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Abstract: Fusarium equiseti strain FCHE and Fusarium oxysporum strain FCHJ were isolated from
the roots of wilting habanero pepper (Capsicum chinense Jacq.) seedlings with root rot. Toward
developing a biorational control of these serious phytopathogenic strains, ethanolic (EE) and aqueous
(AE) extracts of different vegetative parts of 40 tropical native plants of the Yucatán Peninsula were
screened for antifungal activity. Extracts of six out of 40 assayed plants were effective, and the
most inhibitory extracts were studied further. EEs from Mosannona depressa (bark from stems and
roots), Parathesis cubana (roots), and Piper neesianum (leaves) inhibited mycelial growth of both strains.
Each active EE was then partitioned between hexane and acetonitrile. The acetonitrile fraction from
M. depressa stem bark (MDT-b) had the lowest minimum inhibitory concentration of 1000 µg/mL
against both pathogens and moderate inhibitory concentration (IC50) of 462 against F. equiseti and
472 µg/mL against F. oxysporum. After 96 h treatment with EE from M. depressa stem bark, both
strains had distorted hyphae and conidia and collapsed conidia in scanning electron micrographs.
Liquid chromatography–ultraviolet–high resolution mass spectrometry analysis revealed that the
major component of the fraction was α-asarone. Its antifungal effect was verified using a commercial
standard, which had an IC50 of 236 µg/mL against F. equiseti and >500 µg/mL against F. oxysporum.
Furthermore, the P. cubana hexane fraction and P. neesianum acetonitrile fraction had antifungal activity
against both Fusarium pathogens. These compounds provide new options for biorational products to
control phytopathogenic fungi.
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1. Introduction

Approximately 200 species of Fusarium are recognized as pathogens of a broad range of plants, and
F. graminearum and F. oxysporum were ranked in fourth and fifth place among the top 10 scientifically
or economically most important fungal pathogens [1]. In pepper (Capsicum spp.) crops, serious
post-harvest losses are caused by F. oxysporum [2]. Peppers from about 35 Capsicum species are
consumed, most widely from C. annuum, C. baccatum, C. frutescens, C. pubescens and C. chinense,
which have been the most successfully domesticated and cultivated [3]. México reported an annual
production of 3.2 million tons of pepper crops and average annual growth in production of 4.82%
during 2003–2016 [4]. In particular, habanero peppers (C. chinense) are appreciated worldwide for
their high content of capsaicin, the main alkaloid responsible for their hotness [5]. Capsaicin is also
beneficial as a cardioprotective, anti-inflammatory, analgesic and a gastrointestinal aid and for its
thermogenic properties [6]. In the chemical industry, it is useful in the production of paints and
varnishes, tear gas and other compounds. In the Yucatán Peninsula, habanero peppers are part of the
culinary identity as a condiment [7]. The habanero pepper from the Yucatán Peninsula Denomination
of Origin (NOM-189-SCFI-2017) is presently cultivated on 1134 ha [8], and its production has been
increasing steadily in recent years. However, Fusarium spp. cause production losses of at least 50%
or even 100% when conditions are favorable [9]. F. oxysporum and F. equiseti, which infect the roots
of habanero pepper seedlings and cause root rot and wilting in the Yucatán Peninsula, México [10],
also produce mycotoxins such as fumonisins and trichothecenes in crops and feed products and
represent a risk to human health [11].

Currently, the management of Fusarium species depends on the intensive use of synthetic fungicides
such as a benomyl, carbendazim, thiabendazole and alliete [12]. However, such intensive use can
induce resistance in the pathogen and negatively impact the environment, beneficial microorganisms
and humans by acting as a skin irritant and carcinogen [13,14]. To reduce dependence on synthetic
pesticides, numerous strategies, such as the rotation of crops, use of resistant cultivars and biorational
products and solarization of the soils, are thus integrated into a pest management program [15,16].
Natural products derived from plants are a highly viable option as biorational antifungal products that
should leave less environmental residue and be nontoxic to beneficial organisms and humans [17,18]

To discover and incorporate new antifungal agents in the control of diseases caused by Fusarium
species, several groups have tested plant extracts in vitro and in vivo [19–21]. The high plant diversity
in Mexico, with 23,314 reported species, 50% of which are endemic, has scarcely been explored for
their biological and chemical properties. In the Yucatán Peninsula, the 2330 known species of vascular
plants, belonging to 956 genera and 161 families, represent 6% of the Mexican flora [22,23]. Previous
bioprospecting of Yucatecan native plant extracts for activity against phytopathogenic fungi has
revealed good fungicidal properties of extracts from plants such as Acacia pennatula, Acalypha gaumeri
and Croton chichenensis [24–26].

Because of the increasing demand for natural fungicides to control habanero pepper diseases,
more bioprospecting programs have been needed. Therefore, here, we screened 184 extracts from
40 plant species native to the Yucatán Peninsula for activity against F. equiseti FCHE and F. oxysporum
FCHJ strains from habanero pepper (Table 1), examined hyphae using scanning electron microscopy
(SEM) for any morphological effects of the active extracts and analyzed the chemical profile of the
active fractions obtained from active extracts using liquid chromatography–ultraviolet–high-resolution
mass spectrometry (LC-UV-HRMS).
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Table 1. Plants collected from the Yucatán Peninsula to screen for activity against F. equiseti strain FHCE and F. oxysporum strain FCHJ.

Species Local Name a Family Site Voucher Plant Parts Used

Alseis yucatanensis Standl. ja’as che’ Rubiaceae Kiuic JLT-3179 L
Alvaradoa amorphoides Liebm. bel siinik che’ Simaroubaceae Jahuactal GC-8236 L, S, R

Annona primigenia Standl. & Steyerm Annonaceae Jahuactal GC-8057 L, SB
Bakeridesia notolophium (A. Gray) Hochr. Malvaceae Punta Pulticub RD-s/n L, S
Bravaisia berlandieriana (Nees) T.F.Daniel Juluub Acanthaceae Punta Laguna GC-8168 L, S, R

Byrsonima bucidifolia Standl. Malpighiaceae Jahuactal GC-8087 L, S, R
Calea jamaicensis (L.) L. tu’ xikin Asteraceae Jahuactal GC-8084 WP

Cameraria latifolia L. cheechen blanco Apocynaceae Jahuactal JLT-1165 L, SB, R
Chrysophyllum mexicanum Brandegee ex Standl. chi’kéej Sapotaceae Jahuactal GC-8082 L, S, R

