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Abstract: Mathematical models are used for simulating the electrochemical phenomena of proton-
exchange-membrane (PEM) fuel cells. They differ in the scale, modeling variables, precision in specific
features, and the required parameters. Often, the input parameters are not measurable and need to
be estimated by minimizing the error between the model output and experimental data; however, the
estimated parameters could differ from one model to another, hence provoking uncertainty about the
correct values and the model’s suitability for simulating the real phenomenon. To address these issues,
we introduced a self-validating methodology using three different mathematical models: The first
set of parameters was estimated with a semi-empirical (SE) model; then, it was used for computing
several points of the polarization curve (PC). The SE parameters and points were used to estimate
a second set of parameters and to compute a single point of the PC with a macro-homogeneous
(MH) model. The parameters and concentration profiles from the MH solution were used to estimate
the last set of parameters with the reaction–convection–diffusion (SP-RCD) model, increasing the
detail of the simulation. The SP-RCD parameters were returned to the MH model to recover the
complete PC. The proposed methodology requires a few data points to consistently recover the
same PC from the three models through estimating parameters in one model and validating them in
the others. As output, the method provides complete information about several variables and the
physical properties of the catalysts. In addition to the consistent simulation, the numerical results are
consistent with those reported in the literature, thus validating the proposed method.

Keywords: semi-empirical model; macro-homogeneous model; SP-RCD model; UMDAG

1. Introduction

Since the 20th century and the beginning of the 21st century, the generation of al-
ternative clean technologies has been increasing to counteract the increase in pollutants
and energy consumption due to the increasing global population [1]. The PEM fuel cells
are clean devices that directly generate electrical energy, water, and heat through elec-
trochemical reactions in their cathodic and anodic compartments, as shown in Figure 1.
The electrochemical reactions in a PEMFC are represented in Equations (1) to (3) [2,3]:

Anode reaction:

H2→2H+ + 2e−, (E0
an = 0V vs. SHE). (1)
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Cathode reaction:

1
2

O2 + 2H+ + 2e−→H2O, (E0
cat = 1.23V vs. SHE). (2)

Global reaction:

H2 +
1
2

O2→H2O, (E0
cell = 1.23V vs. SHE). (3)

Figure 1. Basic structure of a proton exchange membrane fuel cell.

The mathematical modeling of fuel cells allows us to study the energy conversion
processes inside of a PEM fuel cell; analyze designs, structures, or material composition; and
improve electrical energy generation. Several mathematical models have been implemented
and validated through laboratory experimentation in the literature. Among the models,
the following stand out: (a) Empirical and semi-empirical models: These models are
based on algebraic expressions obtained from physical relations present in the PEMFC.
They model the behavior of the polarization curves using a set of empirical or semi-
empirical parameters through non-linear regression methods [2,4,5]. (b) Interface models:
These models’ diffusion processes occur through the anode, membrane, and cathode
using diffusion differential equations, assuming that the catalytic layer is negligible [6–8].
(c) Macro-homogeneous models: These consist of a set of non-linear ordinary differential
equations based on the assumption that the main reactions occur in the catalytic layer of the
cathode and analyze the physical compositions of the materials and their properties [9–14].
(d) Agglomerated models: These consist of partial differential equations, model diffusion
processes, and involve a description of the physical composition of the cathodic catalytic
layer, its porosity, or catalyst conglomerates [15–17].

In the modeling and simulation of PEMFC, mathematical models require a set of
parameters that are not obtained experimentally, such as diffusion coefficients; hence, they
need to be estimated [2,12,13,15]. The parameter estimation problem is an optimization
problem with an objective function defined by the error minimization of the fitting ex-
perimental data and the model output [5,18–20]. Algorithms for solving the parameter
estimation problem in PEMFC are particle swarm optimization (PSO) [21,22], the artifi-
cial immune system [23], simulated annealing [2,18], the genetic algorithm (GA) [5,24],
the RNA-genetic algorithm [19], the differential evolution algorithm [25,26], the artificial bee
swarm [27], fuzzy logic control [28], harmonic search in [29], JAYA-NM [30], the Grasshop-
per Optimization Algorithm (GOA) [31], the Salp Swarm Optimizer (SSO) [32], moth–flame
optimization [33], and UMDAG [34], among others. In general, most of them report accept-
able solutions; nevertheless, they vary in the consistency of their results, that is, in delivering
similar estimated parameters for the same conditions in several independent executions.
UMDAG [34] has shown a reliable balance between the precision of the approximation and
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the computational cost and consistency. Consequently, it was used in this work for the
estimation task.

