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Abstract: The study of the microstructure of random heterogeneous materials, related to an electro-
chemical device, is relevant because their effective macroscopic properties, e.g., electrical or proton
conductivity, are a function of their effective transport coefficients (ETC). The magnitude of ETC
depends on the distribution and properties of the material phase. In this work, an algorithm is
developed to generate stochastic two-phase (binary) image configurations with multiple geometries
and polydispersed particle sizes. The recognizable geometry in the images is represented by the white
phase dispersed and characterized by statistical descriptors (two-point and line-path correlation
functions). Percolation is obtained for the geometries by identifying an infinite cluster to guarantee
the connection between the edges of the microstructures. Finally, the finite volume method is used
to determine the ETC. Agglomerate phase results show that the geometry with the highest local
current distribution is the triangular geometry. In the matrix phase, the most significant results are
obtained by circular geometry, while the lowest is obtained by the 3-sided polygon. The proposed
methodology allows to establish criteria based on percolation and surface fraction to assure effective
electrical conduction according to their geometric distribution; results provide an insight for the
microstructure development with high projection to be used to improve the electrode of a Membrane
Electrode Assembly (MEA).

Keywords: effective transport coefficients; percolation; polygonal synthetic images; statistical de-
scriptors

1. Introduction

Due to its fluctuating and intermittent nature, the storage of renewable energy is a
challenge. Therefore, hydrogen (H2) is projected as an energy vector and can be used by
fuel cells (FC) [1,2]. FC are electrochemical devices that continuously and directly convert
the chemical energy of a fuel into electrical energy [3]. The FC are classified according to
the type of electrolyte they use, being considered the proton exchange membrane fuel cell
(PEMFC) among the most promising [4,5]. Because hydrogen is not found as a free element
naturally, it is necessary to produce it. The process for hydrogen production and storage
demands large amounts of energy, so increasing the performance of PEMFCs translates
into better use of the hydrogen produced. The catalytic layer (CL) of the PEMFCs is the
component responsible for carrying out the transformation of chemical to electrical en-
ergy [6,7] and it is part of the so-called random heterogeneous materials (RHM). RHM are
used in various engineering applications such as batteries, supercapacitors, and membrane
electrode assemblies (MEA) of PEMFC’s [8]. From RHM, different types of arrangement of
two or more phases can be distinguished at the microstructural level, in which phenomena
of mass and energy transport can occur, resulting in a valuable effect such as an electric
charge based on its effective transport coefficients (ETC). There are several works about

Membranes 2021, 11, 357. https://doi.org/10.3390/membranes11050357 https://www.mdpi.com/journal/membranes

https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-0321-4093
https://orcid.org/0000-0001-8595-1355
https://orcid.org/0000-0003-4885-2715
https://www.mdpi.com/article/10.3390/membranes11050357?type=check_update&version=1
https://doi.org/10.3390/membranes11050357
https://doi.org/10.3390/membranes11050357
https://doi.org/10.3390/membranes11050357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/membranes11050357
https://www.mdpi.com/journal/membranes