Coccoloba sp. Polygonaceae Xmaben GC-8258 L, S
Croton arboreus Millsp. pak che’ Euphorbiaceae Jahuactal JLT-1132 L, S, R
Croton itzaeus Lundell Euphorbiaceae Jahuactal JLT-1138 L, SB, RB

Croton sp. Euphorbiaceae Xmaben GC-8262 WP
Cupania sp. Sapindaceae Chacchoben Limones GC-8009 L, S

Diospyros sp. Ebenaceae Punta Laguna GC-8147 L
Erythroxylum confusum Britton Erythroxylaceae Jahuactal JLT-1143 L, S, R

Erythroxylum rotundifolium Lunan baak soots’ Erythroxylaceae Jahuactal GC-8179 L, S
Erythroxylum sp. Erythroxylaceae Punta Laguna GC-8137 L

Eugenia sp. Myrtaceae Punta Laguna GC-8127 L, S, R
Euphorbia armourii Millsp. kabal chakaj Euphorbiaceae Kaxil Kiuic JLT-3182 WP

Guettarda combsii Urb. Rubiaceae Jahuactal GC-8047 L, SB, RB
Helicteres baruensis Jacq. Sutup Malvaceae Kaxil Kiuic GC-8127 L, S, R

Heteropterys laurifolia (L.) A. Juss. chilillo aak’ Malpighiaceae Jahuactal GC-8035 L, SB, R
Hybanthus yucatanensis Millsp. Violaceae Punta Laguna GC-8158 L, S

Ipomoea clavata (G. Don) Ooststr. ex J.F.Macbr. ulu’um ja’ Convolvulaceae Kaxil Kiuic JLT-3181 WP
Karwinskia humboldtiana (Willd. ex Roem. & Schult.) Zucc. I u’um che’ Rhamnaceae Kaxil Kiuic JLT-3188 L

Licaria sp. Lauraceae Jahuactal GC-8037 L, SB, RB
Macroscepis diademata (Ker Gawl.) W.D. Stevens aak’tóom paap Apocynaceae Kaxil Kiuic JLT-3187 L, SB

Malpighia glabra L. Malpighiaceae Punta Laguna GC-8144 L, S, R
Morella cerifera (L.) Small. Myricaceae Jahuactal JLT-1137 L, S, RB

Mosannona depressa (Ball.) Chatrou sak éelemuy Annonaceae Jahuactal GC-8085 L, SB, RB
Parathesis cubana (A. DC.) Molinet & M.Gómez Primulaceae Jahuactal JLT-1133 L, SB, RB

Paullinia sp. Sapindaceae Punta Laguna GC-8106 L, R
Piper neesianum C.DC. Piperaceae Jahuactal GC-8080 L, S, R

Psychotria sp. Rubiaceae Jahuactal GC-8086 WP
Randia aculeata L. kat ku’uk Rubiaceae Punta Laguna GC-8156 L, S, R

Serjania caracasana (Jacq.) Willd Sapindaceae Punta Laguna GC-8114 L, S, R
Simarouba glauca DC. Simaroubaceae Jahuactal GC-8081 L, SB, RB

Stemmadenia donnell-smithii (Rose) Woodson Apocynaceae Jahuactal GC-8056 L, SB
Turnera aromatica Arbo Passifloraceae Jahuactal GC-8081 WP

a [27]; SB: stem bark; RB: root bark; L: leaves; S: stem; R: root; WP: whole plant.
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2. Results

2.1. Antifungal Activity of Plant Extracts Against Fusarium spp.

Table 2 shows the results of active plant extracts on mycelial growth of F. equiseti FCHE and
F. oxysporum FCHJ. Ethanolic extracts (EEs) from Mosannona depressa (bark of stem and root), Parathesis
cubana (root) and Piper neesianum (leaves) at 2000 µg/mL and aqueous extracts (AE) from Cameraria
latifolia (root), Calea jamaicensis (whole plant) and Heteropterys laurifolia (leaves) at 3% w/v were active
against one or both Fusarium strains after 96 h. All these active extracts inhibited mycelial growth of
F. equiseti, but only four EEs inhibited mycelial growth of F. oxysporum. No active AEs were detected
against F. oxysporum.

Table 2. Inhibition of mycelial growth of Fusarium equiseti strain FCHE and F. oxysporum strain FCHJ by
active plant extracts from native species of the Yucatán Peninsula in microdilution assay.

Extract
Concentration

Plant Species
Mycelial Growth Inhibition (%)

Fusarium equiseti Fusarium oxysporum

L S R WP L S R WP

Ethanolic Mosannona depressa 0 c 100 a 100 a ne 0 b 100 a 100 a ne
2000 µg/mL Parathesis cubana 0 c 0 b 100 a ne 0 b 0 b 100 a ne

Piper neesianum 100 a 0 b 0 c ne 75 a 0 b 0 b ne
Aqueous Cameraria latifolia 0 c 0 b 25 b ne 0 b 0 b 0 b ne
3% w/v Calea jamaicensis ne ne ne 75 ne ne ne 0

Heteropterys laurifolia 25 b 0 b 0 ne 0 b 0 b 0 b ne

Negative C RPMI 0 b 0 b

blank 0 b 0 b

Positive C Prochloraz 0.11% 100 a 100 a

C: control; L: leaves; S: stem, R: root; WP: whole plant; RPMI: Roswell Park Memorial Institute medium; ne: not
evaluated; blank: dimethyl sulfoxide with 0.5% Tween 20. a, b, c: means with different letters within columns differ
significantly (Tukey’s test, p < 0.05). Extracts from M. depressa were from bark of stems and roots.

Complete mycelial growth inhibition (MGI of 100%) for both phytopathogens was achieved with
EEs from M. depressa bark of stems and P. cubana roots. The EE from leaves of P. neesianum was also
effective (MGI of 100% against F. equiseti and 75% against F. oxysporum). The AE from C. jamaicensis also
achieved 75% MGI against F. equiseti. The EAs from C. latifolia root and H. laurifolia leaves achieved
MGI of only 25% against F. equiseti (Table 2). On the other hand, none of the EAs had any activity
against F. oxysporum. The positive control, prochloraz (0.11%), completely inhibited the growth of
the two phytopathogens, and typical mycelial growth of both plant pathogens was observed for the
negative controls. The other plant extracts did not cause significant mycelial growth inhibition with
respect to the negative control (Supplementary Table S1).

