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Abstract: Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental
changes, therefore allowing the regulation of their responses. As the interaction between plants
and environmental changes begins at the surface, these changes are detected by components in the
plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such
as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and
signaling cascades. They exist in a wide range of species and in different proportions, with conversion
processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD),
and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared
to their homologous genes, and have formed clusters during their adaptive history. Additionally,
they generate responses to different functions in accordance with their protein structure, which
should be reflected in specific signal transduction responses to environmental stress conditions,
including innate immune responses. This review summarizes the phospholipid systems associated
with signaling pathways and the innate immune response.
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1. Introduction

All stimuli start at the surface and are detected by components of the plasma mem-
brane, where a molecular receptor initiates lipid cascade signaling [1,2]. This can manifest
as early or late signaling events that occur within minutes or hours after environmental re-
sponses and determine the outcome of stress triggers [3]. Phospholipid signaling responses
have developed interrelated communication with immune systems to protect against the
invasion of pathogenic microorganisms [4,5]. One system of phospholipid signal trans-
duction recognizes and transduces responses through phospholipid-derived molecules as
second messengers, which are common to many classes of microbes, including beneficial
and pathogenic microbes [6,7]. This defense response is initiated by the recognition of mi-
crobes, pathogen-associated molecular patterns (PAMPs), or danger-associated molecular
patterns (DAMPs), consisting of endogenous elicitor molecules [5,8,9]. The immunity con-
ferred by PAMPs or DAMPs is termed pattern-triggered immunity (PTI), and the immunity
conferred after it is activated by the plant resistance response is termed effector-triggered
immunity (ETI), which can converge in a similar innate immune response [6].

Today, growing evidence suggests that within the plant–microorganism interactions,
many actors, including receptors, such as leucine-rich repeats (NLRs), lipid-transfer pro-
teins, and phospholipid signaling networks, play relevant roles in detecting, transmit-
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ting, and responding to a given environmental threat by inducing properly dosed re-
sponses [10,11]. The activation of transcriptional dynamics [12–14], which includes small
RNAs, lncRNAs and miRNAs [15–19], alternative splicing [20], changes to the phospho-
proteome [21], protein stability-mediated SUMOylation or ubiquitination [22], hormones
as mediators [23,24], DNA-regulated methylation [25], and phosphoinositide pools as sig-
nals [26], appears to be a common phenomenon during susceptible interactions; all of these
factors may control variations between susceptible and resistant phenotypes differently
when faced with various plant pathogens [27]. Changes in lipids during signaling could
involve the biogenesis of fatty acids, sterols, glycerolipids [28], sphingolipids, and phos-
pholipids [29–31]. The changes in lipids are usually related to responses to environmental
conditions, such as temperature, salinity, and water disposition, and events related to
pathogen effects [32,33]. All of this evidence points to a relevant role for phospholipases
(PLs) in signaling pathways leading to disease resistance or the innate immune response.

Previous research in our group highlights the important role of phospholipase C
(PLC)/diacylglycerol kinase (DGK) in the signal transduction pathway employed in cell
suspensions. These roles include reducing phosphatidic acid (PA) levels (by almost 30%),
PLC inhibition [34], and rapid activation of PLC transcription in mere minutes [35], all
of which are responses to aluminum stress. Additionally, high levels of diacylglycerol
pyrophosphate (DGPP) and PA were found in response to consortium infection involving
PLC/DGK pathways [36]. This evidence establishes that PLDs produce another PA pool in
response to different stresses. All of these findings point towards relevant crosstalk within
PLC/PLD signaling pathways that lead to disease resistance or innate immune responses.

2. Actions of Phospholipases in Plants
2.1. Phospholipase C

PLC hydrolyses the phosphodiester bond on the glycerol side of phospholipids to
produce diacylglycerol (DAG) and a phosphorylated head group [37]. PLCs have been
classified based on their substrate or cellular function as whole enzymes with specific sub-
strates, such as phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2), or phosphatidylinositol
(4) phosphate (PI(4)P) [38]. DAG is subsequently phosphorylated by a diacylglycerol
kinase (DGK) into phosphatidic acid (PA), and then, PA or diacylglycerol pyrophosphate
(DGPP) is employed as a second messenger during signaling based on the surrounding
responses [29].