Membranes 2021, 11, 357 2 of 18

calculating the material conduction efficiency from real images taken of materials as well
as synthetic images to predict the behavior of PEMFCs [9,10]. The significant advance
in the representation of material models and their microstructural properties still require
improvements, mainly for the use and prediction of real three-dimensional models. A
proposal that has been widely accepted is the representation of models through synthetic
images, mainly in the improvement of microstructural behavior of various types of mate-
rials. Among the applications using synthetic images are the development of renewable
energy such as synthesis of materials and prediction of behaviors for fuel cells [9], devices
and apps for medicine (magnetic resonance imaging) [11], neural networks mainly with
the use of Deep Learning [12], materials for ultra-fast devices in the telecommunications
area (ultra-fast devices) [13,14], military applications such as radars and ship detection
simulators [15], and topographical images of polymer solar cells [16]. There are other
works involved in the improvement of microstructures related to comparison of different
morphologies on 3D reconstructions [17], the behavior of their geometry to conversion of
triangular to hexagonal models [18], synthesis of palladium nanoparticles in triangular
form [19], Finite Volume Method (FVM) for morphology studies of microstructures with
mechanoluminescent particles [20], heat and humidity transfer in clothing sets, using the
finite volume method for the nonlinear parabolic equations system [21], computational
thermal conductivity and membrane pore geometry simulation in porous materials [22,23],
tortuosity, permeability and threshold percolation studies from membrane SEM images and
transport pore structure [24–26], images generation from mathematical descriptors for 3D
shapes analysis using formal segmentation [27], structural detail analysis of woven fabric
based on synthetic images [28], thermal expansion coefficients calculation for one and
two phases from SEM models and three-dimensional synthetic images of polycrystals [29],
geometric and topological characterizations to establish a relationship of the structure
owned by two phases using the Voronoi diagram in geometry of synthetic images [30,31],
neutron imaging in fuel cells research [32], and a systematic classification implemented by
its geometric and topological properties focus on imitating morphology through mathe-
matical tools, such as digital image correlation, tessellation, random field generation, and
differential equation solvers [33]. Finally, synthetic anisotropic training is performed to
reconstruct anisotropic media [34] and multiscale model-based on synthetic structures,
using isotropic filtering [35]. Particularly for PEMFCs, the study of the microstructure of
the catalytic layer (CL) and the gas diffuser layer (GDL) are a constant subject of study that
aims to improve the performance of fuel cells since its manufacture. Numerical models
are usually simplified, transferring from the microstructure domain to a discrete (compu-
tational) environment, so the microstructure is represented by images (pixels). However,
there is a lack of investigations examining the geometry influence in conduction transport
problems. For this reason, numerical analyses are implemented using synthetic images
to determine the behavior of different polygonal configurations and their repercussions
on the effective electrical conductivity, considering percolation and tortuosity parameters.
This approach can provide a new insight in achieving high conduction values which can
be applied to scanning electron microscope images.

2. Materials and Methods

In the last years, the study of different multiform geometry by continuous mathematics
and numerical approximation has been increased in the computer graphics area [16–27].
In this work, an algorithm is developed to analyze the geometric behavior of polygonal
synthetic agglomerate (PSA) from circles and polygons of 3–5 sides. Figure 1 presents
the methodology developed in this work in four stages. The first step is to generate the
geometric structure modeling (two-dimensional PSA) from mathematical descriptors. PSA
needs to be statistically characterized by two-point and linear path correlation functions.
Subsequently, percolation is obtained through structure identification modeling of an
infinite cluster. Finally, FVM is used to determine the effective transport coefficients
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and local current from PSA. This method considers each phase as conductive and non-
conductive, respectively.
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First, initial parameters are necessary to generate the two-phase synthetic image,
which is defined considering the size of the matrix, geometry, and surface fraction of PSA.
The size is defined as m × m, where m is the number of pixels per row and column. Zero
and one values correspond to the black and the white pixels which are inserted in a matrix,
respectively. The surface fraction is the ratio between ones and zeros in the matrix. There
are different techniques for the generation of synthetic images based on mathematical
descriptors [27–33]. The technique used in this work is based on the union of points called
vertices, for the formation of the PSA. PSA are created from circles and polygons with
three, four, and five sides called generator figures. In the case of circles, the circumference
equation is used. Another smaller defined matrix contains the generating figures.

Figure 3 shows PSA generation for different geometries such as circles and 3, 4, 5-sided
polygons where dist is the distance between the left base and the right vertex for 3 and
5 sided polygons, diag is the diagonal size for 4-sided polygon, and diam is the diameter
for all circles in pixels.
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Figure 3. Different Geometry of PSA generation.

The angles that correspond to each vertex to determine the points that form the
polygons can be calculated by Equation (1):

θ(e) = e·360◦

L
(1)

where θ is the angle of the vertex position relative to the center, L is the number of sides of
the polygon and e is the vertex index.