In this context, the contributions of this article are various. First, we unified three
high-performing models to demonstrate how to simulate the same cell with all of them;
from our point of view, the main advantage of these multiple simulations is that the models
corroborate that the parameters are the correct ones and deliver information about the cell
performance, which is not possible to measure but is obtained from the simulation. Second,
we estimated parameters in one model using a few experimental data, and then we used
the other models to increase the precision of the estimation and to corroborate that the
parameters reproduce the cell performance. Third, we reproduced incomplete experimental
information. Once the parameters had been estimated, we were able to reproduce the
full polarization curves and concentration profiles. Fourth, we presented the assembly
of numerical techniques as a complete method for parameter estimation and multimodel
simulation of the PEMFC.

The paper is organized as follows: Section 2 presents an overview of the three selected
mathematical models; we describe their advantages and disadvantages. In Section 3, we
present the parameter estimation problem. Our proposed self-validating methodology is
presented in Section 4. In Section 5, we show the numerical and comparative results of
our proposal with those reported in the literature. Finally, a conclusion of this work is
presented in Section 6.

2. Mathematical Models for PEMFC

In this section, we describe the three mathematical models used: semi-empirical,
macro-homogeneous, and SP-RCD models; each of them requires a different set of parame-
ters but shares some of them, and each delivers different kinds of solutions that, according
to the methodology introduced in this work, are interrelated for the consistent simulation
of the PEMFC and the consistent estimation of parameters. Table 1 shows the nomenclature
of the principal parameters for the three models.

2.1. Semi-Empirical Model

The semi-empirical model is described by algebraic expressions as functions of opera-
tional parameters that, through the estimation of so-called semi-empirical parameters, allow
the fitting of a simulated polarization curve to experimental data [30,32,34]. The model
uses operational parameters, such as the pressures of gases in the cell, the active area of
the catalyst, or the thickness. Table 2 shows the algebraic expressions that can be used
to obtain the PEMFC voltage in terms of the Nernst equation and the activation, ohmic
and concentration overpotential losses, as shown in Figure 2. Numerical simulations are
used to analyze the behavior under different operational conditions, for instance, if the
membrane or pressures are changed.

Figure 2. Polarization curve of a PEM fuel cell; additional information in [35]. V∗ = Voltage loss
caused by mixed potential and crossover.
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Table 1. List of important variables of the mathematical models.

Symbol General Parameters Symbol MH and SP-RCD Parameters

ENernst open circuit voltage (V) C0,re f Reference oxygen concentration (mol cm−3)
ηact activation voltage drop (V) αc Cathodic electron transfer coefficient

ηOhmic Ohmic voltage drop (V) αa Anodic electron transfer coefficient
ηcon concentration voltage drop (V) CH Hydrogen concentration (mol cm−3)
VFC stack voltage (V) As Surface area per unit mass of Pt (cm2 g−1)

n number of cells connected in series i0,re f Reference exchange current density (A cm−2)

Operational parameters εc Void volume fraction, or CL porosity

T temperature (K) γO2 Order of the oxygen reduction reaction
PH2 partial pressure of hydrogen (atm) κe f f Effective protonic conductivity (S cm−1)
PO2 partial pressure of oxygen (atm) κ Bulk protonic conductivity (S cm−1)
RHc relative humidity of vapor in the cathode σe f f Effective solid electronic conductivity (S cm−1)
RHa relative humidity of vapor in the anode σ Solid electronic conductivity (S cm−1)
Pa inlet pressures at the anode (atm) Lc Thickness of the CL (µm)
Pc inlet pressures at the cathode (atm) Lm,c Volume fraction of the ionomer phase

CO2 oxygen concentration (mol cm−3) Ls Volume fraction of solid portion of the GDL