2.2. PLC Structure

PLCs in most organisms have been classified into multiple subfamilies; mammalian
PLCs consist of 13 members grouped into the isoforms PLCβ, γ, δ, ε, η, and ζ, while
plants have just one kind of PLC called PLCζ, which lacks the pleckstrin homology (PH)
domain [39]. PLCs have been reported in many different species, including Arabidopsis.
Using BLAST and PLC sequences from Arabidopsis as a query in plant databases, such as
PlantGDB, SOL Genomics Network, EnemblPlants, Miyakogusa, and RAP-DB, different
PLCs from plants have been identified [40–74]. Multiple PLCs have been registered in
Arabidopsis (AthPLC1-9; Arabidopsis thaliana L. Heynh; [40]), grapevine (VviPLC1-5; Vitis
vinifera L.; [41]), peach (PpePLC1-4; Prunus persica L. Stokes; [42]), papaya (CpaPLC1-4;
Carica papaya L.; [43]), cucumber (CsaPLC1-4; Cucumis sativus L.; [44]), cassava (MesPLC1-
4; Manihot esculenta Crantz; [45]), robusta coffee (CcaPLC1-4; Coffea canephora L.; [46]),
black cottonwood (PotPLC1-4; Populus trichocarpa; [47]) and an external group, the moss
Physcomitrella (PpPLC1-7; Physcomitrella patens; [48]). For some Solanaceae, 7 isoforms of
PLC have been registered, including those in potato (StuPLC1-7; Solanum tuberosum L.; [49]),
tomato (SolPLC1-7; Solanum lycopersicum L.; [50]), eggplant (SmePLC7; Solanum melongena
L.; [51]), pepper (CanPLC1-7; Capsicum annum L. cv CM334; [52]), benthi (NbePLC1-7;
Nicotiana benthamiana Domin; [53]), tobacco (NtaPLC1-7; Nicotiana tabacum L.; [54]) and
petunia (PinPLC1-7; Petunia integrifolia Hook; [55]). For Gramineae, four isoforms of PLC
have been registered in rice (OsaPLC1-4; Oryza sativa var. Japonica; [56]), stiff brome
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(BrdPLC1-4; Brachypodium distachyon (L.) P. Beauv; [57], great millet (SbiPLC1-4; Sorghum
bicolor L. Moench; [58]), foxtail millet (SitPLC1-4; Setaria italica (L.) P. Beauv; [59]) and maize
(ZmaPLC1-4; Zea mays L.; [60]). Finally, leguminous isoforms of PLC have been registered
in soybean (GmaPLC1-3; Glycine max L. Merr; [61]) and wild legumes (LjaPLC1-4; Lotus
japonicus L.; [62]).

PLCs from plants were subjected to phylogenetic analysis and organized into seven
well-defined specific groups. PLC2 and PLC7 from many species formed a clade called type
A (Figure 1). PLC1 and PLC3 formed another neighboring group called type B (Figure 1).
PLC4 formed an exclusive group called type C, though PLC4 from Gramineae formed a
separate group called type C´. PLC5 and PLC6 from Solanaceae formed a fourth clade
called type D together with AthPLC6 (Figure 1). PLCs from monocots formed an exclusive
group that included PLC1, PLC2 and PLC3 called type AB, and in the same manner, PLC3
from leguminous plants formed another exclusive group called type D’ (Figure 1). Finally,
PLCs from the moss Physcomitrella formed a separate external group, as predicted. These
findings indicated that highly conserved PLCs from different plants might have similar
functions in the evolution of plants. Hence, the structures of PLCs from Solanaceae were
different from those of Gramineae or leguminous PLCs, and these differences might be
correlated with functional differences.

Plants 2021, 10, x FOR PEER REVIEW 3 of 17 
 

 

PLC have been registered, including those in potato (StuPLC1-7; Solanum tuberosum L.; 
[49]), tomato (SolPLC1-7; Solanum lycopersicum L.; [50]), eggplant (SmePLC7; Solanum 
melongena L.; [51]), pepper (CanPLC1-7; Capsicum annum L. cv CM334; [52]), benthi 
(NbePLC1-7; Nicotiana benthamiana Domin; [53]), tobacco (NtaPLC1-7; Nicotiana tabacum 
L.; [54]) and petunia (PinPLC1-7; Petunia integrifolia Hook; [55]). For Gramineae, four 
isoforms of PLC have been registered in rice (OsaPLC1-4; Oryza sativa var. Japonica; [56]), 
stiff brome (BrdPLC1-4; Brachypodium distachyon (L.) P. Beauv; [57], great millet (SbiPLC1-
4; Sorghum bicolor L. Moench; [58]), foxtail millet (SitPLC1-4; Setaria italica (L.) P. Beauv; 
[59]) and maize (ZmaPLC1-4; Zea mays L.; [60]). Finally, leguminous isoforms of PLC have 
been registered in soybean (GmaPLC1-3; Glycine max L. Merr; [61]) and wild legumes 
(LjaPLC1-4; Lotus japonicus L.; [62]). 