Figure 4 shows an example of geometry generation. The technique used to insert the
generating image takes the size of the structural element which will then be captured in
the matrix, centered on a given matrix point, following a model like [36] but applied to the
linear representation of the polygon contour trough of vertices. To implement a PSA, the
determination of pixels is made from the number of vertices (depending on the geometry)
of a region that are only partially covered by the borderline. Pixels may be partially covered
by the edge of a region of interest. To determine which pixels are in the region, a sub-grid
is used considering pixels that are inside the polygon. Each time the PSA is updated with a
new insertion, the surface fraction is calculated until a threshold value is reached.

Membranes 2021, 11, x FOR PEER REVIEW 4 of 19 
 

 

First, initial parameters are necessary to generate the two-phase synthetic image, 
which is defined considering the size of the matrix, geometry, and surface fraction of PSA. 
The size is defined as m × m, where m is the number of pixels per row and column. Zero 
and one values correspond to the black and the white pixels which are inserted in a matrix, 
respectively. The surface fraction is the ratio between ones and zeros in the matrix. There 
are different techniques for the generation of synthetic images based on mathematical de-
scriptors [27–33]. The technique used in this work is based on the union of points called 
vertices, for the formation of the PSA. PSA are created from circles and polygons with 
three, four, and five sides called generator figures. In the case of circles, the circumference 
equation is used. Another smaller defined matrix contains the generating figures. 

Figure 3 shows PSA generation for different geometries such as circles and 3, 4, 5-
sided polygons where dist is the distance between the left base and the right vertex for 3 
and 5 sided polygons, diag is the diagonal size for 4-sided polygon, and diam is the diam-
eter for all circles in pixels. 

 
Figure 3. Different Geometry of PSA generation. 

The angles that correspond to each vertex to determine the points that form the pol-
ygons can be calculated by Equation (1): ߠ(e) = ݁ ∙ ܮ360°  (1)

where θ is the angle of the vertex position relative to the center, L is the number of sides 
of the polygon and e is the vertex index. 

Figure 4 shows an example of geometry generation. The technique used to insert the 
generating image takes the size of the structural element which will then be captured in 
the matrix, centered on a given matrix point, following a model like [36] but applied to 
the linear representation of the polygon contour trough of vertices. To implement a PSA, 
the determination of pixels is made from the number of vertices (depending on the geom-
etry) of a region that are only partially covered by the borderline. Pixels may be partially 
covered by the edge of a region of interest. To determine which pixels are in the region, a 
sub-grid is used considering pixels that are inside the polygon. Each time the PSA is up-
dated with a new insertion, the surface fraction is calculated until a threshold value is 
reached. 

 
Figure 4. Example of image generation for circle PSA. Figure 4. Example of image generation for circle PSA.



Membranes 2021, 11, 357 5 of 18

Figure 5 shows a comparison between an original matrix (Figure 5a) and cropped
matrix (Figure 5b) for PSA circle generation. The Auxiliary Matrix is a binary image that
outlines the definitive region boundaries of the Matrix composition (Figure 5a), obtained
saturating non-zero pixels. A stochastic morphology is generated because the initialization
is random.
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parameters and geometries. (a) shows AuxiliaryMatrix with zeros and ones assigned and (b) shows
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The technique used for image cropping is shown in Figure 6 where AuxiliaryMatrix
is larger by the maximum size of a complete generating figure towards the four cardinal
points. The designed algorithm requires cropping the image to remove the unwanted
frame; the final matrix, TrueMatrix, has the desired image size (Figure 5b).
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Figure 6. Identification process at the edge for the image cropping (TrueMatrix) from Auxiliary
matrix. From each of the sides of the matrix, it is removed to obtain a TrueMatrix with the size of the
desired matrix where u is the maximum diameter divided by 2.

2.2. Statistical Descriptors

Because of their microstructural complexity, RHMs are challenging to characterize, but
statistically, they can yield characteristics that cannot be deduced with standard analysis
methods. Several parameters, such as volumetric fractions of the phases, quantification
of the surface area, orientation, size distributions, phase connectivity, among others, have
been used to describe RHMs in detail. Statistical descriptors are the point correlation
functions that have been used to describe microstructures statistically [9]. Correlation
functions are based on the idea that a complex porous structure can be described by the
values of a phase function, within the porous medium. The phase function takes the value
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of zero or one, depending on where the point is located, and it can be defined according to
the following Equation (2) [37]:

Tπ(x) =
{

1, i f x ∈ π
0, otherwise

(2)

According to Equation (3), the surface fraction of the phase π is defined as the average
of the phase function (x).