2.2. Minimum Inhibitory Concentration of Ethanolic Extracts, Fractions and α-Asarone

The minimum inhibitory concentration (MIC) of the four EEs that completely inhibited mycelial
growth of both Fusarium strains was determined. F. equiseti was more sensitive to the extracts from M.
depressa stem bark, P. cubana roots and P. neesianum leaves (MIC: 1000 µg/mL). All these active extracts
were fungicidal, except for the extract from leaves of P. neesianum, which was fungistatic (Table 2).
In contrast, F. oxysporum was less sensitive to the four EEs, which were fungistatic and had MICs of
2000 µg/mL. Therefore, the four EEs were partition-fractionated, and serial dilutions of each fraction
(hexane, acetonitrile and a methanol-soluble precipitate) were tested for activity.

The most active fractions against F. oxysporum were the hexane (MDT-a) and acetonitrile (MDT-b)
fractions from M. depressa stem bark, which were both fungistatic, and the hexane fraction from P. cubana
roots (PCR-a), which was fungicidal; all had a MIC of 1000 µg/mL (Table 3). As expected, a fungicidal
effect on F. equiseti was induced by half of the fractions, with a MIC of 1000 µg/mL. These fractions were
the same as those that inhibited F. oxysporum: the acetonitrile fraction from P. neesianum leaves (PNH-b),
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precipitates of P. cubana roots (PCR-c) and P. neesianum leaves (PNH-c). The fractions obtained from
the root bark and the precipitate of the stem bark of M. depressa were considered as inactive against the
two pathogens because their MIC was greater than 1000 µg/mL (Table 3).

The MIC of the commercial α-asarone standard, evaluated in parallel with the fractions, was
500 µg/mL against F. equiseti with fungistatic effect, and >500 µg/mL against F. oxysporum (Table 3).

Table 3. Minimum inhibitory concentration (MIC) of extracts and fractions from Mosannona depressa
(bark of stems and roots), P. cubana (roots), P. neesianum (leaves) and α-asarone against Fusarium equiseti
strain FCHE and F. oxysporum strain FCHJ.

Extract/
Fraction

Solvent
Fusarium equiseti Fusarium oxysporum

Concentration of Extracts (µg/mL)

2000 1000 500 250 MIC 2000 1000 500 250 MIC

MDT E 100 a 100 a 75 c 0 c 1000++ 100 a 75 b 0 f 0 b 2000+

MDT-a H ne 100 a 0 e 0 c 1000++ ne 100 a 0 f 0 b 1000+

MDT-b A ne 100 a 83 b 0 c 1000++ ne 100 a 75 b 0 b 1000+

MDT-c P ne 75 c 50 d 0 c >1000 ne 75 b 50 d 0 b >1000
MDR E 100 a 83 b 0 e 0 c 2000++ 100 a 75 b 0 f 0 b 2000+

MDR-a H ne 0 d 0 e 0 c >1000 ne 0 d 0 f 0 b >1000
MDR-b A ne 75 c 0 e 0 c >1000 ne 0 d 0 f 0 b >1000
MDR-c P ne 83 b 50 d 0 c >1000 ne 75 b 50 d 0 b >1000

PCR E 100 a 100 a 0 e 0 c 1000++ 100 a 58 c 25 e 0 b 2000+

PCR-a H ne 100 a 0 e 0 c 1000++ ne 100 a 0 f 0 b 1000++

PCR-b A ne 100 a 0 e 0 c 1000++ ne 0 d 0 f 0 b >1000
PCR-c P ne 0 d 0 e 0 c >1000 ne 0 d 0 f 0 b >1000
PNH E 100 a 100 a 0 e 0 c 1000+ 75 b ne ne ne 2000+

PNH-a H ne 0 d 0 e 0 c >1000 ne ne ne ne
PNH-b A ne 100 a 83 b 0 c 1000++ ne ne ne ne
PNH-c P ne 100 a 0 e 0 c 1000+ ne ne ne ne

α-Asarone CS ne 100a 75 b 500++ ne ne 66 c 0 b >500
NC 0 b 0 d 0 e 0 c 0 c 0 d 0 f 0 b

PC 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a

MDT: Mosannona depressa (stem bark); MDR: M. depressa (root bark); PCR: Parathesis cubana (root); PNH:
Piper neesianum (leaves); -a, -b, -c: nomenclature of fractions related with the solvent used; NC: negative control
(conidial suspension/RPMI: Roswell Park Memorial Institute medium); PC: positive control (prochloraz 0.11%);
E: ethanol; H: hexane; A: acetonitrile; P: precipitate; CS: commercial standard; ne: not evaluated; (++): fungicidal;
(+): fungistatic. a, b, c, d: Means with different letters within columns differ significantly (Tukey’s test, p < 0.05).

2.3. Inhibitory Concentration (IC50 and IC95)

The α-asarone standard had the lowest IC50 and IC95 against both species, followed by the MDT-b
fraction from M. depressa stem bark (Table 4). Interestingly, the IC50 and IC95 for the MDT-b fraction
and α-asarone were very similar against F. oxysporum (respectively, 472 and 539 µg/mL, MDT-b, 482 and
526 µg/mL, α-asarone). Against F. equiseti, the IC50 and IC95 for the MDT-b and PNH-b fractions were
both 462 and 526 µg/mL, respectively, higher than for α-asarone and similar to those for the EE from
M. depressa stem bark.
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Table 4. IC50 and IC95 of active extracts and fractions from Mosannona depressa, Parathesis cubana,
Piper neesianum and of the commercial standard α-asarone against mycelial growth of Fusarium equiseti
strain FCHE and F. oxysporum strain FCHJ.

Source Extract/Fraction
Fusarium equiseti Fusarium oxysporum

IC50 (CI) IC95 (CI) IC50 (CI) IC95 (CI)

M. depressa MDT 468 (455–477) 545 (534–561) 944 (889–965) 1079 (1051–1156)
MDT-b 462 (412–476) 526 (515–562) 472 (432–483) 539 (524–596)

α-asarone CS 236 (216–244) 269 (259–289) 482 (459–494) 526 (521–582)
P. cubana PCR 788 (545–984) 866 (638–1063) 876 (836–920) 1494 (1407–1602)

P. neesianum PNH 788 (545–984) 866 (638–1063) ne ne
PNH-b 462 (412–476) 526 (515–562) ne ne

CI: confidence interval; CS: commercial standard; MDT: Mosannona depressa (stem bark); PCR: Parathesis cubana
(root); PNH: Piper neesianum (leaves); b: acetonitrile fraction; ne: not evaluated.