PLCs from plants were subjected to phylogenetic analysis and organized into seven 
well-defined specific groups. PLC2 and PLC7 from many species formed a clade called 
type A (Figure 1). PLC1 and PLC3 formed another neighboring group called type B 
(Figure 1). PLC4 formed an exclusive group called type C, though PLC4 from Gramineae 
formed a separate group called type C´. PLC5 and PLC6 from Solanaceae formed a fourth 
clade called type D together with AthPLC6 (Figure 1). PLCs from monocots formed an 
exclusive group that included PLC1, PLC2 and PLC3 called type AB, and in the same 
manner, PLC3 from leguminous plants formed another exclusive group called type D’ 
(Figure 1). Finally, PLCs from the moss Physcomitrella formed a separate external group, 
as predicted. These findings indicated that highly conserved PLCs from different plants 
might have similar functions in the evolution of plants. Hence, the structures of PLCs from 
Solanaceae were different from those of Gramineae or leguminous PLCs, and these 
differences might be correlated with functional differences. 

 
Figure 1. Phylogenetic tree of PLCs from plants. The phylogeny was reconstructed based on an alignment and was made 
by using the maximum parsimony method, with 1000 bootstrap replicates; the results were visualized using MEGA X and 
ITOL. Group A comprises PLC2 and PLC7; group B comprises PLC1 and PLC3; group AB comprises PLC1, PLC2, and 
PLC3 from Gramineae; group C comprises PLC4; group D comprises PLC6 and PLC5 from Solanaceae together with 
AthPLC6; an exclusive group C’ comprises PLC4 from Gramineae; and group D’ comprises PLC3 from legumes. Finally, 

Figure 1. Phylogenetic tree of PLCs from plants. The phylogeny was reconstructed based on an alignment and was made
by using the maximum parsimony method, with 1000 bootstrap replicates; the results were visualized using MEGA X and
ITOL. Group A comprises PLC2 and PLC7; group B comprises PLC1 and PLC3; group AB comprises PLC1, PLC2, and PLC3
from Gramineae; group C comprises PLC4; group D comprises PLC6 and PLC5 from Solanaceae together with AthPLC6;
an exclusive group C’ comprises PLC4 from Gramineae; and group D’ comprises PLC3 from legumes. Finally, the moss
Physcomitrella forms an external group. The numbers at the nodes are the bootstrap values (>50%), and the branch lengths
from the root are displayed.

PLCs from plants presented a simple general structure with catalytic X and Y domains,
an EF domain, and a C2 lipid-binding domain [63]. PLCs depend on the Ca2+ concentration
in vitro (in a micromolar or millimolar range) [64], and are assumed to be in vivo substrates
of PtdIns(4,5)P2 or PtdIns(4)P [33]. The I-TASSER suite was employed in a hierarchical