Semi-empirical parameters εg GDL porosity

B parametric coefficient De f f
O2−w Oxygen effective diffusion coefficient in

ρM specific membrane resistivity (Ω cm) The water-flooded void region (cm2 s−1)
i cell current (A) DO2−m Oxygen diffusion coefficient (cm2 s−1)
Iδ current density (A cm−2) ρC Carbon density (g cm−3)

Imax maximum current density (A cm−2) mPt Mass loading of Pt per unit area (mg cm2)
A active cell area (cm2) mC Mass loading of C per unit area (mg cm−2)

RM equivalent membrane resistance (Ω) f Platinum mass fraction in the Pt/C catalyst
ψ parameter related to the water in the PEM ρPt Platinum density (g cm−3)
Lc membrane thickness (cm)
RC equivalent contact resistance (Ω)
ξi semi-empirical coefficient (i = 1, .., 4)

The results of this model show the general characteristics of the PEMFC but may not be
able to provide information about microscopic characteristics, such as density and platinum
content in the catalytic layers [36,37]. The most commonly estimated set of parameters is
~θ = {ξ1, ξ2, ξ3, ξ4, Rc, B, ψ} [23,25,30,34].

Table 2. Semi-empirical mathematical model; details in [4].

VFC = ENernst − ηact − ηOhmic − ηcon
Cell voltage (V) ENernst = 1.229− 0.85× 10−3(T− 298.15)

+4.31× 10−5T[ln(PH2 ) + 1/2 ln(PO2 )]

ηact = −[ξ1 + ξ2T + ξ3Tln(CO2 ) + ξ4Tln(i)]
Activation overpotential CO2 =

PO2
5.08×106×e−(498/T) , CH2 =

PH2
1.09×106×e−(77/T) ,

ξ2 = 2.86e−3 + 2e−4 ln(A) + (4.3e−5) ln(CH2 )

ηOhmic = i(RM + RC),
Ohmic overpotential RM =

ρM×Lc
A ,

ρM = 181.6[1+0.03·(i/A)+0.062·(T/303)2·(i/A)2]
[ψ−0.634−3·(i/A)]·exp[4.18·(T−303/T)] ,

Concentration overpotential ηcon = −B ·
(

1− Iδ
Imax

)
,

The advantages of this model are its adaptability to fit different experimental data
with adequate parameter estimation, and it is computationally inexpensive. The main
disadvantages are: (1) the result varies in its precision with the number of selected pa-
rameters to estimate (physical or semi-empirical parameters); (2) the obtained information
only concerns the polarization curve and operational parameters, for instance, reactant gas
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pressures or active area of the catalysts. The common techniques used in the literature to
estimate parameters in this type of model are PSO, GA, and JAYA, among others [22,24,30].
This model is suitable to approximate the complete polarization curve, as shown in Figure 2.
These results can be used to feed another model that complements the information for
a PEMFC.

2.2. Macro-Homogeneous Model

The macro-homogeneous model is defined by a system of non-linear ordinary dif-
ferential equations that describes the oxygen concentration, overpotential, and current
density through the catalyst layer in the cathode (CL), where the most important reaction
of a PEM cell occurs, as shown in Figure 3. The model describes the catalyst layer as a
one-dimensional problem in steady-state; its principal advantage is including the character-
istics or physical properties of the materials in the catalyst layer, such as platinum density,
carbon density, and porosities. The peculiarity of this model is its applicability at low or
intermediate current densities. It produces unstable numerical results at high current den-
sities, associated with losses due to concentration, generating spurious solutions [10,12,13].

Figure 3. Schematic diagram of the Membrane Electrode Assembly (MEA) in a PEMFC.

Table 3. Algebraic expressions of the ordinary differential equations; details in [12,13].