2.4. Effect of Active Extracts from Mosannona depressa on Morphology of Fusarium Strains

The SEM of the untreated strains (negative control) showed typical well-formed hyphae and
microconidia (Figures 1A–D and 2A–D). After 96 h of exposure to 2000 µg/mL EE from M. depressa
stem bark, F. equiseti had distorted hyphae, globular structures along the surface of the mycelium and
contorted and dehydrated conidia (Figure 1E). Conidia of the same strain were similarly affected by
2000 µg/mL EE from M. depressa root bark (Figure 1F).

Exposure of F. oxysporum to EE from M. depressa stem bark at 2000 µg/mL also led to malformed
hyphae and contorted, dehydrated microconidia (Figure 2E), while EE from M. depressa root bark
at 2000 µg/mL induced dehydration and distortion of hyphae and dehydration of microconidia
(Figure 2F).
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Figure 1. Fusarium equiseti strain FCHE morphology (A) after 7 d on potato dextrose agar;
(B) microconidia of F. equiseti (1000×) and (C) typical untreated mycelium and microconidia (negative
control); (D) apparently normal microconidium and (E) distorted mycelium and collapsed microconidia
after 96 h treatment with ethanolic extract from Mosannona depressa stem bark at 2000 µg/mL; (F) rough
surface of a collapsed-looking microconidium after 96 h treatment with 2000 µg/mL ethanolic extract
from M. depressa root bark.
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(B) Microconidia (1000×) and (C) typical mycelium and microconidia (negative control); (D) apparently
normal microconidia, (E) misshapen and collapsed microconidium after 96 h treatment with ethanolic
extract from Mosannona depressa stem bark at 2000 µg/mL; (F) collapsed conidium after 96 h treatment
with ethanolic extract from M. depressa root bark at 2000 µg/mL.

2.5. Identification of Active Components in Extracts from Mosannona depressa by LC-UV-HRMS

The MDT-b and MDR-b fractions from M. depressa bark from the stem and roots were analyzed by
LC-UV-HRMS (Table 5). The chromatogram of the MDT-b fraction showed five components, with the
most abundant eluted at a retention time of 4.27 min (peak 3, Figure 3). The HRMS of peak 3 presented
a protonated molecular ion at m/z 209.1172, indicative of a molecular formula of C12H16O3 (calc. for
C12H17O3

+, 209.1173), and its UV spectrum exhibited maxima at 220, 260 and 320 nm. This component
was identified as α-asarone based on the reference spectrum in the equipment databases and confirmed
using a commercial standard (Figure 3, Table 5). The minor components at retention times of 2.33,
2.55, 4.8 and 4.89 min had structural characteristics similar to those of α-asarone, and their UV and
HRMS data were compared with databases in the literature and Chapman & Hall Dictionary of Natural
Products (CHDNP). The HRMS of peak 1 showed UV maxima at 230 and 290 nm, and a protonated
ion at m/z 225.1120, suggesting a molecular formula of C12H16O4 (calc. for C12H17O4

+, 225.1121),
which was not assigned to any previously reported compound after comparison of the UV and HRMS
data with databases in the literature and CHDNP. The analysis of peak 2 showed a protonated ion at
m/z of 197.0808, with a molecular formula of C10H12O4 (calc. for C10H13O4

+, 197.0808) and UV maxima
at 238, 270 and 345 nm; thus, the compound was tentatively identified as asaraldehyde. Components
4 and 5 had the same UV maxima at 220, 240 and 290 nm and protonated ions at m/z 221.1170 and
193.0857, respectively, accounting for molecular formulae of C13H16O3 (calc. for C13H17O3

+, 221.1172)
for component 4 and C11H12O3 (calc. for C11H13O3

+, 193.0859) for component 5. After an exhaustive
comparison of their spectral data with CHDPN and databases in the literature, compound 5 was
tentatively identified as isomyristicin, but compound 4 was not identified (Table 5).
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Table 5. Metabolites identified from acetonitrile fraction of Mosannona depressa stem bark (MDT-b) by
liquid chromatography–ultraviolet–high-resolution mass spectrometry (LC-UV-HRMS).

Peak Retention Time (min) [M + H]+ MW Molecular Formula Compound

1 2.23 225.1120 224.1120 C12H16O4 Not identified
2 2.55 197.0808 196.0735 C10H12O4 Asaraldehyde
3 4.27 209.1172 208.1099 C12H16O3 α-Asarone
4 4.81 221.1170 220.1097 C13H16O3 Not identified
5 4.89 193.0857 192.0784 C11H12O3 Isomyristicin

MW: molecular weight.Pathogens 2020, 9, x FOR PEER REVIEW 10 of 20 
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Two components were detected in the medium polarity fraction (MDR-b) from M. depressa root
bark (Figure 4). The most abundant was peak 2, with a retention time of 4.37 min, showing a protonated
ion at m/z 239.1278, with a molecular formula of C13H18O4 (calc. for C13H19O4

+, 239.1278); its UV
spectrum presented maxima at 205, 215 and 280 nm. Comparison of these data with the databases led
us to tentatively identify peak 2 as 1,2,3,4-tetramethoxy-5-(2-propenyl) benzene (Table 6). Data for
peak 1 at a retention time of 4.25 min corresponded to α-asarone (Table 6).

Table 6. Compounds identified in the acetonitrile fraction of the ethanolic extract of Mosannona depressa
root bark (MDR-b) using LC-UV-HRMS.

Peak Retention Time (min) [M + H]+ MW Molecular Formula Compound

1 4.25 209.1172 208.1094 C12H16O3 α-Asarone
2 4.37 239.1278 238.1205 C13H18O4 1,2,3,4-Tetramethoxy-5- (2-propenyl) benzene

MW: molecular weight.



Pathogens 2020, 9, 827 9 of 18Pathogens 2020, 9, x FOR PEER REVIEW 11 of 20 

 

 

Figure 4. (A) Liquid chromatogram (UV at 210 nm) of the acetonitrile fraction from Mosannona depressa 
root bark (MDR-b); 1: α-asarone 2: 1,2,3,4-tetramethoxy-5-(2-propenyl) benzene. (B) UV spectrum of 
peak 2 and (C) high-resolution mass spectra of peak 2. 

Table 6. Compounds identified in the acetonitrile fraction of the ethanolic extract of Mosannona 
depressa root bark (MDR-b) using LC-UV-HRMS. 