φπ = 〈Tπ(x)〉 (3)

2.2.1. Two-Point Correlation Function

A correlation function can extract statistical information from a dimensional subspace
of a moderate size. The two-point correlation function is an important statistical parameter
for the description of isotropic RHM, which indicates the probability that two points
separated by a linear distance coincide in the same phase. The unit of measurement of
the points for this case is a pixel. For an isotropic RHM, this function can be obtained by
randomly throwing a line segment of length r with specific orientation and counting the
number of times that the start (x) and end (x + r) of the line are in the phase. The two-point
correlation function is defined by Equation (4) [38]:

S2,π(x, r) = 〈T(x) T(x + r)〉 (4)

where x denotes the position of an arbitrary point within the computational domain,
π = 0, 1, 2, . . . , n is the phase of the porous medium, and r is the distance from x1 to x2.
Two-point correlation function is a great statistical descriptor, and due to the simplicity
in its application in computer programs, it will be used as an indicator of connectivity
between phases.

From S2,π(x, r), we can also define the autocovariance function,

χπ(x, r) = S2,π(x, r)− φ2
π (5)

and its normalized function,

χ∗π =
χπ(x, r)

φπ(1− φπ)
(6)

2.2.2. Line-Path Correlation Function

The line-path correlation function provides statistical information about the conduc-
tivity of the sample phases, being this the probability that a segment of points (each one
separated by a discrete space) belongs to a straight line. From the previous phase definition,
the conductivity is validated if all the pixels that make up the line belong to the same phase.
In an isotropic RHM, the line-path correlation function only depends on the length of the r
line. When r = 0 the line-path correlation function is equal to the surface fraction of the
studied phase. Equation (7) shows the line-path correlation function mathematical form
defined as:

Lp,π(x, r) =

〈
r

∑
0
Tπ(x + i)

〉
(7)

The normalized line-path correlation function can be defined by the following equa-
tion [38],

L∗π =
Lp,π(x, r)

φπ
(8)
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2.2.3. Average Correlation Function

In this work, the average correlation function is used as statistical characterization,
which includes the averaged values of the normalized correlation functions obtained in
Equations (6) and (8) and determined for the Ω(ω) ensemble:

F(Ω,r) = ∑10
ω=1(

χ∗π + L∗π
2

)/10 (9)

where ω is the number of configurations.

2.3. Conduction Efficiency

The effective properties of the RHMs are functions of the individual properties, volu-
metric fractions, and the microstructural design. The conduction efficiency is calculated
from the iterative FVM and provides information about the properties of the material.
The ETC of RHM can be defined as the proportionality coefficient that characterizes the
material’s entire domain. Then, ETC value is essential to know the behavior of conduction
for designing devices. For RHM consisting of n phases, the general function Ke is described
according to Equation (10):

Ke = f (K1, K2, . . . , Kn; Φ1, Φ2, . . . Φn; Ω) (10)

where Ke. is the effective conductivity, Ki is the proportionality constant for that phase, φi
is the composition of the surface fraction and Ω is the structure of the phases. For energy
applications, relevant ETCs are thermal conductivity, electrical conductivity, dielectric
constant, magnetic permeability, and diffusion coefficient [6]. It is important to emphasize
that the microstructural information from RHM is generally not a simple relationship. The
ETCs in a discrete (computational) environment can be calculated employing the local
fields, which must be derived from the appropriate theory according to the problem in
question [39]. In problems where conduction is relevant, the effective properties are defined
by a linear relationship between the averages of both a generalized local flow J and an
applied potential E [38], as indicated by Equation (11):

J ∝ Ke·E (11)

For charge conduction problems, the average generalized flux (J) represents the
average local electric current and the applied average potential (E) represents the electric
field. For electric current we have Ohm’s law given by Equation (12):

I =
1
R

∆E (12)

where I is the electric intensity, R is the electrical resistance and E is the electric potential
difference. Considering an RHM, Ke. can be calculated through conductance, where k
is related to conductivity, A is the transversal area, and L is the charge transport length,
relative to the flow direction given by Equation (13).