VFC = ENernst − η|z=Lc − ROhmic Iδ

Cell voltage (V) ENernst = 1.229− 0.85× 10−3(T− 298.15)
+4.31× 10−5T[ln(PH2 ) + 1/2 ln(PO2 )]

De f f
O2

= De f f
O2−m

Lm,c
Lm,c+εc+Ls

+ De f f
O2−w

εc
Lm,c+εc+Ls

Oxygen De f f
O2−m = L3/2

m,c DO2−m, De f f
O2−w = ε3/2

c DO2−w
DO2−m = 1.4276× 10−11T − 4.2185× 10−9

κe f f = (Lm,c)3/2κ

Overpotential σe f f = (1− Lm,c − εc)3/2σ

a = mPt
lc

As, f = mPt
mPt+mC

Current density As = (227.79 f 3 − 158.57 f 2 − 201.53 f + 159.5)× 103

i0 = 100.03741T−16.96
(

O2
CO2,re f

)

The standard mathematical model is described by the following nonlinear boundary
value problem [10,12–14]:

dO2

dz
=

i− Iδ

4FDe f f
O2

(4)
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dηact

dz
=

i
κe f f +

i− Iδ

σe f f . (5)

di
dz

= ai0

[
exp
(

αcF
RT

ηact

)
− exp

(
αaF
RT

ηact

)]
, (6)

on Ω = [0, lc], where lc is the thickness of the CL, subject to the boundary conditions:

z = 0, O2(0) = O∗2 , i(0) = 0

z = lc, i(lc) = Iδ,

Numerical instabilities are produced due to large gradients in a small subdomain,
causing the system of differential equations to behave similarly to singularly perturbed
ordinary equations or systems of differential equations with dominant convection [38,39].
Due to this issue, when it is solved by a numerical method, it is necessary to create
a fine mesh to capture the high gradients in the solution profiles, which requires high
execution computational times to obtain a solution. Therefore, the main disadvantage is
the computational time required to deliver stable solutions.

The numerical methods must include strategies for stabilizing the solution; otherwise,
the estimated parameters could be incorrect.

The numerical techniques for solving this model are implicit Runge–Kutta methods
for lower current densities and implicit Lobatto techniques for intermediate current den-
sities [10,13]. These types of numerical methods are coupled with adaptive meshes and
shooting methods to reach the unfixed boundary conditions [40]. In contrast to the semi-
empirical model, the macro-homogeneous model recovers the concentration losses region
of the polarization curve—with the limitation of requiring a finer discretization and more
operations for solving the ODE system—and has greater computational complexity.

2.3. SP-RCD Model

The SP-RCD mathematical model studied in [41] consists of a system of second-order
differential equations. It was derived from the formulation of the macro-homogeneous
model using Fick’s law for the oxygen concentration [10,12,13], Ohm’s law for the overpo-
tential [42], and the concept of a second-order formulation for the current density in [43].
These formulations result in the coupled non-linear second-order differential system given
in the following:

∂2O2

∂z2 =
1

4FDe f f

∂i
dz

(7)

∂2η

∂z2 =

(
1

ke f f +
1

σe f f

)
∂i
dz

(8)

∂2i
∂z2 =

(
ai0

Co2,re f

)(
exp
(

αcF
RT

η

)
− exp

(
−αaF

RT
η

))
∂O2

∂z

+

(
ai0

Co2,re f

)
O2

(
αcF
RT

)
exp
(

αcF
RT

η

)
∂η

∂z

+

(
ai0

Co2,re f

)
O2

(
αaF
RT

)
exp
(
−αaF

RT
η

)
∂η

∂z
.

(9)

subject to the following boundary conditions:
For z = 0,

O2(0) = C1, η(0) = η1, i(0) = 0.

For z = lc,
O2(lc) = C2, η(lc) = η2, i(lc) = Iδ.
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In Table 3, we present the algebraic equations required to define the model. The model
describes the physical properties of the cathodic catalyst layer. It was solved by coupling
the finite element method and the θ method or the adaptive Shishkin mesh as a function
of the derivative of the current density [41]. This combination of methods showed similar
results with a shorter computation time to those obtained by the macro-homogeneous
model. The principal advantage of this model is that it reports numerically stable solu-
tions with coarse meshes. The principal disadvantage is that, in its initial formulation,
the SP-RCD model requires a priori information for the boundary conditions. To solve
the parameter estimation problem, we need information about the oxygen concentration
profiles, overpotential, and current density, which are difficult to obtain experimentally.
However, these boundary conditions or profiles can be obtained or approximated by the
results of the macro-homogeneous model for a given value of current density Iδ.