Peak 
Retention 

Time  (min) [M + H]+ MW 
Molecular 
Formula Compound 

1 4.25 209.1172 208.1094 C12H16O3 α-Asarone 

2 4.37 239.1278 238.1205 C13H18O4 
1,2,3,4-Tetramethoxy-5- (2-propenyl) 

benzene 
MW: molecular weight. 

3. Discussion 

This first bioprospecting report on plant extracts with activity against fungal pathogens of 
habanero pepper is part of continuing efforts to discover potential bioactive compounds in the 
diverse flora of southeastern México. From sites not previously explored, we collected 40 plant 
species that our exhaustive search of the literature showed had not been tested against fungal 
phytopathogens, with the exception of Annona primigenia [28,29] and Mosannona depressa [30,31]. 
Antifungal screening of EEs and AEs from different vegetative parts of the 40 plant species led to the 
detection of six (15% of the total) species with activity against the Fusarium strains tested. These active 
extracts were from Calea jamaicensis, Cameraria latifolia, Heteropterys laurifolia, Mosannona depressa, 
Parathesis cubana and Piper neesianum. Interestingly, these plant species belong to different families 
and were collected at the same site, Jahuactal, a tropical evergreen rainforest with trees exceeding 20 
m in height. 

Fusarium equiseti was more sensitive than F. oxysporum to the plant extracts tested. Mycelial 
growth of F. oxysporum was inhibited by only four EEs, representing 4.3% of the plant extracts tested, 
and totally insensitive to AEs at the tested concentration (3% w/v). Several studies have indicated that 
AEs, even at higher concentrations, have limited effect on F. oxysporum. For example, the mycelial 
growth of F. oxysporum was inhibited 10–55% by extracts from leaves at 10% w/v 

of Ocimum sanctum [32] and stems, root and fruits of Momordica charantia [33], among others. 
In contrast, in our study, four EEs completely inhibited the mycelial growth of both plant 

pathogens; the EEs from the bark of stems and roots of M. depressa were especially effective. Native 
to Mexico and Central America, this medicinal tree (syn. Annona depressa, Guatteria gaumeri, Malmea 

Figure 4. (A) Liquid chromatogram (UV at 210 nm) of the acetonitrile fraction from Mosannona depressa
root bark (MDR-b); 1: α-asarone 2: 1,2,3,4-tetramethoxy-5-(2-propenyl) benzene. (B) UV spectrum of
peak 2 and (C) high-resolution mass spectra of peak 2.

3. Discussion

This first bioprospecting report on plant extracts with activity against fungal pathogens of
habanero pepper is part of continuing efforts to discover potential bioactive compounds in the diverse
flora of southeastern México. From sites not previously explored, we collected 40 plant species that
our exhaustive search of the literature showed had not been tested against fungal phytopathogens,
with the exception of Annona primigenia [28,29] and Mosannona depressa [30,31]. Antifungal screening
of EEs and AEs from different vegetative parts of the 40 plant species led to the detection of six (15%
of the total) species with activity against the Fusarium strains tested. These active extracts were from
Calea jamaicensis, Cameraria latifolia, Heteropterys laurifolia, Mosannona depressa, Parathesis cubana and
Piper neesianum. Interestingly, these plant species belong to different families and were collected at the
same site, Jahuactal, a tropical evergreen rainforest with trees exceeding 20 m in height.

Fusarium equiseti was more sensitive than F. oxysporum to the plant extracts tested. Mycelial growth
of F. oxysporum was inhibited by only four EEs, representing 4.3% of the plant extracts tested, and
totally insensitive to AEs at the tested concentration (3% w/v). Several studies have indicated that AEs,
even at higher concentrations, have limited effect on F. oxysporum. For example, the mycelial growth of
F. oxysporum was inhibited 10–55% by extracts from leaves at 10% w/v of Ocimum sanctum [32] and
stems, root and fruits of Momordica charantia [33], among others.

In contrast, in our study, four EEs completely inhibited the mycelial growth of both plant pathogens;
the EEs from the bark of stems and roots of M. depressa were especially effective. Native to Mexico
and Central America, this medicinal tree (syn. Annona depressa, Guatteria gaumeri, Malmea depressa
and M. gaumeri) has a wide range of biological activities in humans, e.g., antifungal, antiproliferative,
antiprotozoal, cytotoxic, hypoglycemic and hypocholesterolemic [34–36]. For agriculture applications,
however, a chloroform extract from the stem bark of M. depressa was reported only as a growth inhibitor
of Amaranthus hypochondriacus (IC50 = 134 µg/mL) and Echinochloa crusgalli (IC50 = 457 µg/mL), and as
a fungicide against F. oxysporum (MIC = 400 µg/mL) [31]; EEs from M. depressa stem and root bark had
antifungal activity against Penicillium oxalicum (MIC = 250 µg/mL) [37].

The present report is also the first on the fungicidal effect of the EEs from M. depressa against
F. equiseti. The MIC of 1000 µg/mL for EEs from the bark of stems and roots of M. depressa is comparable
to the effect against F. equiseti reported for ethanolic extracts of leaves from Calycopteris floribunda
(MIC: 500 µg/mL) [38] and rhizomes from Acorus calamus (MIC: 1000 µg/mL) [39]. In the case of
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F. oxysporum, here, both EEs from the bark of stems and roots of M. depressa were fungistatic with a
higher MIC of 2000 µg/mL. In a previous study, a chloroform extract of the stem bark of M. depressa was
antifungal against F. oxysporum (MIC: 400µg/mL) and Trichophyton mentagrophytes (MIC: 500µg/mL) [31].
The lower MIC may be attributed to the polarity of the solvent used and the susceptibility and forma
specialis of the pathogenic strain tested [40]. Matos et al. [41] found variation in the sensitivity to
Chelidonium majus extracts among six F. oxysporum isolates, with f. sp. cubense the most sensitive.

