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Abstract: Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation
for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards
several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with
sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both
osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate
and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium
hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In
addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However,
none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and
Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion.

Keywords: chitosan; sodium hyaluronate; PEGDE; antibacterial; Escherichia coli; Enterococcus faecalis;
Staphylococcus aureus; Salmonella typhimurion

1. Introduction

Chitosan (CHT), the main derivative of chitin, is a natural linear polycation that ex-
hibits biocompatibility [1], anti-inflammatory [2], antimicrobial [3,4], hypocholesterolemic [5],
immunostimulant [6], antitumor activity [7], antioxidant, and anticancer properties [8].
However, in order to improve some of their properties it tends to be modified by using
the free amino groups on the D-glucosamine repeating unit. In this way, novel crosslink-
ing agents has been used to improve their mechanical properties or sometimes specific
functional groups have been incorporated to render them more water soluble. In addition,
several approaches made use of the addition of a second synthetic or natural polymer
including hyaluronic acid or its sodium salt. Hyaluronic acid (HA) is a glycosaminoglycan
consisting of repeating units of a linear polyanionic polysaccharide composed of alternating
disaccharide units of α-1, 4-d-glucuronic acid and β-1, 3-N-acetyl-d-glucosamine [9,10]. It
is found in the extracellular matrix (ECM) of all living tissues, in different concentrations
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and molecular weights, being more abundant in tissues subjected to mechanical loads,
such as cartilage, dermis, and vocal cords [11]. HA plays a key role in cell division and mi-
gration, angiogenesis, wound healing, and tissue regeneration. Due to its biocompatibility,
biodegradability, and susceptibility to chemically modification, it is of great interest for its
potential in the field of bone tissue engineering [11]. A way to modify the properties of a
polymer with hyaluronic acid is through polyelectrolyte complexation where HA can be
combined with natural polymers such as collagen or chitosan [12,13].

In this regard, it has been reported that the introduction of hyaluronic acid on chitosan
scaffolds, improves cell proliferation, and extracellular matrix synthesis (ECM) [14]. In
addition, chitosan/acid hyaluronic sponges loaded with fibrin nanoparticles and VEGF
promoted endothelial cell proliferation as well as capillary tube formation [15]. Chitosan-
co-Hyaluronic acid cryohydrogels used as a scaffolds showed higher cell proliferation by
increasing hyaluronic acid content [16]. Similarly, CHT/HA scaffolds promoted cellular
adhesion of chondrocytes [17], pre-osteoblast [18], and have potential uses in cartilage for
tissue engineering applications. Finally, Chitosan/HA blends have been suggested as a
stable anti-fouling surface [19].

Chitosan is also identified as a potent antimicrobial and antibiofilm polymer [4,20].
These properties are attributed to the electrostatic interactions between the positively
charged group of chitosan and the negatively charged components of the biofilm matrix
such as DNA, proteins, and lipids [20]. In addition, the antimicrobial activity of chi-
tosan can be influenced by factors such as molecular weight, degree of deacetylation, pH,
temperature, and solvent of the chitosan, among others [3,21,22].

The antimicrobial properties of CHT/HA have been reported as an unfilled matrix or
loaded with bactericidal particles (silver, ZnO), antibiotics (gentamicin, penicillin G), and
antimicrobial peptides (AMP). For example, interpenetrated hydrogels made of chitosan
and hyaluronan exhibited activity against Staphylococcus aureus [23–25].

Therefore, the combination of CHT and HA is expected to render a polymer blend
with improved osteocompatibilty. However, it is not clear if this association will affect
the antibacterial properties of CHT as it is known that CHT kills Gram-negative and
Gram-positive bacteria [3] by forming complexes with the anionic phospholipid bacterial
membrane [26,27].

2. Materials and Methods
2.1. Materials

Chitosan (CHT) with a medium molecular weight and a degree of deacetylation of
84.1%, polyethylene glycol diglycidyl ether (Mn 500), and glutaraldehyde (GA) solution
Grade II, 25% in H2O were purchased from Sigma-Aldrich. Sodium Hyaluronate (HNa)
Oral Grade LMW was obtained from Bioibérica (Barcelona, Spain) whereas acetic acid was
provided by J.T. Baker (Xalostoc, Mexico). MTS CellTiter 96® Aqueous Non-Radioactive
Cell Proliferation kit was supplied by Promega (Madison, WI, USA). Human osteoblast
hFOB1.19 from ATCC® CRL-11372™ (Manassas, VA, USA) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) provided by Biowest (Riverside, MO, USA). For the
antimicrobial assays, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 51299, Staphy-
lococcus aureus ATCC 25923, and Salmonella typhimurion ATCC 14028 were used.

2.2. Preparation of Chitosan-HNa Films

Chitosan scaffolds were prepared by dissolving CHT in 0.4 M acetic acid for one hour
and then HNa, corresponding to concentrations of 15% and 30%, was added and stirred for
another hour. The final solution was poured into plastic Petri dishes and dried at 25 ◦C, for
approximately 7 days, until the acetic acid was completely evaporated. The uncrosslinked
films were neutralized with sodium hydroxide solution (5 wt.%), washed with distilled
water, and dried again at 25 ◦C. Crosslinked films were obtained by crosslinking with either
PEGDE (PEGDE1: 0.114 mM (50 µL), PEGDE2: 0.228 mM (100 µL), PEGDE3: 0.342 mM
(150 µL), and glutaraldehyde (GA) as reported before [28]. Opaque samples were obtained
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initially, and they became transparent after NaOH neutralization. Table 1 summarizes the
composition studied.

Table 1. Composition of chitosan (CHT) films, CHT/HNa at 15% and 30% films crosslinked with
glutaraldehyde (GA) and polyethylene glycol diglycidyl ether (PEGDE).

Films % CHT
mg

HNa
mg

Crosslinking Agent
µL

Chitosan- Sodium Hyaluronate 15 200 30 -
Chitosan- Sodium Hyaluronate 30 200 60 -

Chitosan- Sodium Hyaluronate-PEGDE 1 15 200 30 50
Chitosan- Sodium Hyaluronate-PEGDE 1 30 200 60 50
Chitosan- Sodium Hyaluronate-PEGDE 2 15 200 30 100
Chitosan- Sodium Hyaluronate-PEGDE 2 30 200 60 100
Chitosan- Sodium Hyaluronate-PEGDE 3 15 200 30 150
Chitosan- Sodium Hyaluronate-PEGDE 3 30 200 60 150

Chitosan- Sodium Hyaluronate-GA 15 200 30 150
Chitosan- Sodium Hyaluronate-GA 30 200 60 150

2.3. Composition and Structural Characterization of PEGDE Crosslinked CHT/HNa Films
2.3.1. Fourier-Transform-Infrared Spectroscopy (FTIR)

Fourier transform infrared (FTIR) spectra of the films were recorded by using a
Thermo Scientific Nicolet 8700 FT-IR spectrometer (Madison, WI, USA) with Zinc Selenide
attenuated total reflectance (ATR) accessory. The spectra were obtained in the spectral
range of 4000 to 650 cm−1 averaging 100 scans with a resolution of 4 cm−1.