3. Parameter Estimation Problem

In a parameter estimation problem, regardless of the algorithm to be used, it is nec-
essary to define a function that is minimized or maximized. This function is called the
objective function. For PEMFC, different researchers apply various objective functions;
see [44]. In this work, given a set of unknown parameters ~θ, we defined the objective
function, SSE : Θ→ R+, as the sum of the squared error between the experimental data of
the polarization curve and the output of the model:

min SSE(θ) =
N

∑
j=1

∣∣∣VFC
j (zj)−V

(
zj;~θ

)∣∣∣2, (10)

where N is the number of experimental data; VFC
j and V

(
zj;~θ

)
are the j-th experimental

datum and the output of the model, respectively, at point zj. The problem consists of
determining the set of parameters~θ ∈ Θ that returns a minimum value for SSE(~θ).

4. Self-Validating Methodology

In Section 2, we explained the benefits of the three selected mathematical models.
In this section, we propose a methodology to unify the models using the advantages of
each model to solve the disadvantages of the others. An advantage of our proposal is that
it works with a few experimental data, since the three models complement and provide
information to one another.

The algorithm begins with an experimental data set of a polarization curve and returns
a set of estimated parameters and the fitting of the polarization curve, following steps of
the scheme in Figure 4. In this initial step, it is necessary to declare the set of parameters
~θ = {~θSE,~θMH ,~θRCD} to be estimated. Using the semi-empirical model, we obtained a
complete polarization curve, including the concentration losses region. The SE-parameter
estimation fitted the model’s output to the experimental data, providing the first set of
estimated parameters~θSE. As we explain in Section 2.1, this model is incapable of describing
the specific physical properties of the catalyst layer.

The macro-homogeneous model describes the missing characteristics that the semi-
empiric model is unable to describe; we propose to use a part of the polarization curve
simulated by the semi-empiric model, close to the activation losses region, to sample a set
of points, called SSE, which was used to estimate a second set of parameters ~θMH from
the macro-homogeneous model. It is important to note that in this region, the macro-
homogeneous model is well-posed and provides correct solutions, as noted in [13]. With a
set of solutions from the macro-homogeneous model corresponding to one point from SSE,
the oxygen concentration profiles, overpotentials, and current densities were obtained. It
is clear that the estimation of the macro-homogeneous model was correct for the points
SSE, but it could not be correct for the complete polarization curve. To improve this, we
used the SP-RCD model. Then, we generated a set of sample points named SMH from
the obtained oxygen concentration, overpotential, and current density profiles and used
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them as data for the parameter estimation with the SP-RCD model. In this step, we
re-estimated the previously estimated parameters, ~θMH , and defined ~θRCD as the set of
boundary conditions found by the shooting method. Finally, with the new re-estimated
parameters~θMH,RCD = {~θMH ,~θRCD}, we reproduced the complete polarization curve with
the macro-homogeneous model.

Figure 4. Flowchart of the proposed self-validating methodology. This diagram is complemented by
Figures 5 and 6.

This methodology is independent of the parameter estimation problem algorithm
and is described as an algorithm that follows the steps below (graphs in Figures 5 and 6),
which should be followed in the same way as the methodology steps:

• INPUT: Discrete experimental polarization curve. Define the set of parameters to
estimate by each model~θ = {~θSE,~θMH ,~θRCD}; see Figure 5—INPUT. In this work, we
defined the following set of parameters for the estimation: ~θSE = {ξ1, ξ3, ξ4, RC, B, ψ,
A, Lc, Jmax },~θMH = {mpt, ppt, εc}, and ~θRCD = {O2(0),η(0), η(lc)}.

• Step 1. We used the semi-empirical model to fit the experimental polarization curve,
as shown in Figure 5—Step 1. With this fit, the first set of estimated parameters,
~θSE, was obtained. More information on the detailed estimation method and its
implementation can be found in [34].

• Step 2. We sampled a set of N1 points, named SSE, of the polarization curve fitted
by the semi-empirical model in the zone of activation losses, as shown by the green
points in Figure 5—Step 2; the example uses N1 = 6.