Plants 2021, 10, 921 4 of 16

approach to protein structure prediction and structure-based function annotation, and
full-length atomic models of multiple PLCs were reconstructed by iterative template-based
fragment assembly simulations (with server https://zhanglab.ccmb.med.umich.edu/I-
TASSER/, accessed on 16 March 2021 [65]). PLCs from Arabidopsis and others showed
the characteristic catalytic X and Y domain organization that forms a TIM barrel-like
structure essential for their phosphoesterase activity [33]. AthPLC1 showed structural
features that included an open TIM barrel-like (OBL; Figure 2) or a non-fist-like structure,
while AthPLC3 featured an OBL structure modified without a lid (OBLm; Figure 2) or a
non-fist-like structure without a thumb. AthPLC2 showed a closed TIM barrel-like (CBL;
Figure 2) or a closed-fist structure, while AthPLC4 presented as a CBL structure with
a handle (CB+H; Figure 2) or a closed-fist structure with a raised pinky, and AthPLC6
had a TIM barrel-like structure with or without a rod (CB-R; Figure 2) or a closed-fist
structure without fingers. AthPLC7 showed a similar open TIM barrel-like structure as
AthPLC1 and AthPLC5, while AthPLC8 and AthPLC9 were shown to have modified or
incomplete TIM barrel-like structures with a handle (CB+Hm: Figure 2). In accordance
with the phylogenetic arrangement, AthPLC1 and AthPLC3 shared an open TIM barrel-like
structure to form clade type A (Figure 1). While AthPLC2 showed a closed TIM barrel-like
structure, AthPLC7 did not; however, they shared a defined TIM barrel-like structure
with small differences when grouped into clade type B (Figure 1). With respect to other
PLCs, these PLCs showed changes in their TIM barrel-like structures or incomplete TIM
barrel-like structures via modifications to the beta-sheet motif that resembled a bent thumb
in AthPLC5 or an incomplete TIM barrel-like structure in AthPLC8 and AthPLC9; they
all formed group C together with AthPLC4 (Figure 1). An exceptional case was AthPLC6,
which resembles a rodless barrel and lacks internal beta sheet motifs inside the catalytic
X and Y domains. With respect to other PLCs, these structures resembled PLCs from
Arabidopsis, with an exception being PLC6 from Solanaceae, which presented an extra
domain that resembled an external cap-like domain [40,66–68], and another strap-like
domain similar to some Gramineae, such as great millet and foxtail millet. These protein
clusters suggested different adaptative strategies in Solanaceae with respect to other plants,
similar to monocots. Therefore, we hypothesized that different functions in transduction
signaling based on specific PLC structures should be tested in the future.
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With respect to other motifs, many proteins share a particular type of calcium-binding
domain, known as the EF-hand. The EF-hand consists of an alpha-helical motif loop flanked
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on both sides by three other alpha-helical motifs, such as a spring domain. Some Glu or
Asp residues are involved in ligand binding to Ca2+ and provoke a conformational change
for activation or inactivation of the catalyzed enzymatic reactions for these enzymes [69].
The PLCs presented three types of EF-hands that resembled the thumb domain (Figure 2).
While AthPLC1, 3, 4, and 7 showed thumb-up domains (TUs), AthPLC6 showed a bent-
thumb domain (BT), and AthPLC2, 5, 8, and 9 showed no thumb domains (NT). Finally,
the C2 lipid-binding domain was present in some PLCs from plants.

2.3. Nonspecific Phospholipase C

Whereas, PLCs use phosphoinositide specificity, nonspecific phospholipase C (NPC) uses
common phospholipids, such as phosphatidyl-choline (PC) and phosphatidyl-ethanolamine
(PE), as substrates to produce DAG and a corresponding phosphate-containing polar
head group [70]. In addition to their inherent signaling functions, NPCs also play a
role in lipid metabolism [33]. Based on sequence similarity with bacterial PC-PLC, six
NPC genes (NPC1–NPC6) were identified in the Arabidopsis genome. NPCs possess a
phosphoesterase domain necessary for esterase activity and three unknown domains that
are highly conserved with a bacterial (Mycobacterium tuberculosis) PC–PLC [71]. The NPC
backbone consists of a β-sheet surrounded by seven α-helixes and is in the non-membrane-
spanning region. NPC participates in signaling, lipid metabolism, and development [72,73],
and is involved in stress conditions, such as phosphate starvation [71], salt stress [72,74,75],
aluminum toxicity [76–78], heat stress response [79], and infections with pathogens, such
as Pseudomonas syringae [80].

2.4. Phospholipase D

PLD hydrolyzes phospholipids at the terminal phosphodiester bond, generating a free
head group and PA. PLD mainly uses PE or PC, as well as others, as a substrate to produce
PA, which alongside DGPP can be employed as a second messenger during signaling in
plants [33]. PLDs participate in signaling, transport, and membrane degradation and are
involved in stress conditions, such as drought stress (dehydration and salt stress), freezing,
wounding, and pathogen interactions [81].