2.3.2. Raman Spectroscopy

Raman spectra were collected using the InVia™ Raman Renishaw microscope (Wotton-
under-Edge, Gloucestershire). A 633 nm laser was used at 50% power. The samples were
examined in the spectral range of 100 to 3200 cm−1 with 2 accumulations, 1800 grid, 50×
objective, with an exposure time of 10 s.

2.3.3. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was performed in a TGA 8000™ from Perkin-Elmer
(Waltham, MA, USA) in the temperature range 50–700 ◦C and under continuous flow of
dry nitrogen at a heating rate of 10 ◦C/min.

2.3.4. X-ray Diffraction (XRD)

X-ray diffraction patterns of films were analyzed using a Bruker D-8 Advance X-ray
diffractometer (Karlsruhe, Germany) over a 2θ range from 5◦ to 60◦, a step size of 0.02,
a scan speed of 6 s, 40 mV, and 55 mA.

2.4. Surface Properties of PEGDE Crosslinked CHT/HNa Films
2.4.1. Scanning Electron Microscopy (SEM)

The morphology of film surface was characterized by using a JEOL, JMS 6360LV (Ak-
ishima, Tokyo, Japan) with an accelerating voltage of 20 keV. The samples (1 cm diameter)
were coated with a thin layer of gold in a Denton Desk II Sputter Coater (Moorestown,
NJ, USA) (50 s, 40 mA) before the observation. In addition, Energy-dispersive X-ray spec-
troscopy (EDX) (Oxford Instruments, INCA X-Sight 7582, High Wycombe, UK) coupled
with the microscope, was used to obtained elemental surface composition. At least three
different locations (top, middle, and bottom) were scanned, and the average reported.

2.4.2. X-ray Photoelectron Spectroscopy (XPS)

Elemental composition on film surfaces was also obtained by X-ray Photoelectron
Spectroscopy. The XPS analyses were performed using a Thermo Scientific K-Alpha X-ray
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Photoelectron Spectrometer (Waltham, MA, USA), equipped with an AlEs cathode, without
erosion. Survey spectra were acquired over a binding energy range of 0 to 1100 eV, using
a pass energy of 50 eV. High-resolution spectra for the C1s, O1s, N1s regions were also
obtained. Elemental composition (at.%) was calculated from the integrated intensities of the
XPS peaks, which considered the atomic sensitivity factors of the instrument data system.

2.4.3. Atomic Force Microscopy (AFM)

To calculate the surface roughness of the samples (Ra), AFM analysis was performed
using a Bruker INNOVA AFM scanning probe microscope (Santa Barbara, CA, USA.), with
a commercial silicone tip (RTESP nanoprobe Bruker) at a resonance frequency of 300 kHz,
a spring constant of 40 N/m, and 8 nm tip radius. A statistical analysis was conducted
to obtain the roughness on the scanned 50 µm × 50 µm area at the scanning frequency of
0.5 Hz while roughness was calculated for each subarea using the Nanoscope Analysis
software. The statistical average and the standard deviation of the roughness of each type
of sample was reported considering 12 measurements.

2.4.4. Contact Angles

A ramé-hart model 250 goniometer/tensiometer with DROPimage Advanced v2.8
(Succasunna, NJ, USA) was used to measure the contact angle on the surface of the chi-
tosan films. For this, a 10 mm × 60 mm film was placed on the measuring surface and
then 5 µL of either distilled water or Dulbecco’s Modified Eagle’s Medium (DMEM) were
dispensed on the surface of the film and the measurements recorded at 25 ◦C. Ten repli-
cates per sample were averaged, the image of the water or DMEM droplet was captured
within 10 s of delivery. The contact angle was measured automatically using computer
integrated software.

2.5. Biological Studies
2.5.1. Cell Viability Assay

The viability of human osteoblast ATCC hFOB1.19 cultured on the chitosan film was
determined using the MTS assay. Before cell seeding, 10 mg samples (n = 5) were sterilized
by UV irradiation for 15 min each side and then seeded at 2 × 103 cells/scaffolds in a
96-well plate. The seeded cells were incubated at 37 ◦C, 5% CO2, and 95% humidity for
48 h. A positive control was included, which comprised cells with only culture medium
(C+) and hydrogen peroxide as negative control (C−) with the target with MTS solution.

After 3 h of MTS incubation with the cells, the light absorbance at 490 nm was
measured by a multi-well spectrophotometer (Thermo Scientific™) and subtracted from
that of the controls to yield the corrected absorbance.

Cell adhesion was followed by SEM using both direct and indirect methods. Osteoblast
(2 × 104 cells/mL) were seeded in a 24-well plate and then either grown on 10 mg films
for direct contact analysis or by using 300 µL of extracts, obtained from each sample, and
deposited on glass discs for indirect contact assay. For this, they were incubated at 37 ◦C,
5% CO2 and 95% humidity for 48 h. After osteoblast culture, samples were washed twice
with PBS, and fixed in 25% glutaraldehyde, for 2 h. Subsequently, the samples were washed
three times for 10 min with PBS and dehydrated in gradual series of ethanol (70, 80, 90%
and absolute ethanol) for 1 h for each percentage. The fixed cells were observed in a JEOL
brand Scanning Electron Microscope, JSM-6360 LV, at different amplifications (500×) using
a voltage of 20 kV, on a cold stage at −20 ◦C.

2.5.2. Antimicrobial Activity Assays

Two types of antimicrobial assays were performed. For the first method, Escherichia
coli, Enterococcus faecalis, and Staphylococcus aureus were used. Each strain was cultured on
blood agar media by simple striated method. Petri dishes were incubated during 12 h at
36 ◦C. For inoculum preparation, a sample of the strains were deposited in Falcon conical
tubes containing 5 mL Mueller–Hinton broth and incubated again for 12 h at 36 ◦C. Then,
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three morphological similar CFU of each strain were placed on 5 mL of sterile NaCl 0.9%
solution and adjusted to McFarland 0.5. This final, bacteria concentration was re-seeded on
Petri culture dishes.

The Kirby–Bauer method was used to assess the bacterial sensibility of the CHT/HNa
PEGDE crosslinked biomaterial. For this, a sterile swab was immersed in the inoculum
and was deposited by simple striated method on agar Mueller–Hinton. After 3–5 min,
6 mm discs were placed on the agar surface and incubated at 35 ◦C for 18–24 h. Antibiotic
impregnated Sensidiscs™ were used as control using Amoxicilin/clavulanic acid for E. coli,
y Ciprofloxacin for E. faecalis, and Cefuroxim for S. aureus. An inhibitory halo higher than
8 mm was considered and inhibitor of bacterial growth.