• Step 3. We fit the macro-homogeneous model to the sampled points, SSE, as shown
by the black line in Figure 5—Step 3; more information on numerical methods to solve
the model can be found in [13]. A first approximation of the selected parameters of
the MH model~θMH was obtained, as well as the oxygen concentration, overpotential,
and current density profiles.

• Step 4. We selected one point (green point in Figure 5—Step 4); used the associated
set of profiles obtained by the macro-homogeneous model for oxygen concentration,
overpotential, and current density; and sampled N2 points from these profiles, SMH.
The sampled points from the profiles are shown in Figure 6a,c,e. In this example, we
used N2 = 12.
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• Step 5. We fit the SP-RCD model to the sampled points SMH; then, we obtained
estimated parameters ~θMH,RCD = {~θMH ,~θRCD}. In this process, a second and more
precise approximation of the oxygen concentration, overpotential, and current density
profiles was obtained, as shown in Figure 6b,d,f. The model was solved using a
non-linear finite element formulation with an adaptive Shishkin mesh. Details of the
implementation of the SP-RCD model are presented in [41].

• Step 6. We generated the polarization curve by feeding the MH model with the set of
estimated parameters ~θMH,RCD = {~θMH ,~θRCD} using the SP-RCD, as shown by the
magenta continuous line in Figure 5—Step 6.

• RETURN. The estimated set,~θ, and the simulated polarization curves were obtained
by the semi-empirical and macro-homogeneous models using the estimated parame-
ters from the SP-RCD model.

0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
(V
)

Experimental data

0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
(V
)

SE model
Experimental data

(a) INPUT (b) Step 1

0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
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)

SE model
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0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
(V
)
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Sample SSE

(c) Step 2 (d) Step 3

0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
(V
)

SP-RCD model
Selected point

0 2 4 6 8
i (A cm−2) 1e−1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E 
(V
)

SE m del
MH(SP-RCD) model
Experimental data

(e) Step 4,5,6 (f) RETURN

Figure 5. General steps of the proposed self-validating methodology: (a) INPUT: obtain the set of
experimental data and define the corresponding set~θ = {~θSE,~θMH ,~θRCD} of parameters to estimate
in the process; (b) fit the SE model to the experimental data; we obtained~θSE; (c) sample some points
from the SE solution to generate the set, SSE; (d) use the MH model to fit the points SSE; we obtained
~θMH ; (e) select one point from SSE with its macro-homogeneous solutions to sample point SMH and
fit it to the SP-RCD model (in this example, Iδ = 0.05 Acm−2); we obtained~θMH,RCD, as expanded in
Figure 6; (f) RETURN: final polarization curves with the SE and the MH models using the estimated
parameters~θMH,RCD.
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The proposed methodology is a self-validating strategy as the principal objective of
the coupling of the three mathematical models is to generate simulated polarization curves
to describe the experimental data of a PEMFC.
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Figure 6. Steps 4 and 5 of the proposed self-validating methodology: sample points, SMH, from solu-
tions of the MH model for Iδ = 0.05 Acm−2 (step 4) and fit them with the SP-RCD model (step 5); in
this step, we obtained~θMH,RCD.

5. Results

To validate the proposal, we used two experimental datasets of PEMFC. General
information about the reference initial experimental PEMFC can be found in [45]; the
authors used Nafion® 117 with humidified air and prototech-brand electrodes (20 wt. % Pt)
onto which they sputtered platinum with an equivalent thickness of 50 nm, corresponding
to a total Pt loading of 0.45 mg/cm2. Complementary base operating conditions used
by [12,13] are presented in Table 4.
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Table 4. Parameter values used in the baseline calculation, taken from [12,13].