2.5. PLD Structure

PLDs have been organized into five subfamilies (α, β, γ, δ, ε and ζ), 12 of which have
been described in Arabidopsis (Figure 3). PLD has two highly conserved domains called
PLDc that are essential for its phosphoesterase activity [82]. While a characteristic C2
lipid-binding domain has previously been shown, C2-PLDs include PLDα, PLDβ, PLDγ,
PLDδ, and PLDε and utilize PC, PE, and phosphatidylglycerol (PG) as substrates, but
with different preferences [33]. PLDζ lacks the C2 domains and includes a pleckstrin
homology (PH) domain near the N-terminus; it selectively uses PC as a substrate [83].
In plants, multiple PLDs have been found, such as in Arabidopsis (AthPLDα1-3, β1-2,
γ1-3, δ, ε and ζ1-2; [83]) (Figure 3), grapevine (VviPLDα1-3(5), β(1), γ(1), δ1-3(3), ε(1)
and ζ(1); [41]), peach (PpePLDα1-3(3), β(1), γ(1) δ1-2(2), ε(1) and ζ1-2(2); [42]), papaya
(CpaPLDα1,3(2), β(1), γ1-1(2), δ1(2), ε(1) and ζ1-2(2); [43]), cucumber (CsaPLDα1-3(3),
β(1), γ(1), δ1-2(2), ε(1) and ζ1-2(3); [44]), cassava (MesPLDα1-3(3), β(1), γ(1), δ1-3(7),
ε(1) and ζ1-2(3); [45]), robusta coffee (CcaPLCDα1-3(4), β(1), γ(1), δ1-3(3), ε(1) and ζ1-
2(2); [46]), black cottonwood (PotPLDα1-3(7), β1-2(2), γ(1), δ1-3(7), ε(1) and ζ1-2(3); [47])
and an external group, the moss Physcomitrella (PpPLDα1-2(5), β1-2(2), γ1-2(2), δ(1), ε(1)
and ζ(2); [48]). For some Solanaceae, different isoforms have been registered in potato
(StuPLDα1-3(6), β1-2(2), γ(1), δ1-3(5), ε(1) and ζ1-2(2), tomato (SolPLDα1-3(6), β1-2(2), γ(1),
δ1-3(5), ε(1) and ζ1-2(2), eggplant (SmePLDα1-3(5), β1-2(2), γ(1), δ1-2(4), ε(1) and ζ1-2(2),
pepper (CanPLCDα1-3(5), β1-2(2), γ1-2(2) δ1-3(4), ε(3) and ζ1-2(3), benthi (NbePLDα1-
3(6), β1-2(4), γ1-2(2), δ1-3(8), ε(2) and ζ1-2(3), tobacco (NtaPLDα1-3(7), β1-2(4), γ1-2(2),
δ1-3(9), ε(1) and ζ1-2(4) and petunia (PinPLDα1-3(5), β1-2(2), γ(1), δ1-3(5), ε(1) and ζ1-
2(2). For Gramineae, some isoforms have been registered in rice (OsaPLDα1-3(7), β(1),
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γ(1), δ1-3(3), ε(1) and ζ1-2(3) [84–94], stiff brome (BrdPLDα1-3(4), β1(2), δ1-2(2), ε(1) and
ζ1-2)(3), great millet (SbiPLDα1-3(6), β(1), γ(1), δ1-2(2), ε(1) and ζ1-2(4), foxtail millet
(SitPLDα1-3(5), β1(1), γ(1), δ1-2(3), ε(1) and ζ1-2(3) and maize (ZmaPLDα1-3(5), β(1),
δ1-2(3), ε(1) and ζ1-2(3) [95–102]. Finally, leguminous isoforms have been registered in
soybean (GmaPLDα1-3(3), β1-2(3), γ(1), δ1(3), ε(2) and ζ1-2(3) [103–105], and wild legumes
(LjaPLCDα1-3(6), β1-2(4), γ1-2(2), δ1-3(7), ε(3) and ζ1-2(4).
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PLDs from plants contain two duplicated catalytic HKD (PLDc) motifs that interact 
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at approximately residue 130, which acts as a binding site for Ca2+ [83]. The Simple 
Modular Architecture Research Tool (SMART; http://smart.embl.de, (accessed on 16 
March 2021) was employed as a web resource for the identification and annotation of 
protein domains and the analysis of protein domain architectures [106]. All PLDs have the 
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Figure 3. Phylogenetic tree of PLDs from plants. The phylogeny was reconstructed based on an
alignment and was made using the maximum parsimony method, testing with 1000 bootstrap
replicates and displayed using MEGA X and ITOL tools. They were shown as follows, for PLDα in
blue [1 and 2 (dark ones) and 3 (light one)], PLDβ in dark green, PLDγ in light green, PLDδ in red,
PLDε in purple, and PLDζ in gray. Finally, in an external group, the moss Physcomitrella; the numbers
at the nodes are the bootstrap values (>50%), and the branch lengths from the root were displayed.