For the second antimicrobial assay S. typhimurion was cultured in nutrient broth for
reactivation at 37 ◦C for 24 h. Bacterial suspensions were prepared by diluting bacterial
strains with Mueller–Hinton broth (MHB) prepared in Petri dishes using 100 µL of the
suspension of each bacterium separately at a concentration adjusted with saline solution
of 105 CFU/mL, and then the microorganisms were spread in the medium using a glass
loop. Twenty-millimeter-diameter discs of pristine chitosan, CHT/HNa 15%, CHT/HNa
15%/GA, and CHT/HNa 15%/PEGDE3 films were placed in Petri dishes containing
culture medium, previously inoculated with Mueller Hinton microorganisms. The studied
samples were incubated at 37 ◦C for 24 h and their antimicrobial activity determined as
negative or positive according to microorganism growth above or below the film when
observed directly. To distinguish the presence or absence of bacterial growth in non-
transparent films, 10 µL of p-iodonitrotetrazolium chloride solution (0.2 mg/mL) was used
as a growth indicator, after 5 min of incubation the presence of a red-pink color change
was verified as an indicator microbial growth.

3. Results and Discussion
3.1. Composition and Structure of CHT Films
3.1.1. FTIR Spectroscopy

FTIR spectra of films of pristine chitosan (CHT), pristine sodium hyaluronate (HNa),
and mixtures of CHT/HNa, CHT/HNa-PEGDE are shown in Figure 1a (15%HNa) and
Figure 1b (30%HNa), (for clarity high quality FTIR individual spectra is reported in supple-
mentary information, S1). Pristine chitosan (Figure 1a) showed the typical broad absorption
between 3677 cm−1 and 3000 cm−1 (peaks at 3350 cm−1 and 3289 cm−1), which correlate
with the O–H (from chitosan and water) and N–H vibration in N–H2 groups. At 2921 cm−1

and 2852 cm−1 absorptions corresponding to stretching C–H in C–H2 and C–H3 were
observed. The absorption band at 1647 cm−1 was related to C=O vibration in the amide I.
The band at 1558 cm−1 was attributed to C–N and N–H2 bending in amide II region. At
1419 cm−1, bands associated to C–H2 bending were observed. At 1314 cm−1, the amide III
appeared. Skeletal vibrations characteristic of the chitosan structure appeared at 1068 cm−1

and 1050 cm−1 (pyranose ring). Sodium Hyaluronate (Figure 1a) showed a broad band with
a maximum at 3307 cm−1 for films and 3294 cm−1 for the powder, which were assigned to
N–H and O–H stretch absorptions. It was also observed a peak at 2905 cm−1 and 2868 cm−1

related to CH2. Absorptions at 1734 cm−1 was assigned to carboxylic acid/carboxylate
while at 1606 cm−1 Amide I was observed, and Amide II observed as a small shoulder at
1557 cm−1. Bands at 1408, 1374, 1348, 1295, 1252 can be assigned to N–H and C–H bending
and C–N stretching. Two peaks at 1078 cm−1 and 1033 cm−1 were attributed to C–O–C
stretch as previously reported [27,29]. Finally, absorptions at 944 cm−1 and 841 cm−1 were
assigned to the pyranose ring.



Appl. Sci. 2021, 11, 1267 6 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21 
 

cm−1. Bands at 1408, 1374, 1348, 1295, 1252 can be assigned to N–H and C–H bending and 

C–N stretching. Two peaks at 1078 cm−1 and 1033 cm−1 were attributed to C–O–C stretch 

as previously reported [27,29]. Finally, absorptions at 944 cm−1 and 841 cm−1 were assigned 

to the pyranose ring. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. FTIR spectra of PEGDE crosslinked CHT films. HNa 15% (a) and HNa 30% (b). 

Chitosan and hyaluronic acid are polysaccharides, so both spectra were similar, how-

ever when blended might exhibit some differences. The cationic nature of chitosan allows 

it to interact with negatively charged polymers to form a polyelectrolytic complex (PEC) 

through ionic bonds. Ionic interactions between chitosan and hyaluronic acid can occur 

between the amine groups of chitosan and the carboxyl groups of hyaluronic acid. 

As expected, when the amount of HNa increased in the uncrosslinked blend, peaks 

from HNa tend to be more evident. For instance, a single 3300 cm−1 band was observed 

for NH and OH stretching absorptions but the bands at 2870 (CH stretching), 1552 (amide 

II), and 1370 cm−1 increased in agreement with previous works [30]. The FTIR spectra of 

uncrosslinked CHT/HNa 15% (Figure 1a) films showed a small band, which can be related 

to the carboxylate of HNa located at 1740 cm−1 but it was not observed in CHT/HNa 30%. 

The infrared spectra of the CHT/ HNa/ PEGDE crosslinked films are depicted in Fig-

ure 1a,b. When the CHT/HNa was crosslinked with PEGDE a low concentration it showed 

a single broad band peaking at 3340 cm−1. As HNa increased the band at 2871 cm−1 in-

creased while the absorption at 2919 cm−1 was reduced. Amide I appeared at 1617 cm−1, 

i.e., between CHT and HNa while Amide II was displaced to 1570 cm−1. Finally, the band 

at 1375 cm−1 increased as HNa increased. 

The main effect of crosslinking with PEGDE was two-fold. First, at both HNa con-

centrations, Amide II was reduced whereas Amide I increased. Bands located at 1552 cm−1 

for PEGDE2 and PEGDE3 crosslinked samples can also be assigned to the deformation 

vibration of the amine. Therefore, the decrease in the intensity of this band, when the con-

centration of PEGDE increases, occurs since the epoxy groups of PEGDE react with the 

amino groups of chitosan and with the carboxyl groups of HNa molecules, decreasing the 

concentration of amino groups. The second effect of PEGDE was to increase the absorp-

tion at 1370 cm−1 suggesting an increase in CH2 groups from PEGDE. 

Hwang et al. [31] analyzed the FTIR spectrum of a matrix of HA crosslinked with 

PEGDE. They indicated that the epoxy group of PEGDE can react with the groups –COOH 

(1035 cm−1) and –OH (3200–3600 cm−1) in HA to form ester and ether linkages after reacting 

Figure 1. FTIR spectra of PEGDE crosslinked CHT films. HNa 15% (a) and HNa 30% (b).

Chitosan and hyaluronic acid are polysaccharides, so both spectra were similar, how-
ever when blended might exhibit some differences. The cationic nature of chitosan allows
it to interact with negatively charged polymers to form a polyelectrolytic complex (PEC)
through ionic bonds. Ionic interactions between chitosan and hyaluronic acid can occur
between the amine groups of chitosan and the carboxyl groups of hyaluronic acid.