Ke =
kA
L

(13)

Je f f is an effective value for the RHM determined by Equation (14).

Je f f = Ke·∆E (14)

Now, it is necessary to introduce the concept of conduction efficiency εk, which is
derived directly from the second law of thermodynamics. The conduction efficiency (εk) is
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calculated from Equation (15), which provides the relationship to obtain the effectiveness
in the catalytic layer described in [6].

εk = 100· Ke

KM
(15)

where KM is the nominal conductivity.

2.4. Percolation

The percolation theory is carried out under two approaches. Physical percolation
theory deals with phenomena such as the electric current conduction, thermoelectric phe-
nomena, elastic, and non-elastic deformations in diverse media, among others; meanwhile,
the geometric percolation theory deals with phenomena that are responsible for the analysis
of microstructure connection of different phases and connections between boundaries [40].
Considering a two-dimensional system, each site in the mesh of this system can be occupied
randomly and independently with a probability p, where the sites with at least one side
in common are known as the closest neighbors. A cluster is a group of neighboring sites.
The sites connected directly will be called connections (sites occupied with agglomerate
phase), and the rest of the connections will be called no connections (sites occupied with
matrix phase). The border connections which connect from border to border are known
as infinite clusters [41]. If an infinite cluster is confirmed, the existence of the percolating
phenomenon is assured. In an infinite cluster can be recognized several sections where the
current flows smoothly.

The physical properties, that involve the transport phenomena, present the percolation
problem [42], where the percolation threshold is a pore density number that varies its
size from smaller to larger. It varies in a ratio directly proportional to the number of
pore densities. The percolation process and the electrical conductivity can be related if
the problem is represented with a microstructure with random connections where the
agglomerate phase has a p number of connections and 1-p corresponds to connections
with the matrix phase. In an agglomerate phase (conductive material), the number of
connections is related to the pore density number. The larger the identified clusters of a
phase in a heterogeneous material, the more influence there will be on its microstructural
properties [41].

3. Results and Discussions

Results are presented using a Ω ensemble of ten different random series (W = 10)
for four different PSA from random mathematical descriptors with its surface fraction
controlled. The main algorithm was implemented in C++; an Alienware Aurora with Intel
Core I7-870 and 64 Gb was used for concurrent executions.

3.1. PSA Generation Process

A total of 360 PSA with four configurations were generated for experimentation:
90 PSA for each kind of figure (SC for circular geometry, S3L for 3 sides, S4L for 4 sides, and
S5L for 5 sides). The surface fraction (φj), in an interval from 10% to 90% with steps of 10%
is considered. The size of each PSA is 1000 × 1000 pixels. Diag, dist, and diam distance for
each of the geometries presented is random in the range from 10 up to 100. Figure 7 shows
a PSA of the materials studied (S3L, S4L, S5L, and SC) of agglomerate phase with surface
fraction in a range of 50% to 90% for every configuration; all different random series follow
the same generation process and they only differ in distribution and geometry size.
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Figure 7. Constructed synthetic media for different geometry of agglomerate phase in a surface fraction range of 50% to
90%. (a–e) is for S3L image, (f–j) is for S4L image, (k–o) is for S5L image and (p–t) is for SC image.

3.2. Statistical Analysis of Microstructures

Figure 8 depicts corresponding results for statistical descriptors for four different PSA
geometries with surface fraction controlled. The average correlation functions were taken
from the ten PSA of each configuration generated (averaged and normalized) for the indi-
cated surface fractions (Equation (9)). A curve is presented for each of the configurations
(S3L, S4L, S5L, and SC). Every case shows periodicity and reveals a monotonic decay to its
asymptotic value, which does not guarantee that there is a correlation in spatial elements,
mainly because it is the result of an average on each of the configurations. However, it is
considered the fact that there may be a statistically significant number of clusters in the
system that can better capture the grouping information. It can be seen how S3L decays
faster concerning the trend shown by the other correlation functions images, with SC taking
the longest time to adjust the curve.
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3.3. Percolation Process