Base Parameters

Dataset 1 [12]

Ncell = 1 As = 112× 104 (cm g−1)
R= 8.315 (JK−1 mol−1) αa = 0.5
F = 96485 (C mol−1) αc = 1
PO2 = 0.21 (atm) %Pt = 0.2
T = 308 (K) Enernst = 1.23 (V)
Cre f

O2
= 1.2× 10−6 (mol cm−3) εg = 0.3

lc = 1.18× 10−3 (cm) Lg,c = 0
Rohm = 0.47 (V) σS = 7.27 (S cm−1)
DO2,N = 1.844× 10−6 (cm2 s−1) σN = 0.17 (S cm−1)
DO2,W = 3.032× 10−5 (cm2 s−1) ρC = 2.0 (g cm−3)
lGDL = 200× 10−4 cm DO2,GDL = 4.792× 10−3 (cm2 s−1)
ire f
0 = 103.507−4001/T εc = 0.33

mPt = 0.332 (mg cm−2) ρPt = 21.5 (g cm−3)
RHc = RHa = 1 PH2 = 1 (atm)

KO2 =
1

RT exp
(
− 666

T + 14.1
)

De f f
O2,gdl = DO2,GDLε

3
2
GDL

O2(0) = 1
KO2

(
PO2
RT −

Iδ lGDL

nFDe f f
O2,gdl

)
Dataset 2 [13]

Ncell = 1 Rohm = 0.225 (V)
R= 8.315 (JK−1 mol−1) αa = 0.5
F = 96485 (C mol−1) αc = 1
P = 5 (atm) σN = 0.17 (S cm−1)
T = 353.15 (K) σS = 7.27 (S cm−1)
Cre f

O2
= 1.2× 10−6 (mol cm−3) xO2 = 0.21

lc = 50 (µm) Lg,c = 0.1
lGDL = − Lm,c = 0.4
DO2,W = 9.19× 10−5 (cm2 s−1) ρC = 1.8 (g cm−3)
mC = 4.5 (mg cm−2) Enernst = Eq. in ref. [13]
mPt = 0.35 (mg cm−2) ρPt = 21.4 (g cm−3)
εc = 0.4 PH2 = 5 (atm)
f = Eq. in Table 3 As = Eq. in Table 3
i0 = Eq. in Table 3

The optimization algorithm to minimize SSE(~θ) is an Estimation of the Distribution
Algorithm (EDA) named the Univariate Marginal Distribution Algorithm with Gaussian
models (UMDAG) [46–51]. It is a stochastic algorithm that computes, in each iteration,
the l-dimensional joint probability function, factored as a product of l univariate and
independent probability functions. This probability function evolves until a stopping
criterion is reached. Details of this algorithm and its implementation are shown in [34,51].
The UMDAG uses a population of 200 individuals and 1000 generations with a tolerance
of 1× 10−7, for the semi-empirical model. For the macro-homogeneous and the SP-RCD
models, it uses a population of 100 individuals and 500 generations with a tolerance of
1 × 10−7. In the context of evolutionary algorithms, the number of individuals in the
population is usually considered dependent on the number of parameters to estimate.
Thus, for the semi-empirical model, we needed to estimate nine parameters; for the macro-
homogeneous model, we needed to estimate three parameters; and for the SP-RCD model,
we re-estimated six parameters used in the macro-homogeneous model. Then, the search
space for the semi-empirical model should have included more individuals to reach an
adequate approximation; meanwhile, the other two models required fewer individuals.
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5.1. Dataset 1

We carried out simulations with Dataset 1 (Table 4) and selected 8 points of the
polarization curve, which was necessary to obtain the profile of the curvature of the
reported polarization curve in [12]. For the semi-empirical model, we selected the set
of parameters ~θSE = {ξ1, ξ3, ξ4, RC, B, ψ, A, Lc, Jmax }. The search space to fit the semi-
empirical model with upper and lower bounds is presented in Table 5. These values are
based on previous research [2,23,30,34,37].

With the UMDAG, we obtained the estimated parameters for the set~θSE, as presented
in Table 6—Dataset 1, and we generated the simulated initial polarization curve ΓSE,
as shown by the dashed blue line in Figure 7a. Next, we sampled three points on ΓSE to
obtain SSE into the activation losses region, as shown by the green points in Figure 7a,
and we used them to obtain the set of estimated parameters~θMH = {mpt, ppt, εc} with the
macro-homogeneous model using the search space presented in Table 7, based on [12–14];
the results are reported in Table 8—Dataset 1, in which we also present the estimated
boundary conditions obtained by a shooting method.