As expected, when the amount of HNa increased in the uncrosslinked blend, peaks
from HNa tend to be more evident. For instance, a single 3300 cm−1 band was observed
for NH and OH stretching absorptions but the bands at 2870 (CH stretching), 1552 (amide
II), and 1370 cm−1 increased in agreement with previous works [30]. The FTIR spectra of
uncrosslinked CHT/HNa 15% (Figure 1a) films showed a small band, which can be related
to the carboxylate of HNa located at 1740 cm−1 but it was not observed in CHT/HNa 30%.

The infrared spectra of the CHT/HNa/PEGDE crosslinked films are depicted in
Figure 1a,b. When the CHT/HNa was crosslinked with PEGDE a low concentration
it showed a single broad band peaking at 3340 cm−1. As HNa increased the band at
2871 cm−1 increased while the absorption at 2919 cm−1 was reduced. Amide I appeared
at 1617 cm−1, i.e., between CHT and HNa while Amide II was displaced to 1570 cm−1.
Finally, the band at 1375 cm−1 increased as HNa increased.

The main effect of crosslinking with PEGDE was two-fold. First, at both HNa concen-
trations, Amide II was reduced whereas Amide I increased. Bands located at 1552 cm−1

for PEGDE2 and PEGDE3 crosslinked samples can also be assigned to the deformation
vibration of the amine. Therefore, the decrease in the intensity of this band, when the
concentration of PEGDE increases, occurs since the epoxy groups of PEGDE react with the
amino groups of chitosan and with the carboxyl groups of HNa molecules, decreasing the
concentration of amino groups. The second effect of PEGDE was to increase the absorption
at 1370 cm−1 suggesting an increase in CH2 groups from PEGDE.

Hwang et al. [31] analyzed the FTIR spectrum of a matrix of HA crosslinked with
PEGDE. They indicated that the epoxy group of PEGDE can react with the groups –COOH
(1035 cm−1) and –OH (3200–3600 cm−1) in HA to form ester and ether linkages after
reacting with PEGDE. However, neither their study nor ours, representative bands of ester
bond formation (1730 cm−1) were observed indicating that the ratio of ester bond formation
is quite low. However, it was reported that the crosslinking of HNa and PEGDE is mainly
based on the formation of ether bonds between the hydroxyl groups of AH and the epoxy
groups of PEGDE suggesting the formation of an interpenetrated network [31].

Figure 1a,b also shows the infrared spectra of the CHT/HNa/GA crosslinked films.
When this crosslinking agent was present it was expected that NH and OH groups to
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be reduced or broaden, limiting the formation of a complex. The hydroxyl groups of
hyaluronic acid can be crosslinked with the aldehyde groups of glutaraldehyde through
an acetalization reaction while imide formation is expected for the case of GA reacting
with primary amines from CHT. In this regard, Kutlusoy et al. [16] found broad bands at
3262 cm−1 and 3247 cm−1, attributed to hydroxyl groups being this broadening related
to their chemical reaction, which was proved also by the 1639 cm−1 imide formation. In
addition, a shift from the band at 1417 to 1405 cm−1 and changes at 1375 cm−1 (CH2)
during GA crosslinking were also observed. In our study, samples crosslinked with GA,
the band located at 1630 cm−1 was observed with less intensity in comparison to the band
at 1550 cm−1.

3.1.2. Raman Spectroscopy

Figure 2 shows Raman spectra of chitosan mixed with 15% and 30% of HNa, crosslinked
with either (GA) or crosslinked PEDGE. Pristine chitosan is reported to exhibit intense
peaks at 2924 and 2885 for C–H stretching vibrations; medium intensity peaks at 1419,
1376, shoulder at 1340 cm−1 for C-H bending vibrations, 1116 and 1094 cm−1 and 925 and
898 cm−1 for the pyranose ring. Finally, small intensity peaks at 1666, 1634, 1535, cm−1

for amide I and II, respectively [32,33]. We observed peaks at 2930, 1604, 1411, 1382, 1115,
1093, 925, and 898 cm−1 absorptions (see supplementary information, S2) in agreement
with previous studies.
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Figure 2. (a) Raman spectra of PEGDE crosslinked CHT films. HNa 15% (a) and HNa 30% (b).

On the other hand, pristine HNa spectra (see supplementary information, S3) showed
five subregions of different intensities(i = intense, m = medium and s = small: (1) C–H
stretching vibrations (2940i, 2934i and 2900s cm−1), (2) stretching vibrations of carbonyl
compounds (1645s cm−1), (3) deformation modes of C–H2 y C–OH (1410s, 1360m, 1329m,
and 1305m cm−1), (4) C–O and C–C stretching vibrations (1130i, 1086m, 1048m cm−1)
and, (5) complex skeletal vibrations out of plane (941s and 893s cm−1) in agreement with
previous studies [32,34,35]. However, as our study was on solid hyaluronate films and not
in solution, the presence of shoulder at 1630 and 1600 cm−1 assigned to carboxylate were
not observed. Despite this, a very low intensity peak at 1552 cm−1 was observed and can
be assigned to amide II in HNa.

When these two polysaccharides are blended, the C-H vibration at 2935–2930 cm−1

increased as HNa concentration increased with respect to the vibration at 2887 cm−1. The
small intensity absorption at 1657 cm−1 located between the ones of the pristine polymers
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suggests a shift for amide I band. The band a 1538 cm−1 (amide II) also shifted, which was
more evident with increasing amounts of HNa. However, vibrations at 1371 cm−1 and
1115 cm−1 remained unchanged.

The main signals observed in the CHT/HNa/PEGDE films were related to the bands at
2933 cm−1 and 2886 cm−1 where the latter increased with PEGDE concentration. Similarly,
the band at 1461 cm−1 increased and probably corresponded to pristine PEGDE but being
displaced. Vibrations at 1376 cm−1 and 1113 cm−1 and 890 cm−1 remained with medium
intensity. Increases in intensity were expected for 1470 cm−1, 1256 cm−1, 1134 cm−1, and
841 cm−1 as PEGDE increased but this was not clearly observed.

3.1.3. Thermogravimetric Analysis (TGA)

Figure 3 shows TGA and DTGA thermograms of GA crosslinked and PEGDE crosslinked
chitosan/HNa films at 15% (Figure 3a,c) and 30% (Figure 3b,d). It was observed that the
degradation profile for all films presented two stages. The first stage (Td1) was located
between 56–70 ◦C for CHT-HNa 15% films and 60–63 ◦C for CHT-HNa 30% films. The
second stage (Td2) was detected at 285–300 ◦C for CHT-HNa 15% films and 272–300 ◦C for
CHT-HNa 30% films. The first weight loss for all films was between 7–12%. This change
was related to the loss of water and residual acid by evaporation, which means that the
water is physically retained by weak hydrogen bonds on chitosan surface. The second
weight loss was located between 52–66%. This loss of mass corresponded to the thermal
degradation of chitosan, and simultaneous removal of volatile products. The maximum
rate of thermal decomposition of the pristine chitosan (Td2) took place at 297 ◦C, while
HNa decomposed at 222 ◦C although Réef et al. reported that degradation of hyaluronate
occurred at 210 ◦C [36].

