P. infestans. Restriction by protein length and cysteine content by EffHunter can
underestimate the number of effectors in oomycetes, but this pipeline can be used for easy and rapid
preliminary searches.

It is important to highlight that any of the available effector predictors is capable to identify all
effectors that have been experimentally studied so far [15]. Effector BEC1019, a haustorial protease
from Blumeria graminis f. sp. hordei that suppresses host cell death, and AvrSr35, a 578 amino acids
effector from Puccinia graminis f. sp. tritici, are neither identified by any effector classifier previously
created, nor by EffHunter. EffectorP 2.0 does not retrieve the effectors Mg3LysM from Zymoseptoria
tritici and CSEP0105 from Bumeria graminis f.sp. hordei; meanwhile, both of them are recognized by
EffHunter. On the contrary, BEC1054 and BEC1011 from Blumeria graminis f. sp. hordei are identified
by EffectorP 2.0, but EffHunter is not able to recognize them as effectors. A combination of different
tools can increase sensitivity in effector prediction, adding the criteria and the predictive advantages of
each tool. For example, a combination of EffectorP 1.0 and EffectorP 2.0 allowed the identification of
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AvrSr50 effector from Puccinia graminis f. sp. tritici [15]. However, larger lists make it more difficult
to prioritize candidates for functional validation. The main robustness of EffHunter is its low false
positive rate in identifying bona fide canonical effectors. Although EffHunter ignores effectors with
atypical characteristics, its high PPV (100%) and accuracy (ACC) (99%) make it a useful tool for the
selection of top candidates. This is crucial because the number of fungal effectors per genome is in the
order of hundreds [10,16] and false positives slow down the validation and characterization of effectors.
After effector mining, high-priority candidates can be selected by filtering with additional criteria
(when available) common among many known effectors such as in planta expression data, genomic
location (e.g., comprising clusters of putative effectors, or locations in dispensable chromosomes),
positive net charge and low content of serine and tryptophan, among others.

5. Conclusions

EffHunter is a pipeline that integrates the software SignalP 4.1, Phobius, TMHMM 2.0 and
WoLFPSORT with Perl scripts to filter proteins by length and by cysteine content to search for fungal
protein effectors in a single step. This makes EffHunter a user-friendly and amenable tool.

EffHunter is a robust tool that can identify effectors in fungal proteomes, showing higher accuracy
and lower false positives than other effector predictors do.

Different types of fungi have varying quantities of effectors. Although exceptions were observed,
there are averages in the number of effectors in each type of fungi. The results of our effectoromics study
showed that plant pathogens and entomopathogens were the organisms with the largest effectoromes.
Within plant pathogens, as it relates to their lifestyle, biotrophic and hemibiotrophic fungi have larger
effectoromes than necrotrophic fungi.

6. Patents

The present pipeline was certified at Mexican Public Copyright Registry with the registration
number 03-2019-101809310300-01.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/712/s1.
Table S1: Analysis of the PHI-Database. Table S2: Description of proteomes analyzed by EffHunter. Table S3: List
of phytopathogens classified according to their lifestyle. Table S4: List of all fungi and oomycetes species classified
according to their lifestyle. Supplementary data set S1: Positive data set of true effector proteins. Supplementary
data set S2: Negative control set ABC transport proteins. Supplementary data set S3: Negative control set
cytochrome P450 proteins. Supplementary data set S4: Negative control set major facilitator transporters (MFTS).
Supplementary data set S5: Positive and negative controls pooled in a single database.
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