Low-order correlation functions do not reflect grouping information. For this reason,
it is required to know the tendency to group by percolation. The percolation process can
be calculated by evaluating the connection of both ends, providing the tendency of every
cluster formed to identify an infinite cluster. The full process is shown in Figure 9.
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In the first stage, the original PSA obtained from mathematical descriptors is shown.
After obtaining the PSA (first step of Figure 9), a process begins to identify how many pixels
are connected; these are classified in groups, called clusters, of the same phase (matrix
phase or agglomerate phase in the second step of Figure 9). Once the existence of clusters is
categorized, the color labeling identification is assigned according to the number of pixels
identified. Finally, in the last stage, cluster existence is verified, mainly infinite clusters
having a connection between the ends of the interfaces in the microstructure [43]. The
percolation process can be better appreciated in Figure 10, which shows the grouping of the
clusters of a PSA for two different cases. Figure 10a shows the S3L geometry (white agglom-
erate phase) in which the different cluster connections are identified according to the pixels.
For this reason, Figure 8 percolate. Figure 10b shows the S4L-PSA (white agglomerate
phase) with several single clusters are observed, but no infinity cluster (microstructure
does not percolate).
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Figure 10. Infinite cluster classification. (a) shows different single cluster and an example of infinite cluster when agglomer-
ate phase is connected to top. (b) shows single clusters without percolation.

Figure 11 shows a cluster classification for the agglomerate phase for each config-
uration. A cluster can be identified by a different color labeling according to the pixel
connection found in the same phase cluster. The matrix phase is represented by white color

Table 1 shows the percolation for matrix and agglomerate phases, identifying with 1
when there is percolation in 100% of realizations and zero with no percolation, which is
presented as a function of the surface fraction for each configuration in a surface fraction
range of 10% to 90%. In the agglomerate phase, the PSA with the best percolation is in the
range from 50% to 90% for the S3L while S4L, S5L, and SC present percolation in a range
from 70% to 90%.
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Table 1. Percolation for agglomerate and matrix phase.

Percolation (Matrix Phase) Percolation (Agglomerate Phase)

PSA
SURFACE FRACTION (%)

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

S3L 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1

S4L 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1

S5L 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1

SC 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

In the matrix phase, the best performance is in the range from 10% to 60% for SC,
while S4L, S5L, and S3L present percolation in a range from 10% to 50%.
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3.4. Conduction Efficiency

Conduction efficiency and effective local current are calculated from equation 15 for
the entire PSA bank considering every realization for both phases through FVM, taking into
consideration a classical discretization to solve transport problems and stability analysis.
The electric potential in the geometric limits has been implemented as a boundary condition,
to have a generalized potential differential (P0–P1). It can be appreciated in [9], the
calculation of the effective transport coefficients is performed from reconstructed images
from binarized SEM images. On this occasion, PSA images are used to obtain the ETC
using FVM with the tridiagonal matrix solution.

Figure 12 shows the numerical solution of local current distribution for all disperse
phase PSA configurations in a surface fraction range from 50% to 90%. According to local
current efficiency and percolation analysis (Table 1), images enclosed by the dotted line
(Figure 12f–q) do not have a connection between pixels or current distribution between
their edges. S3L current results (Figure 12a–e) is the only configuration that has conduction
between its ends in each surface fraction.
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Connectivity analysis between the phases can avoid wasting processing time in ETC
calculation, dispersion, and variance of data from PSA simulated. Execution time per
PSA is 9 h. The runtime for the generation of each PSA and the characterization of the
statistical descriptors (two-point correlation function and linear path correlation functions)
is 1 h. Once the PSAs are generated, the calculation of the effective transport coefficients
is performed in a second module, which takes 8 h per image. Every module is executed
concurrently, similar applies to every PSA. When considering 360 realizations, it will be
worthwhile to select those PSAs that may have a connection in their interfaces to guarantee
ETC results.

The distribution of current can be observed from end to end where some infinite
cluster is found, in the range of interest, showing the best performance.