PLDs from plants contain two duplicated catalytic HKD (PLDc) motifs that interact
with each other to form the active site, a C2 lipid-binding domain close to the N-terminus at
approximately residue 130, which acts as a binding site for Ca2+ [83]. The Simple Modular
Architecture Research Tool (SMART; http://smart.embl.de, accessed on 16 March 2021)
was employed as a web resource for the identification and annotation of protein domains
and the analysis of protein domain architectures [106]. All PLDs have the PLDc motif or
HKD, but some isoforms have lost motifs (Figure 4). AthPLDα, β, γ, δ and ε showed C2,
but not PH domains, while PLDζ showed PH, but not C2 domains [107–126]. In general,
all PLDs from plants followed this trend, with the exception of extra PLDc2 and Phox
homology (PX) domains in some PLDζs in Gramineae, such as stiff brome, great millet,
foxtail millet, and maize, but not rice, and other types of different domains, such as RPTs,
as internal repeats. When in Arabidopsis, all PLD structures were compiled using a swiss-
model platform based on a crystal structure from AthPLDα1 called 6KZ9, as a template for
the rest PLDα, β, γ, δ and ε, and finally, a structure of a catalytic domain from Human PLD
named 6u8z and 6ohr were used as a base for PLDζ1 and 2, respectively (Figure 4). All
PLDα, β, γ, δ and ε showed a similar structure to AthPLDα1, but with slight modifications,

http://smart.embl.de
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such as being without an internal alpha helical and without C2 domain structure in PLDζ1
and 2, respectively.
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3. Phospholipid Signaling Responses Mediate the First Step during Immune
Responses in Plants

Phospholipases have long been associated with responses to stress. As the first barrier
against environmental agents, PLs crosstalk with PA and IP3 because they are involved
in signaling events within many organisms [2,127–129]. Elicitors, such as peptidoglycans
(PGNs) and lipopolysaccharide (LPS), from bacterial cell envelopes, bacterial elongation
factor thermo-unstable (EF-TU), flg22 (a 22-amino acid peptide derived from bacterial
flagellin), chitin from fungal cell walls, and glucans and glycoproteins in oomycetes have
been linked to responses to biotic stress [130]. These elicitors can trigger physiological and
morphological changes and generate reactive oxygen species (ROS) [10].

3.1. The Roles of PLCs in Immune Responses

Today, more evidence suggests that the PI-PLC family is required for HR-mediated
defense responses by the induction of ETI- or PAMP-triggered immunity. Elicitor-induced
PA accumulation was reduced by inhibitors of PLC activity, such as neomycin and U73122,
and ROS production in tobacco cells was elicited [37,131]. A rice PLC isoform, OsPI-PLC1,
was used to evaluate an incompatible interaction between a resistant genotype of rice
and Magnaporthe grisea; its expression was only induced in BTH-treated rice seedlings
or Xanthomonas oryzae-treated cell suspension cultures, suggesting that OsPLC1 plays
important roles in signaling pathways leading to disease resistance in rice [132,133].

However, PLC isoforms from tomato, SlPLC2 and SlPLC5, showed increased transcript
levels upon inoculation with Cladosporium fulvum or when they were induced with fungal
elicitors, such as xylanase or chitosan, suggesting general roles of SlPLC2 and SlPLC5 in
the activation of plant defense responses with the involvement of nitric oxide (NO) in the
regulation of these PLC genes and the subsequent defense response [27,134]. For SlPLC2,
a role in the interaction with the necrotrophic fungus Botrytis cinerea was proposed, due
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to the increase in SlPLC2 transcript levels together with those of SlPLC3, SlPLC4, and
SlPLC5 when specimens were inoculated with the necrotrophic fungus. PLC2 silencing via
infection with tobacco rattle virus (TRV) also resulted in the reduced production of reactive
oxygen species [135]. Previously, SlPLC2 was involved in the xylanase-induced expression
of an SA-dependent PR-1a gene when SlPLC2-silenced plants were used, indicating that
it plays a role in SA signaling [27,135]. All these data point to a nascent role of PLCs in
biotic stress-related functions in which localized oxidative burst-dependent PA is required
to infect the host.