The guided fractionation with the antifungal assay of the EEs from the bark of stems and
roots of M. depressa showed that F. equiseti and F. oxysporum were more sensitive to the MDT-b
fraction. LC-UV-HRMS analyses revealed a mixture of phenylpropanoids in the MDT-b fraction;
the major component was α-asarone, with minor components asaraldehyde and isomyristicin,
tentatively identified based on their UV and HRMS data. In the literature, we found only two
phytochemical studies of an organic extract from M. depressa stem bark, which had a different
metabolic profile [30,31]. Our results agree with the report by Enriquez et al. [30], who identified
α-asarone as the most abundant component in a hexane extract, which also included asaraldehyde,
trans-isoelemicin and trans-isomyristicin. In the study by Jimenez Arellanes et al. [31], a chloroform
extract contained four tetramethoxyl derivatives [1,2,3,4-tetramethoxy-5-(2-propenyl)-benzene, 2,3,4,5-
tetramethoxybenzaldehyde, 2,3,4,5-tetramethoxycinnamaldehyde, 2,3,4,5-tetramethoxycinnamyl
alcohol] and trans-isomyristicin. Such differences in composition could be attributed to season,
phenological stage and geographical region where plants were collected, which can greatly influence
chemical biosynthesis and bioactivity. For example, essential oils from Perilla frutescens collected from
11 areas in China differed in yields and chemical composition, which were associated with antioxidant
and antifungal activities [42]. When total alkaloids and the annomontine and oxopurpureine content
from roots and leaves of Annona purpurea were monitored over time, the alkaloid was high during the
dry season and during flowering; the strongest antifungal activity was obtained from the root extracts
during the last month of the dry season [43].

In our investigation, α-asarone (syn. trans-asarone) was identified as the principal compound
responsible for the antifungal effect on F. equiseti and F. oxysporum. Its IC50 (236 and 482 µg/mL,
respectively) and IC95 (269 and 526µg/mL, respectively) were lower than those of the EE from M. depressa
stem bark. An antifungal effect of α-asarone at 1000 mg/L has been reported for the phytopathogens
Phytophthora infestans and Pyricularia grisea with growth inhibition (GI) of 85 and 53%, respectively [44],
for Botrytis cinerea, F. oxysporum and Phomopsis obscurans (GI = 57.7, 43.6 and 41.5%, respectively)
at 300 µM [45] and slight activity against the yeasts Candida albicans, C. kruseii and C. parapsilasis at
100 µg/mL [46]. It also has pesticidal properties as an antifeedant against Helicovarpa zea, Helionthis
virescens and Manduca sexta; it is insecticidal against Aedes aegypti and Lucila sericata, and nematocidal
against Caenorhabditis elegans, Panagrellus redivivus and Nyppostrongylus brasiliensis [46,47]. Interestingly,
Jimenez Arellanes et al. [31] reported that 1,2,3,4-tetramethoxy-5-(2-propenyl)-benzene was the most
abundant component in the chloroform extract (0.71% from dried stem bark) and the major phytogrowth
inhibitory compound in Amaranthus hychondriacus (IC50 = 43 µg/mL) and E. crusgalli (IC50 = 43 µg/mL),
and it had an antifungal effect on an undocumented strain of F. oxysporum (MIC: 250 µg/mL). In the
present study, this compound was not detected from the stem extracts. However, it was abundant in the
MDR-b fraction from M. depressa root bark, but it had no effect on the mycelial growth of F. oxysporum
strain FCHJ, and F. equiseti strain FCHE was only moderately sensitive (75% MGI at 1000 µg/mL).
Based on these results, the antifungal activity of M. depressa collected in Jahuactal is considered to be
primarily due to the presence of α-asarone in the extract.

As shown by SEM, EE from M. depressa stem bark at 2000 µg/mL caused prominent morphological
alterations of F. oxysporum and F. equiseti. Hyphae were malformed and contorted, and microconidia
had collapsed. This effect is similar to the morphological changes in conidia and hyphae of the
filamentous zoopathogenic fungus Microsporum gyseum after 4 d exposure to 100 mg/mL of the
β-asarone fraction [48]; further cell death of F. oxysporum induced by a mixture of asarones (α, β, γ,
3.4:94.3:1%) at 500 µg/mL was observed using epifluorescence microscopy; the rapid cell death is
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correlated with greater production of reactive oxygen species [49]. Studies on the mechanism of action
of β-asarone showed that it interferes with ergosterol synthesis, thus the ergosterol content is lowered
in the plasma membrane of Aspergillus niger ATCC 16,888 [50], confirming that the effect against
F. oxysporum might be related to the inhibition of ergosterol biosynthesis, as it is in C. albicans [51].
Hence, similar to its isomer β-asarone, α-asarone in the EE from M. depressa stem bark might inhibit
the mycelial growth of F. oxysporum and F. equiseti by damaging the plasma membrane and causing
cell death. More studies are needed to verify the site of action of asarones and other metabolites of
M. depressa on fungal pathogens.

Another promising plant species for antifungal compounds in our study was P. neesianum
(Piperaceae, syn. Piper sempervirens, Arctottonia sempervirens), a tree used in traditional medicine to treat
snake bites and wounds [52,53]. The EE from P. neesianum leaves and its PNH-b fraction completely
inhibited the growth of F. equiseti (MIC: 1000µg/mL) and had the same IC50 and IC95 (462 and 866µg/mL,
respectively) as the MDT-b fraction. This report is the first of an antifungal effect of P. neesianum against
F. equiseti and F. oxysporum. The dichloromethane extract from leaves of P. neesianum has been reported
to have various biological activities as an antioxidant (IC50 = DPPH 0.071 mg/mL) [54], anti-tyrosinase
(IC50 = 6.6 µg/mL [55] and anti-urease (IC50 = 12.9 µg/mL) [56]. Essential oil from P. neesianum leaves
collected in the northern region of Guatemala contained bicyclogermacrene (28%), germacrene D
(11.7%) and β-caryopyllene (7.5%) as major compounds among 19 detected in a gas chromatography
with flame ionization detection- mass spectrometry analysis [52].

The EE from P. cubana (Primulaceae; syn. Ardisia cubana) roots was also active against both Fusarium
pathogens, and the low polarity PCR-a fraction was fungicidal (MIC: 1000 µg/mL). These findings are
the first report of a biological activity for extracts from P. cubana.

The EA from C. jamaicensis (Asteraceae) was the only EA that moderately inhibited the growth
of F. equiseti, suggesting that it produces a highly polar antifungal metabolite(s). This species was
documented to have leishmanicidal activity and to be useful for treating colds and stomach pain [57,58],
but the present report is the first on its antifungal activity. Among 125 Calea species, only C. urticifolia
has been tested against fungal pathogens, but it had no activity against F. oxysporum [25,59]. Acacetin,
O-methylacacetin, jamaicolides A–D and prumichromene B have been identified in aerial parts of
C. jamaicensis [58].