When HNa at 15% was added to CHT an increase in Td2 temperature was also
observed. This increase was from 297 ◦C for pure chitosan to 386 ◦C for chitosan with 15%
HNa. For the uncrosslinked blend with 30% HNa films Td2 remained unchanged (292 ◦C).
This outcome indicates that by increasing the HNa concentration does not decrease the
thermal stability of the material although Td2 of pristine HNa was lower than CHT. In
PEGDE1 and PEGDE2 crosslinked films with 15% of HNa, a slight increase in Td1 was
observed (Table 2), i.e., from 65 ◦C (pure chitosan) to 70 ◦C (chitosan with 15% of HNa)
but for PEGDE 3 no change was observed. In contrast, Td2, increased for all PEGDE
crosslinked films (Table 2). When HNa was added at 30%, PEGDE crosslinked films, Td1
and Td2 were slightly reduced except for PGDE3, which remined the same in agreement
with Kutlusoy et al. [16] who reported that as the amount of hyaluronic acid increases in
CHT cryogels, the thermal stability and the amount of char decrease. In comparison with
pristine CHT films, GA crosslinked films exhibited higher Td2 at 15% of HNa but lower
Td2 when used at 30%. Table 2 summarizes the thermal properties of these films.

The higher thermal stability of CHT/HNa blends was achieved with 15% without
crosslinking agent (386 ◦C). The higher thermal stability of CHT/HNa/PEGDE crosslinked
films was achieved with low PEGDE concentrations and 15% of sodium hyaluronate
(344–348 ◦C). In addition, the one with the highest thermal stability was the chitosan
film crosslinked with GA (354 ◦C). Presumably, this outcome was due to the double
crosslinking with GA, i.e., the formation of interpenetrated network as well as to the
secondary interactions between the chitosan and hyaluronic acid chains [16].

The temperature of 50% of loss of mass (Table 1) of pristine CHT decreased almost
50 ◦C when CHT film was mixed with 15% of HNa and crosslinked with PEGDE but
slightly decreased when 30% was added. This temperature slightly increased for GA
crosslinked samples with 30% of HNa.
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Figure 3. TGA and DTGA thermograms of GA crosslinked and PEGDE crosslinked chitosan/HNa films. TGA (a,b) and
DTGA (c,d). HNa content of 15% (a–c), HNa content 30% (b–d).

Table 2. Decomposition temperatures and weight loss of CHT films, CHT/HNa at 15% and 30%
films crosslinked with GA and PEGDE.

Films Td (◦C) T (◦C) at 50% of Weight Loss

CHT 65 297 351

HNa 15 % HNa 30% HNa 15% HNa 30%
Td1 Td2 Td1 Td2

CHT-HA 68 386 60 292 295 360
CHT-HA-PEGDE 1 70 344 63 285 295 349
CHT-HA-PEGDE 2 70 348 63 295 290 340
CHT-HA-PEGDE 3 64 338 62 300 298 340

CHT-HA-GA 56 354 61 272 276 358

3.1.4. X-ray Diffraction (XRD)

Figure 4 shows the diffractograms of the samples of pristine chitosan, pristine HNa,
and chitosan mixed with HNa at 15% (Figure 4a) and 30% (Figure 4b) crosslinked with GA
and PEGDE at different concentrations. The diffraction pattern of pristine CHT showed the
two characteristic sharp peaks at 2θ = 9.5◦ and 2θ = 20◦, which are typical of the hydrated
conformation of chitosan [37]. In contrast, completely amorphous sodium hyaluronate was
obtained after film preparation.
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Figure 4. XRD pattern of GA crosslinked and PEGDE crosslinked chitosan/HNa films. HNa content of 15% (a), HNa
content 30% (b).

Regarding X-ray diffraction of hyaluronic acid, Meyer suggested that high molecular
weight hyaluronates may contain some non-glycosidic bonds that act as branch points. The
removal of these branches by acid treatment can cause depolymerization and, at the same
time, can allow crystalline organization [38]. Sheehan et al. reported that the conformation
of hyaluronate chains in the solid state is dependent on the nature of the cations that are
presented, the pH, and the temperature at which the crystallization is carried out, but not
on the ionic strength of the solution from which films are molded. Depending on the cation,
successful crystallization of these conformations requires the presence of various water
molecules [39]. Hyaluronates peaks at approximately 2θ = 26◦ and 32◦ have been reported,
but these were not observed in our samples [40]. In contrast, X-ray diffraction studies
have shown that hyaluronic acid films or fibers are amorphous in nature [41]. CHT/HNa
uncrosslinked blends showed an additional peak at 2θ = 5◦, similar to those reported by
Nath et al. [42] and by us [28]. They pointed out that this outcome can be attributed to the
formation of more ordered complexes, inducing a change in crystallinity.

Films crosslinked with PEGDE at different concentrations exhibited peaks like those of
films without crosslinking but with a peak reduction in intensity as PEGDE concentration
increased. There were no obvious changes in the diffractograms at both HNa contents but
in the 30% HNa films, the intensity of the peak at 2θ = 20◦ slightly increases in the PEGDE3
crosslinked samples. Likewise, GA crosslinked samples were amorphous and did not show
different diffraction patters for both HNa concentrations.

The crystallinity of the chitosan samples with sodium hyaluronate decreased in the
presence of the HNa and when the sample was crosslinked. Hence, one way to modify
crystallinity without resorting to heat treatment or crosslinking is by adding a second
polymer phase. For a more accurate comparison, Table 3 summarizes the results obtained
from the calculation of the crystallinity index (CrI) of each of the films.
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Table 3. Percentage of the crystallinity of the chitosan/HNa films without crosslinker and with
crosslinker of GA and PEGDE.

CrI%

Films

CHT 64.17

15% 30%

CHT/HNa 60.76 46.05

CHT-HNA-PEGDE 1 42.12 43.24

CHT-HNa-PEGDE 2 31.56 46.66

CHT-HNa-PEGDE 3 19.5 27.86

CHT-HNa-GA 25.66 16.88

3.2. Surface Properties of Crosslinked CHT
3.2.1. X-ray Photoelectron Spectroscopy (XPS)

XPS survey spectra of chitosan films with 15% and 30% of HNa are shown in Figure 5.
Because hyaluronic acid and chitosan are polysaccharides with a similar molecular struc-
ture, C1s, N1s, and O1s, were detected. The presence of Ca was also recorded, which
may come from the exoskeleton of the source, and Si considered as contaminant (Table 4).
The only difference between CHT and HNa lies in the carboxyl group in HNa and the
amino groups in chitosan and therefore Na1s was also detected for the corresponding
salt [30]. When HNa was added to CHT there was an increase in the concentration of Na
and increased from 0.27 at.% for films with 15% HNa to 1.26 at.% for films with 30% of
HNa. Although it was expected an increase in oxygen with HNa addition due to the COO–
groups, this was only observed for CHT/HNa 15% films and a reduction for CHT/HNa
30% uncrosslinked films. The latter behavior implied that oxygen is no longer in the
surface but forming a complex in the bulk. This was also corroborated by the nitrogen
content reduction.
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Figure 5. XPS survey spectra of GA crosslinked and PEGDE crosslinked chitosan/HNa films. HNa content of 15% (a), HNa
content 30% (b).
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Table 4. XPS elemental composition of chitosan/HNa films crosslinked with GA and PEGDE.