Previous experiments demonstrated that SlPLC6 is important for resistance protein
signaling following infections with C. fulvum, Verticillium dahlia, and Pseudomonas syringae,
while SlPLC4 is specifically and individually involved in the induction of a hypersensitive
response (HR) triggered upon the detection of Avr4-carrying Cladosporium fulvum by the
Cf-4 resistance protein [136]. In addition, the heterologous expression of SlPLC4 results
in accelerated Avr4/Cf-4-induced HR in N. benthamiana [3]. For NbPLC2 from Nicotiana,
increased susceptibility was registered when NbPLC2-silenced plants were challenged
with a virulent strain of Ralstonia solanacearum. Plants confronted with infections with R.
solanacearum, hrp-deficient R. solanacearum, P. fluorescens, or flg22 showed elevated NbPLC2
transcript levels [137]. In contrast, silencing NbPLC2s negatively affected the expression
of PTI reporter genes, such as NbPR-4 (a marker gene for jasmonic acid signaling), and
decreased the levels of jasmonic acid and jasmonoyl-L-isoleucine after inoculation [137].
In addition, transcriptional dysregulation by several PTI inducers and effectors, oxidative
burst, stomatal closure, and callose deposition were all reduced in the silenced plants.
Silencing NbPLC2s negatively affected the expression of PTI reporter genes, which could
mediate immune responses, leading to the suppression of bacterial infections [137].

3.2. The Action of PLDs in Cases of Biotic Stress

Current data indicate that PLDs produce the majority of pathogen-induced PA, and
the individual contributions of different PLD isoforms to plant defense responses and
their crosstalk with other signals are great challenges to resolve [138]. Some studies have
reported decreased HR after recognition of elicitors via partial inhibition induced by n-
butanol and several single-knockout PLD mutants. In particular, the PLDα, PLDβ, PLDγ
and PLDδ isoforms displayed a related HR phenotype in the presence of n-butanol [139].
PLDα1-derived PA together with NADPH oxidase and heterotrimeric Gβ subunit (AGB1)
proteins are required and function, in the same way, to fully resist different P. syringae pv.
tomato DC3000 (avrRpm1) strains [140].

The establishment of the PLDβ1-deficient P. syringae pathosystem revealed lower lev-
els of pathogen-induced PA production and increased levels of the lysophospholipids LPC,
LPE, and LPG, which are involved in the pathogen- and wounding-induced responses [5].
PLDβ1-deficient plants exhibited increased resistance to PstDC3000, but increased suscep-
tibility to Botrytis cinerea combined with an increase in PLA activity, suggesting crosstalk
between the PLD and PLA pathways in plant-pathogen interactions [5]. Tomato LePLDβ1
was induced by fungal elicitors, and RNAi knockdown of LePLDβ1 resulted in increases
in the defense response and ROS production in PLDβ-suppressed tomato cells [81]. Knock-
down of PLDß1 in rice increased resistance against Pyricularia grisea and Xanthomonas
oryzae pv. oryzae cinerea, and the accumulation of reactive oxygen species in the absence of
pathogen infection suggest that PLDß1 is a negative regulator of the immune response [141].
The pldγ1 and pldγ3 mutants had significantly elevated cell death responses following
AvrRpm1 recognition [139].

Finally, PLDδ isoforms were more resistant against the penetration of nonadapted
powdery mildew fungi (Blumeria graminis f. sp. Hordei, Bgh), while n-butanol-mediated
inhibition of PA production by PLD action increased the penetration rate of Bgh spores on
leaves [142]. The mode of action was discovered with PLDδ knockout plants, where they
caused losses of ETI-induced and cell wall-based defense against Pst DC3000 (AvrRpm1) or
a loss of MTI-induced cell wall-based defense against the nonhost powdery mildew Erysiphe
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pisi, suggesting the roles of PLD in plant–microbe interactions and defense responses [139].
Finally, a multitude of PLD isoforms in the HR triggered by elicitors are involved in
triggering cell wall-based defenses against pathogen infection and suggest that different
PLDs present in common physiological processes have different modes of action.

3.3. The Action of PLCs in Viral Replication

During the replication of red clover necrotic mosaic virus (RCNMV) in Nicotiana
benthamiana, NbPLDα, and NbPLDβ and their derived PA were required for viral RNA
replication. Consistent with these data, exogenous application of PA enhanced viral RNA
replication in plant cells and plant-derived cell-free extracts [143]. Finally, curated PlaD
data were analyzed, and the global landscape of public pathogenesis-related genes from
the model plant Arabidopsis and three major crops (maize, rice, and wheat) was explored.
Here, only PLAs, not PLDs or PLCs, were induced by viral treatment [68].

4. Phospholipid Signaling Response as a Means to Alleviate Other Stresses

Phospholipid signaling can contribute to the regulation of other stresses, potentially
playing an important role in responses to abiotic stress. For PI-PLC isoforms, all AtPLCs,
with the exception of AtPLC8, showed increased or decreased transcriptional expression
in some microarrays in response to various environmental stimuli, such as cold, drought,
salinity, water deficit or dehydration, heat stress, or thermotolerance [40–74].