In summary, the present investigation revealed that F. equiseti FCHE and F. oxysporum FCHJ
strains isolated from habanero pepper plants were sensitive to extracts from six native plant species,
and the most effective were the EEs from M. depressa, P. cubana and P. neesianum, and advanced
our knowledge about the phytochemicals in the roots of M. depressa from the Yucatán Peninsula.
α-Asarone was identified as the principal antifungal component in the stem bark of M. depressa. Now,
we need to determine the persistence of its antifungal effect and any toxicity to the environment and
beneficial macro- and microorganisms in the soil as a pure compound and in the complex ethanolic
extract mixture.

Our knowledge on the pesticidal potential of the native Mexican flora has also been enriched,
and on the basis of our broad screening, we will isolate and identify the compounds in the active EEs
from P. cubana and P. neesianum and the AE from C. jamaicensis that contribute to the antifungal activity.
Subsequently, we expect to propagate the promising species to provide material for greenhouse and
field experiments. Of course, the mechanism and sites of action of the identified metabolites in the
fungus need to be determined, and the metabolites tested for safety against nontarget organisms.
This research also opens opportunities for future studies on the conservation and sustainable use of our
regional flora in the development of biorational products for the integrated management of C. chinense
and other species of Capsicum.
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4. Materials and Methods

4.1. Plant Materials

Plants were collected from six locations in the Yucatán Peninsula: (1) Jahuactal, Ejido Caobas,
Othón Pompeyo Blanco (18◦15′34′′ N, 88◦57′14′′ W), (2) Kaxil Kiuic, Oxkutzcab (20◦06′10.8′′ N;
89◦33′43.2′′ W), (3) Punta Laguna, Valladolid (20◦38′49.4′′ N, 87◦38′02.2′′ W), (4) Xmaben, Hopelchén
(19◦15′42.92′′ N, 89◦21′45.91′′ W), (5) Punta Pulticub, Othón P. Blanco (19◦04′29.96′′ N, 87◦33′17.15′′ W)
and (6) Chacchoben Limones, Othón P. Blanco (19◦01′44.31′′ N, 88◦08′00.38′′ W) of the states of Yucatán
and Quintana Roo (Table 1). Each plant was separated into leaves, stems and roots for separate
extractions, and whole plants (WP) of some species were extracted. Plant materials were dried in a
lamp stove at 55–60 ◦C for 5 d and crushed in a mill (model 1520, Pagani, Azcapotzalco, México) with
blades and no. 5 mm mesh. A voucher specimen for each plant species was deposited in the Roger
Orellana Herbarium of the Unidad de Recursos Naturales del Centro de Investigación Científica de
Yucatán and identified by experts (Table 1).

4.2. Preparation of Plant Extracts

4.2.1. Aqueous Extracts

The dried, ground plant material (1.5 g) was transferred to an Erlenmeyer flask, and 20 mL
of boiling distilled water were added. After 15 min, the sample was filtered through filter paper
(Whatman no. 1) and cotton to remove solid residues, then diluted with distilled water to 25 mL,
to obtain an aqueous extract (AE) with a final concentration of 6% (w/v). Under aseptic conditions,
the infusion was sterilized using a 0.22 µm Millipore filter (Merck-Millipore, Burlington, MA, USA),
and frozen at −17.5 ± 0.5 ◦C until use [60].

4.2.2. Ethanolic Extracts

The dried, ground plant material was immersed in ethanol (1.5% of the total volume) and
extracted three times with ethanol by sonication at 20 kHz (Cole-Parmer, Chicago, IL, USA), at room
temperature for 20 min each time. The solvent was filtered and eliminated under vacuum in a rotary
evaporator (IKA model RV-10, Staufen, Germany) at 40 ◦C to obtain the ethanolic crude extract [24].
The EEs with the greatest activity in the antifungal assay described (Section 4.4) were partitioned with
hexane–acetonitrile three times (2: 1, 1: 1, 1: 1 v/v) and solvents removed as described above. In this
way, a hexane fraction (A), acetonitrile fraction (B) and methanol-soluble precipitate (C) of each EE
were obtained.

4.3. Fungal Cultures

Phytopathogenic strains of Fusarium equiseti (FCHE, GenBank acc. MG020433) and F. oxysporum
(FCHJ, GenBank acc. MG020428) were obtained from the fungal collection of the Phytopathology
Laboratory, Tecnológico Nacional de México, Instituto Tecnológico de Conkal. These strains were
isolated from stem and root lesions of habanero pepper plants [10]. The strains were maintained by
transferring a mycelial disc (5 mm diameter) to (a) 20% glycerol (v/v) and frozen at −80 ◦C, (b) sterile
distilled water and (c) commercial potato dextrose agar in slant tubes (PDA, BD, Bioxon, Edo. México)
and stored at 4 ◦C in the dark.

4.4. Antifungal Microdilution Assay of Extracts

4.4.1. Preparation of Conidial Suspension

F. equiseti and F. oxysporum strains were reactivated on PDA and incubated at 27 ± 2 ◦C, with 16 h
light/8 h dark in a humidity chamber to induce sporulation. After 7 days, the surface of the culture
was flooded with a sterile saline solution (5 mL), then gently scraped with a sterile brush to release



Pathogens 2020, 9, 827 13 of 18

conidia into the saline. The resulting conidial suspension was filtered through a double layer of sterile
cheesecloth and adjusted to a final concentration of 1 × 105 conidia/mL for both pathogens with sterile
saline solution, using a hemocytometer [61].

4.4.2. Bioassay with Aqueous Extracts

In the broth microdilution to determine the mycelial growth inhibition (MGI) of the Fusarium
strains, 100µL of each 6% AE were transferred to each microwell of a 96-well plate. As a negative control,
100 µL of the conidial suspension were used and as positive control, 5 µL of the fungicide Mirage CE
45 (prochloraz 450 g a.i./L) (Bayer CropScience, NC, USA). Finally, 100 µL of the conidial suspension
were added for a final concentration of 3% w/v AE, 0.112% of prochloraz (w/v), 5 × 104 conidia/mL
of Fusarium strains. All tests were performed in triplicate and microdilution plates maintained at
27 ± 2 ◦C, and 16 h light/8 h dark. The MG was recorded at 96 h, visually determined with a microscope
at 50× using the National Committee for Clinical Laboratory Standards with slight modifications, using
a 0–4 scale, where 4 is full MG (0% MGI) and 0 the absence of MG (MGI =100%) [62,63]. Data were
converted to a percentage of mycelial growth inhibition (MGI) using Abbott’s formula: [(% MG in the
negative control −% MG in the treatment)/% MG in the negative control)] × 100 [62].