HNa %C %O %N %Na %Si %Ca

CHT 70.13 ± 1 22.23 ± 2 4.64 ± 0.6 - 1.27 ± 1 1.74 ± 0.7

CHT/HNa
15% 69.14 ± 3 24.67 ± 2 4.79 ± 2 0.27 ± 0.2 0.88 ± 0.8 0.25 ± 0.1
30% 76.6 ± 5 18.4 ± 1 3 ± 0.2 1.26 ± 0.5 0.74 ± 0.3 -

CHT-PEGDE1
15% 76.2 ± 2 20.56 ± 1 2.72 ± 0.9 0.52 ± 0.4 - -
30% 74.93 ± 4 20.11 ± 2 3.21 ± 0.8 0.73 ± 0.1 1.02 ± 0.9 -

CHT-PEGDE2
15% 69.3 ± 1 25.67 ± 3 3.7 ± 0.9 0.8 ± 0.2 - 0.55 ± 0.2
30% 75.22 ± 2 22 ± 1 1.85 ± 1 0.93 ± 0.3 - -

CHT-PEGDE3
15% 66 ± 5 27.8 ± 3 4.10 ± 1 0.83 ± 0.2 1.27 ± 1 -
30% 74 ± 3 20 ± 2 3.9 ± 1 0.96 ± 0.1 0.79 ± 0.3 0.35 ± 0.5

CHT-GA
15% 75.5 ± 1 21.2 ± 2 2.62 ± 0.8 0.68 ± 0.2 - -
30% 75 ± 2 22 ± 3 3 ± 1 - - -

PEGDE crosslinked films showed an increased in oxygen content as the crosslinker
agent increased i.e., from 24 at.% (CHT/HNa 15%) up to 27 at.% (CHT/HNa 15% PEGDE3
crosslinked). A clearer behavior was observed for CHT/HNa 30% PEGDE crosslinked
samples as it varied from 18 at.% to 22 at.%.

GA crosslinked sample showed a reduction in oxygen and nitrogen content for 15%
HNa and an increase in carbon content with respect to the CHT/HNa uncrosslinked
sample. However only an increase in oxygen content was detected for 30% HNa films.
However, the contained nitrogen decreased from 5% to 3% (Supplementary data S4 showed
the corresponding XPS scans for C, N and O).

3.2.2. Surface Topography by AFM

Atomic force microscopy was used to assess the surface topography of sodium
hyaluronate chitosan films crosslinked with glutaraldehyde and PEGDE at different con-
centrations. Figure 6 shows the 3D topography while Table 5 presents the corresponding
roughness. The addition of 15% HNa to uncrosslinked CHT increased surface roughness
(64.7 nm) but reduce it (31.7 nm) when 30% HNa was used. Crosslinking with PEGDE or GA
reduced surface roughness for CHT/HNa 15% but tend to increase it for CHT/HNa 30%.
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PEDGE3, (j) CHT/HNa30%/GA.
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Table 5. Roughness and contact angle of GA crosslinked and PEGDE crosslinked chitosan/HNa films.

Ra (nm) Contact Angle (◦)

Films H2O DMEM H2O DMEM

CHT 45.8 ± 5 62.9 ± 3 72 ± 4

15% 30% 15% 30%

CHT-HNa 64.7 + 7.3 31.7 ± 2.6 73◦ 74◦ 74◦ 66◦

CHT-HNa-PEGDE1 85.3 ± 9.6 106.2 ± 8.9 66◦ 52◦ 52◦ 55◦

CHT-HNa-PEGDE2 56.8 ± 5.8 87.8 ± 6.9 60◦ 56◦ 56◦ 47◦

CHT-HNa-PEGDE3 61.2 ± 5.2 134.3 ± 14.2 51◦ 54◦ 54◦ 44◦

CHT-HNa-GA 44.6 + 5.9 52.6 ± 7.2 68◦ 42◦ 42◦ 18◦

Assessment of topography by AFM is an important parameter, since it is known
that cells tend to adhere to rougher surfaces features at the micro and nanoscale [19].
Lewandowska pointed out that the repulsion forces and/or the electrostatic interactions
between the components of this type of mixtures can lead to an increase in the size of the
microdomain. These interactions play an important role in the structure and properties
of binary and ternary polymer blends. The biopolymers used, that is, hyaluronic acid
and chitosan are polyelectrolytes, in which the properties are strongly associated with the
electrostatic interactions that determine the shape of the macromolecule. In the aqueous
solution of a polyelectrolyte, the macromolecules are stretched due to electrostatic repulsive
forces between charges on the functional groups. Therefore, in these mixtures, interactions
by hydrogen bonds and repulsive forces mainly predominate. These factors can lead
to decrease surface homogeneity and increased roughness as in these compositions [43].
Furthermore, it is possible that phase separation take place due to the slow acetic acid
evaporation. This was only perceived by AFM in CHT-HNa films crosslinked as some
HNa islands can be observed in CHT/HNa 15% PEGDE1 films.

3.2.3. Measurement of Contact Angle

The contact angle (θc) formed by a drop of water on a flat solid surface is a macroscopic
manifestation of surface-water interactions at the molecular level and is used to characterize
surface wetting phenomena [44]. The wettability of a surface is determined by the chemistry
of the surface and its topography. For an ideal film surface that is flat, smooth, and
chemically homogeneous, the contact angle will decrease as the surface polarity increases.

The contact angle of the surfaces of the crosslinked CHT films with the different
content of HNa are shown in Table 5. CHT films showed, in general, water contact angles
lower than 72◦, which were classified as weakly hydrophilic [37]. The incorporation of
HNa and PEGDE reduced the contact angles in water and culture media in agreement with
current literature [30]. This may be due to a greater amount of oxygen, given by PEGDE,
on the surface of the films. In addition, this effect can also be explained by the fact that
chitosan films with hyaluronate possess a complex chemical structure with amide, amine,
and carboxyl groups, so the contact angle on a CHT-HNa surface must reflect the presence
of these groups. Perhaps, this integration results in increased polarity at the CHT-AH film
surface, reflecting as a lower contact angle. When DMEM was used as the sessile drop the
contact angle was, in general, lower suggesting also possible interaction of proteins with
this surface.