4.1. Roles of PLC in Temperature Changes

An example of the role of phospholipids, such as phosphatidylinositol in the binding
of signaling-related proteins, was observed through phosphorylation assays after 15 min
of cold exposure, suggesting that phospholipids are part of the very early response after
temperature drop [144]. One of the molecules considered a signaling molecule regulated
by cold is PA, a product of DAG and the hydrolysis of PI(4,5)P2 by enzymes, such as PLC2.
With respect to temperature changes, AtPLC3 and AtPLC9 were shown to play roles in
thermotolerance by increasing IP3 levels with changes to intracellular Ca2+ and presented
an additive effect on regulating heat stress [145–147].

4.2. Roles of PLC in Osmotic Stress

Plants use different strategies to cope with osmotic stress, and lipid signaling has been
implicated as one of the factors in various plant systems. PLC3 overexpression conferred
tolerance to drought stress accompanied by decreased sensitivity to ABA-induced stomatal
closure in Arabidopsis thaliana and other plants, such as maize and tobacco [148]. PLC4 in
Arabidopsis thaliana has been described as a negative regulator of signaling, such as salt-
induced Ca2+ signaling [149]; similarly, the action of PLC9 is implicated in changes in IP3-
mediated regulation of heat tolerance and Ca2+ requirements [145]. In rice, OsPLC1 elicited
Ca2+ signals regulating salt tolerance, as OsPLC1 was translocated from the cytosol to the
plasma membrane, where it can hydrolyze PtdIns4P [150]. Overexpression of PI-PLC2
from Brassica napus into canola induced significant changes in the expression profiles of
stress-related genes and enhanced drought tolerance [151]. Additionally, overexpression of
ZmPI-PLC1 enhanced the grain yield of maize under drought conditions, while suppression
of ZmPI-PLC1 had the opposite effect [152].

4.3. Action of PLD in Osmotic and Drought Stresses

In plants, osmotic stress-triggered stomatal closure requires PLD action and crosstalk
with third-messenger gaseous signaling molecules, such as hydrogen sulfide (H2S) in
Arabidopsis thaliana. PLDα1 and H2S alleviate osmotic stress by suppressing ROS and
maintaining membrane integrity [153]. When PLDδ was associated with a wider stomatal
aperture under osmotic stress, a lower H2S content or expressed L-cysteine desulfhydrase
was shown (LCD; [154]). In both cases, PLD action enhances the alleviation of osmotic
stress by triggering stomatal closure, which could reduce transpiration, prevent water
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loss, and maintain cell turgor pressure under drought stress [153,154]. Li and colleagues
reported lipid profiling results and revealed that PLDδ contributed approximately 20% of
the phosphatidic acid produced in plants during freezing and that overexpression of PLDδ
increased the production of phosphatidic acid species [144]. Moreover, the knockdown of
PLDα1 was related to a decrease in the level of PA during freezing-induced hydrolysis of
phosphatidylcholine, whereas overexpression increased freezing tolerance [155]. PLDα1
deficiency rendered plants insensitive to ABA and induced stomatal closure [156]. Knock-
out of PLDα3 rendered Arabidopsis more sensitive to salt stress, while overexpression
of PLDα3 enhanced salt tolerance. It has been proposed that PLDα3 positively mediates
plant responses to hyperosmotic stresses in a negative manner in response to ABA [157].
Currently, there is another interesting interaction in plants that is mediated by PLs ac-
tion and nitric oxide (NO). NO enhances tolerance to abiotic stress by increasing proton
pump and/or antiport activities and reducing hydrogen peroxide (H2O2) levels; a PLD
inhibitor (1-butanol) diminishes these effects. This suggests an important role of PLD signal
transduction in this process [158–160].

5. Conclusions and Perspectives

In this review, information on phospholipases was compiled for a wide range of plant
species. Analyses of the phylogenetic relationships, protein structures, and domains of
PLCs indicated that PI-PLCs were highly conserved compared with their homologous
genes. Additionally, other PC-PLCs (NPCs) and PLDs were analyzed, which showed that
PLs may have important functions in signal transduction during biotic and abiotic stresses.
Taken together, these results provide useful information for further study of the roles
and functions of PLs in plants under environmental stress conditions, including innate
immune responses.
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