4.4.3. Bioassay with Ethanolic Extracts

Each EE was dissolved in a mixture of dimethylsulfoxide (DMSO) (Sigma-Aldrich, St. Louis,
MO, USA) with 0.5% Tween 20 to obtain a solution at 40 µg/µL EE. Then 10 µL of this EE solution
were added to each microwell, containing 90 µL of RPMI liquid medium (Roswell Park Memorial
Institute 1640). Mirage CE 45 (5 µL) was used as the positive control as described above; negative
growth controls were RMPI (Merck Millipore Darmstadt, Germany), water (100 µL) and a blank (0.5%
Tween 20 DMSO: RPMI 1:9, v/v). Each microwell then received 100 µL of the conidial suspension
for a final EE concentration of 2000 µg/mL and 5% of DMSO with 0.5% Tween 20 (Merck Millipore
Darmstadt, Germany) [24]. All tests were done three times, and the plates were incubated and assessed
as described above.

4.4.4. Minimum Inhibitory Concentration of Active EEs and Fractions

Serial dilutions of fractions A, B and C and active EE solutions (80 µg/µL), prepared as described
above, were evaluated in a microdilution assay to determine the MIC [24]. The EEs were tested at
final concentrations of 2000, 1000, 500 and 250 µg/mL. The fractions were evaluated at 1000, 500 and
250 µg/mL. The commercial α-asarone standard (Sigma-Aldrich, St. Louis, MO, USA) was tested at
500, 250 and 125 µg/mL. The same controls and incubation conditions were used as described above.
All determinations were made with four replicates, three times. After incubation at 96 h, the MIC was
determined as the lowest concentration of the extract at which no mycelial growth was observed in
the well.

After 96 h of incubation, 10 µL from each well that had no growth were transferred to PDA and
incubated at 27 ± 2 ◦C. After 72 h, the presence of growth was cataloged as fungicidal, the absence of
growth as fungistatic [64].

4.5. Effect of Ethanolic Extracts on Hyphal Morphology of Fusarium Strains

The strains of F. equiseti and F. oxysporum were grown on PDA in Petri dishes for 7 d, then
5 mm disks were removed from the growing edge of the colony. The samples were fixed in 2.5% v/v
glutaraldehyde (Merck Millipore Darmstadt, Germany) and 0.2 M sodium phosphate (Sigma-Aldrich,
St. Louis, MO, USA) pH 7.2 for 48 h at 4 ◦C and washed twice with the phosphate buffer (1 h each time).
The samples were dehydrated in an ethanol series (1 h each: 30, 50, 70, 85, 96 and 100%, 2 × absolute
ethanol). The samples were dried with CO2 in a Sandri-795 critical point dryer (Tousimis Research
Corp., Rockville, MD, USA), then attached to a sample holder using double-sided adhesive carbon
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tape and coated with gold for 10 min in an ionizing chamber (Dentom Vacuum-Desk II, Moorestown,
NJ, USA). The samples were observed in a JSM 6360 SEM (Jeol, Tokyo, Japan) at 20 kV.

After the fungus was exposed for 96 h to 200 µL of EE from M. depressa, the mixture was filtered
through a nylon membrane (nucleic acid blotting membrane Hybond N+ 0.45 µm) (GE Healthcare
Bioscience, Amersham PI, Little Chalfont, UK), and the fungal samples were fixed as described above.

4.6. Chromatographic and Spectrometric Analyses

4.6.1. Thin Layer Chromatography (TLC)

The active EEs and their fractions were analyzed by thin layer chromatography (TLC) using an
aluminum support impregnated with 0.25 mm thick G-60 silica gel with fluorescent indicator F254 (Merck
Millipore, Burlington, MA, USA). In parallel, the commercial standard α-asarone (Sigma-Aldrich,
St. Louis, MO, USA) was applied to confirm its presence in M. depressa extracts. The plates were
developed in three elution systems: hexane-acetone (8:2), CH2Cl2-AcOEt (9:1) and CH2Cl2-MeOH
(85:15). After separation, the metabolites were visualized with ultraviolet light (UV254 and UV365) and
phosphomolybdic acid (Sigma-Aldrich, St. Louis, MO, USA).

4.6.2. LC-UV-HRMS

The active fractions (2 µL) from M. depressa stem bark (MDT-b) and root bark (MDR-b) were
analyzed by liquid chromatography–ultraviolet–high-resolution mass spectrometry (LC-UV-HRMS)
using a data-dependent acquisition protocol [65]. Chromatograms and mass spectra were obtained
using an LC-MS (Agilent, Santa Clara, CA, USA) coupled to a Bruker Maxis HR-QTOF mass detector
(Bruker Daltonics GmbH, Bremen, Germany) at 40 ◦C. A Zorbax SB-C8 column (Agilent, Santa Clara,
CA, USA) was used (2.1× 30 mm) with a mobile phase of a mixture of solvent A (water–acetonitrile 90:10
with 0.01% v/v trifluoroacetic acid and 1.3 mM ammonium formate) and solvent B (water–acetonitrile
10:90 with 0.01% v/v trifluoroacetic acid and 1.3 mM ammonium formate) and a flow rate of 300 µL/min.
The gradient was set for a constant flow rate of 10% B to 100% B in 6 min, 100% B for 2 min, then
10% B for 2 min. Mass spectra (150 to 2000 m/z) were acquired in positive mode. The components
detected were compared with the MEDINA database of microbial metabolites and the Chapman &
Hall Dictionary of Natural Products (v25.1, CRC Press, Boca Raton, FL, USA).

4.7. Statistical Analyses

For the % MGI data, a one-way analysis of variance was performed with prior transformation
of the original data using the formula: y = arsin [sqrt (y/100)]. The treatment means were compared
using Tukey’s multiple range test (p = 0.05). Variance analyses were performed using SAS ver. 9.4 for
Windows (SAS Institute, Cary, NC, USA). IC50 and IC95 values with 95% confidence intervals were
calculated for EEs and effective fractions using a probit analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/10/827/s1,
Table S1: Inhibition of mycelial growth of Fusarium equiseti strain FCHE and F. oxysporum strain FCHJ by plant
extracts from 40 native species of the Yucatán Peninsula in microdilution assay.
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