For GA crosslinked CHT/HNa films there was also a reduction in water contact
angle which was more marked when HNa was added at 30%. This implies that GA
is a more effective crosslinker for CHT rendering a surface richer in HNa. Improved
hydrophilicity when hyaluronate is incorporated into chitosan can have positive effects on
cytocompatibility [45].

Muzzio et al. [19], measured contact angle with HEPES buffer and acetate buffer, in
chitosan/hyaluronic acid polyelectrolyte multilayers, found that the value of contact angle
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decreases from 30.2◦ to 20.6◦ after annealing. So, they conclude that PEMs are hydrophilic
despite thermal annealing. Romero-Vargas et al. [44] reported that surface functionalization
with PEG inhibits the adsorption of biomolecules, a property that is due in part to the
ability of PEG to participate in interactions of hydrogen bonds with surrounding water
molecules, i.e., hydrophilicity of the surface. PEGDE films have a more hydrophilic active
layer reflected by a lower contact angle. Hydrogen bond accepting groups (i.e., O atoms)
in ethylene glycol monomers enhanced the affinity of water for amino-PEGDE surfaces.

3.3. Cell Viability and Proliferation Studies

When developing materials for biomedical applications, a very important factor to
consider is toxicity and this can be followed by using conventional MTS cytotoxicity
tests [46]. Figure 7 shows the MTS cytotoxicity test performed on the chitosan films with
15% and 30% of sodium hyaluronate, crosslinked with glutaraldehyde and with different
concentrations of PEGDE.
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Figure 7. Viability of osteoblast with Chitosan (CHT), Chitosan and HNa (CHT/HNa), glutaralde-
hyde crosslinked chitosan/HNa (CHT-HNa-GA), PEDGE crosslinked chitosan/HNa (CHT-HNa-
PEDGE) at 15% and 30% of HNa.

From Figure 7 it can be clearly seen that the cell viability of the pristine chitosan scaf-
folds improved with 15% HNa but a slight decrease was observed when the concentration
of HNa was increased up to 30%. At low HNa concentrations it is possible that more amino
groups from CHT are available while at 30% HNa cell adhesion is reduced due to complex
formation and reduction of free NH2 [47]. This behavior was enhanced when low PEGDE
concentrations were used (PEGDE1) suggesting that a more hydrophilic surface improved
cell viability. However, the competitive effect between HNa and PEGDE is also clear, i.e.,
low PEGDE concentrations work better for low HNa concentrations [48].

For GA crosslinked CHT/HNa films viability was lower than PEGDE crosslinked
samples. However, when high HNa concentration were used osteoblast viability increased
even when the surface roughness was similar to that of pristine CHT with more available
free amino groups.

Kutlusoy et al. reported that the use of low concentrations of glutaraldehyde did
not affect cell growth and proliferation. This is consistent with the findings in the present
investigation. Despite the fact that osteoblast survival is observed in our samples with GA,
they exhibited the lowest values of cell viability for both HNa concentrations (15% and
30%) [16].

Nath et al. [42] evaluated cell proliferation in chitosan scaffolds with hyaluronic acid.
They reported a significant difference in cell behavior on scaffolds and indicated that
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hyaluronic acid improves cell proliferation. Those results coincided with previous studies
that suggest that chitosan-hyaluronic acid-based matrices (hydrogels, electrospun fibers)
provide a favorable surface for cell adhesion and proliferation.

Cellular Adhesion by Scanning Electron Microscopy (SEM)

Cellular adhesion was observed by SEM by direct and indirect contact after 48 h
(Figure 8). A better interaction and cellular morphology were observed in direct contact,
since the cytoplasmic extensions and the organization of the osteoblasts in the form of
clusters were observed.
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Figure 8. SEM images of osteoblast seeded onto CHT scaffolds on direct and indirect contact.

Chitosan films with 15% on HNa, showed a better adhesion when they were crosslinked
with PEGDE; moreover, a better cell morphology was observed in scaffolds crosslinked
with PEGDE 1 (low concentrations). The same effects were observed in scaffolds with HNa
at 30% with a smaller number of well-shaped cells. Osteoblasts were scarce in CHT/HNa
samples crosslinked with glutaraldehyde for both concentrations of HNa. Muzzio et al. [19],
reported that CHT/HA polyelectrolites exhibited a significant positive effect on cell adhe-
sion in agreement with our results.

According to Casimiro et al., cells seem to prefer more homogeneous surfaces with
smaller pores. We observe this effect in our samples, where all the films have a homoge-
neous surface [49].

Our results not only showed that osteoblasts optimally adhered to our CHT/HNa
samples exhibiting a good viability, but they also showed that osteoblast proliferated
considerably in the PEGDE crosslinked scaffolds. Furthermore, osteoblasts aggregated
into nodules consisted of large groups of spherical cells at the beginning and then their
cytoskeleton is flattened, which would lead to the synthesis and secretion of components
of the autologous matrix [28] and, eventually, to bone formation [31].
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3.4. Antimicrobial Activity

Figure 9 shows the inhibitory halo achieved when the bacterial strains are exposed
to antibiotics to confirm the effectiveness of the method. In contrast, no inhibitory effect
was observed on the studied samples by using Kirby–Bauer method in the presence of
Escherichia coli, Enterococcus faecalis and Staphylococcus aureus.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 9. Inhibitory halo of antibiotics in contact with different strain ((A) E. faecalis, (B) E. coli and (C) S. aureus) and 

chitosan/HNa discs in contact with: E. faecalis (D), E. coli (E–I) and S. aureus (J–L). 

Raafat et al. [51] conclude that the broth microdilution technique is the most appro-

priate to evaluate the potency of an antimicrobial agent by estimating the MIC (minimum 

inhibitory concentration), unlike the methods based on agar, so the bacterial growth 

should be well chosen, to avoid unfavorable interaction with chitosan. 

Figure 10 shows the antibacterial activity of PEGDE3 and GA crosslinked CHT/HNa 

15% films against S. tiphimurium. Although all films exhibited microbial growth, this was 

lower on chitosan films with PEGDE and glutaraldehyde (low intensity red-pink color). 

This effect could be explained for PEGDE crosslinked sample as the higher crosslinking 

density achieved did not expose hyaluronic acid molecules or because the incorporation 

of hydrophilic crosslinking agents did not allow bacterial adhesion as reported for other 

Figure 9. Inhibitory halo of antibiotics in contact with different strain ((A) E. faecalis, (B) E. coli and (C) S. aureus) and
chitosan/HNa discs in contact with: E. faecalis (D), E. coli (E–I) and S. aureus (J–L).