Figure 13 provides a general trend of εk (%). Figure 13a–c reveals the behavior of
conduction efficiency for the matrix phase in a surface fraction range of 10% to 60%.
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Figure 13. Conduction efficiency (εk) as a function of φ for ω. (a–c) show conduction efficiency for the matrix phase in a
range of 10% to 60% and (d–f) is for an agglomerate phase in a range of 50% to 90%.

Figure 13a shows the averages (continuous line) and ten realizations (markers) per
configuration. Figure 13b displays a comparison of the averages and realizations for SC and
S3L configuration, and Figure 13c shows only the average values for every configuration.
SC configuration has the highest conductivity for the matrix phase while S3L obtains the
lowest conduction values for the phase. The lower the surface fraction values, the higher
the conductivity in the matrix phase. Figure 13d–f are related to the agglomerate phase in a
surface fraction in a scope of 50% to 90%. Figure 13e compares the best conduction efficiency
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against the worst. Under this premise, the S3L image is the only one that percolates at 50%
of surface fraction for the agglomerate phase, presenting for each surface fraction a higher
conduction efficiency, while for the matrix phase, it has the lowest levels of conduction.
When there is more conduction in one phase, the other one decreases. In the value of
fraction 0.5, the behavior of conductivity is the same for both phases. For all configurations,
when the surface fraction reaches 70%, efficiency εk increases due to connectivity between
pixels at the same agglomerate phase.

4. Conclusions

The present work presented the relationship between the geometry of a polygonal
synthetic agglomerate with respect to effective transport coefficient, considering the per-
colation effect and surface fraction of both phases. Generation of PSA of 3, 4, 5 sides
and circles with random size constructed from mathematical descriptors were obtained
to analyze the behavior of each of the configurations in terms of its correlation functions
(two-point and line-path correlation functions) acquiring a decay of the S3L image related
to the best conduction. Conduction efficiency and local current are affected by the connec-
tion between each end of the different configurations (percolation through infinite cluster
identifying). Percolation was calculated to establish the necessary elements to ensure the
calculation of conduction efficiency in the synthetic image geometry configuration that
presents a connection between its edges. PSA samples generated from percolation criteria
conclude that the best behavior concerning conduction efficiency is the geometry of three
sides (S3L) since it was the only one that percolates in a surface fraction range from 50%
to 90%. On the other hand, in the Matrix, the best results are gotten by the SC image,
while the lowest is reached by the S3L image. The results computed indicated that the
fewer sides the polygon of the microstructure has, there is a higher possibility of reaching
percolation, obtaining a better effective electrical conduction, decreasing the variance, and
less simulation time. The relationship between percolation calculation and the conduction
current is directly dependent on its geometry. The contribution of the work is to present
an analysis based on a surface fraction, connectivity, and how its conduction efficiency
varies depending on the geometry. The methodology implemented in this work can be
extended to experimental design to improve the highest conduction efficiency in membrane
electrode assemblies.
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Nomenclature

Symbol Description
ETC Effective Transport Coefficient
MEA Membrane Electrode Assembly
H2 Hydrogen
FC Fuel Cells
PEMFC Proton Exchange Membrane Fuel Cell
CL Catalytic Layer
RHM Random Heterogeneous Materials
GDL Gas Diffuser Layer
PSA Polygonal Synthetic Agglomerate
FVM Finite Volume Method
ω Number of configurations
Ω Microstructure assembly
W Number of random series
X Position of an arbitrary point
r length of an arbitrary line segment
Tπ Phase function of the phase Π
φπ Surface Fraction of the phase Π
S2,Π(X, R) Two-point correlation function
Lp,π Line-path correlation function
F(Ω,R) Average correlation function
χπ(x, r) Autocovariance function
χ∗π Normalized autocovariance function
L∗π Normalized line-path correlation function
Ke Effective conductivity
KM Nominal conductivity
I Electric current
J Generalized flux
Je f f Effective electric flux
E Applied potential
R Electrical resistance
εk Conduction efficiency
θ Angle of the vertex position
L Number of sides of the polygon
e Vertex index
SC Circular geometry
S3L 3 Sides geometry
S4L 4 Sides geometry
S5L 5 Sides geometry
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