Appl. Sci. 2021, 11, 1267 17 of 21

Many studies suggest that the antibiofilm property of chitosan is attributed to the poly-
cationic nature of its N–H2 groups of the N-acetylglucosamine units. [20,50,51]. However,
there are studies that indicate that the antibacterial activity of chitosan can be influenced
by molecular weight, DDA and environmental conditions (e.g., the pH), type of derivative,
solvent composition [50,52], bacterial strain, culture media, temperature, ionic strength,
metal ions, EDTA, and organic matter among others [51]. It is worth mentioning that all
our films were at a neutral pH (7 + 0.5) and it is acknowledged that the antimicrobial and
antibiofilm properties of chitosan and its derivatives are usually functional under the acidic
condition [20], i.e., reducing its antimicrobial activity at pH 7.0 [51].

Xing et al. indicate that Oleoyl-chitosan nanoparticle were antibacterial against E. coli
and S. aureus by damaging the structures of the cell membrane and the alleged binding to
extracellular targets such as phosphate groups or intracellular targets such as DNA.

The hydrophilicity of the films, measured by contact angle, would provide a high
affinity for water molecules, which would give our samples anti-fouling properties, as
Muzzio et al. pointed out [19]. However, in contrast to the results of Muzzio et al., in our
samples, no decrease in bacterial adhesion was observed.

This could also be influenced by the topographic characteristics of the film surfaces,
which are known to affect the adhesion process [19,53,54], being greater when the surface
is rough [55,56]. An increase in surface roughness stimulates the bacterial bond due to the
increased contact area between the bacterial cells and the material’s surface [54].

Park et al. [57] evaluated the antimicrobial activity of chitosan-LDPE films, against
E. coli, L. monocytogenes and S. enteritidis by observing bacterial growth in the films with
the lowest chitosan concentration. The antimicrobial action of chitosan may be due to
its stacking on the surface of the bacterial cell wall, blocking the nutritional supply by
changing the permeability of the cell wall. When the amount of chitosan released from the
film matrix is insufficient, bacterial inhibition is limited or inexistent. Park et al. report
that small concentrations of chitosan were unable to maintain lethal conditions against
microorganisms and without complete inhibition, the recovery of microbial cells occurred
over time [57].

Another explanation of our results obtained in the antimicrobial analysis may be due
to the presence of sodium hyaluronate. Tsai and Su [58] suggested that the presence of
sodium reduces chitosan’s activity against E. coli.

Sodium hyaluronate has an important effect on films and the low antibacterial activity
may be due to a low density of CHT in the most superficial layer of the sample, leaving the
HA exposed, promoting bacterial adhesion [59,60].

Raafat et al. [51] conclude that the broth microdilution technique is the most appro-
priate to evaluate the potency of an antimicrobial agent by estimating the MIC (minimum
inhibitory concentration), unlike the methods based on agar, so the bacterial growth should
be well chosen, to avoid unfavorable interaction with chitosan.

Figure 10 shows the antibacterial activity of PEGDE3 and GA crosslinked CHT/HNa
15% films against S. tiphimurium. Although all films exhibited microbial growth, this was
lower on chitosan films with PEGDE and glutaraldehyde (low intensity red-pink color).
This effect could be explained for PEGDE crosslinked sample as the higher crosslinking
density achieved did not expose hyaluronic acid molecules or because the incorporation
of hydrophilic crosslinking agents did not allow bacterial adhesion as reported for other
fungi [61]. Even when the method used here for antibacterial assessment is not quantitative,
it has been used previous by others [62]. However, a possible limitation of the method is
due to the high-water absorbency of the samples containing HNa leading to an antifouling
behavior rather that an antibacterial behavior as it is known that bacterial do not adhere to
highly hydrophilic surfaces. In the supplementary information section (S5), the swelling
behavior of HNa-free crosslinked CHT films is reported.
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Figure 10. Antimicrobial activity against S. tiphimurium of chitosan discs; (a) Control, (b) CHT, (c) CHT/HNa15, (d)
CHT/HNa15%/PEDGE3, (e) CHT/HNa15%/GA. Before 24 h (top) and after 24 h (bottom) of inoculation.

For the case of GA crosslinked samples, it is possible that residual aldehyde led to
a cytotoxic bacterial effect as it is used for disinfection of medical equipment or because
unreacted terminal aldehyde groups are able to interact with functional groups on the
bacterial membrane. Therefore, it can be suggested that there is partial antibacterial activity,
but further experiments are needed to confirm this.

A final limitation of our study is related to the degradation behavior of these films.
However, in supplementary information S6 section, the degradation in phosphate saline
buffer of HNa-free crosslinked CHT films is reported.

4. Conclusions

The presence of sodium hyaluronate on chitosan was demonstrated by FTIR, Raman,
XPS, and XRD. These techniques also allowed to identify the crosslinking potential of
PEGDE not only for chitosan but also hyaluronic acid. The addition of a second biocompat-
ible polymer (HNa) to chitosan did not affect degradation temperature as demonstrated by
TGA experiments but it reduced its crystallinity as showed by XRD. In fact, crosslinking
with PEGDE to CHT-HNa (15%) blends increased thermal decomposition (Td2) possibly
due to complex formation and/or the formation of an interpenetrated polymer network.

CHT-HNa films showed better adhesion and cell viability with HNa (15%) when
crosslinked with PEGDE1, i.e., at low concentration of the crosslinking agent. However, an
excess of HNa (30%) did not improve their cell viability even when the surface roughness
was increased. In contrast, glutaraldehyde crosslinked samples did benefit from the
addition of hyaluronic acid by lowering their DMEM contact angle.

Crosslinked blends of CHT and HNa did not show antibacterial activity towards
Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus but a low to mild
response against Salmonella typhimurion. This latter behavior was achieved only with
high crosslinking concentrations of PEGDE and in the presence of glutaraldehyde with a
CHT of medium molecular weight CHT (223,332 g mol−1) and a degree of deacetylation
of 84.1%. These results stress the importance of the properties of chitosan and the type of
strain used to assess the claimed antibacterial behavior of chitosan.

Nonetheless, its non-sticky nature can be further used in the treatment of ulcers (oral
thrush), in which not only a low to mild antibacterial activity is needed but also reparative
properties are required in the oral mucosa. In this sense, crosslinking with PEGDE will be
beneficial because it retains hyaluronic acid, a compound highly soluble in water and that
can be easily dissolved when it is not chemically bound to chitosan.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/3/1267/s1, Figure S1: Individual FTIR spectra of PEGDE crosslinked CHT films with HNa
15% and HNa 30%. Figure S2: Pristine CHT Raman spectra. Figure S3: Pristine HNa Raman spectra
Figure S4: XPS scans for C, O and N, of chitosan/HNa films. S5 Swelling behaviour of HNa-free
PEGDE crosslinked CHT films. S6 Phosphate buffer saline mass loss of HNa-free PEGDE crosslinked
CHT films.
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