Table 5. Upper and lower bounds for parameter estimation for the semi-empirical model.

ξ1 ξ3 ξ4 RC B ψ A Lc Imax

Limin f −0.952 7.04 × 10−5 −1.98 × 10−4 0.0001 0.016 14 20 110 × 10−4 0.70
Limsup −0.794 1.50 × 10−4 −0.488 × 10−4 0.0009 0.5 23.5 61.5 190 × 10−4 0.85

Table 6. Parameter estimation for the semi-empirical model.

Parameters~θSE Dataset 1 Dataset 2

ξ1 −0.8928 −0.8973
ξ3 8.757× 10−5 1.147× 10−4

ξ4 −1.437× 10−4 −1.812× 10−4

RC ( Ω ) 4.0814×10−4 6.458×10−4

B (V) 4.417×10−2 0.2201
ψ 21.108 20.866

A (cm2) 60.489 60.499
Lc(µm ) 126.5 148.4

Imax (Acm2) 0.8088 1.6921

SSE 3.2654×10−4 4.941×10−4

Table 7. Upper and lower bounds for parameter estimation for the macro-homogeneous model.

Dataset 1 Dataset 2

mpt ppt εc mpt ppt εc

Limin f 0.2 21 0.31 0.3 18 0.3
Limsup 0.4 22 0.35 0.4 22 0.5

Table 8. Parameter estimation for the macro-homogeneous and SP-RCD models. a = approximation
with the shooting method.

Parameters Dataset 1 Dataset 2

~θMH,RCD Reported [12] MH SP-RCD Reported [13] MH SP-RCD

mPt 0.332 0.3999 0.33063 0.35 0.3009 0.3418
~θMH ρPt 21.5 21.726 21.8183 21.4 21.997 21.378

εg 0.33 0.3499 0.33354 0.4 0.3000 0.3001

O2(0) - a3.9 × 10−13 7.1 × 10−13 - a2.424 × 10−13 2.7 × 10−13

~θRCD η(0) - a0.44836 0.44838 - a0.2997 0.29973
η(lc) - a0.45016 0.45015 - a0.3021 0.30213

SSE - - 2.626 × 10−4 7.156 × 10−8 - 8.151 × 10−5 2.434 × 10−4
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With the results of the macro-homogeneous model, we selected information from
the oxygen concentration, overpotential, and current density profiles corresponding to
Iδ = 0.05 Acm−2; we sampled N2 = 10 uniform points on the profiles and carried out
a parameter estimation with the SP-RCD model using the set of parameters ~θMH,RCD

with~θRCD = {O2(0), η(0), η(lc)}; the search limits were obtained by perturbing 5% of the
estimated values reached with the shooting method in the previous step using the macro-
homogeneous model. In Table 8—Dataset 1, we show the estimated values compared to
those reported in the literature and to the previously estimated values from the macro-
homogeneous model. In Figure 7a, the continuous magenta line represents the simulated
polarization curve generated with the macro-homogeneous model using the estimated
parameters of the SP-RCD model; the simulated polarization curves are similar and closer
together, producing self-validating results.
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Figure 7. Numerical experiments: (a) Dataset 1 [12]; (b) Dataset 2 [13].

5.2. Dataset 2

A second dataset was used with the baseline parameters in Table 4—Dataset 2; we
selected eight points of the experimental polarization curve, and the reported experimental
data are presented in [13]. For the semi-empirical model, we used the same set of parameters
and the search space in Table 2, except for Imax; we increased the interval to [0.7, 1.8]
following the reported values in [18] to preserve the profile of the experimental polarization
curve. The estimations are presented in Table 6—Dataset 2. In Figure 7b, the dashed blue
line represents the simulated polarization curve ΓSE,2 obtained from the semi-empirical
model. We sampled N1 = 3 points on ΓSE,2 to obtain SSE, as shown by the green points
in Figure 7b. For the macro-homogeneous model, we estimated the set of parameters
~θMH = {mpt, ppt, εc}, similar to that for Dataset 1. We report the estimated parameters
in Table 8—Dataset 2. For parameter estimation with the SP-RCD model, we selected
the profiles of oxygen concentration, overpotential, and current density corresponding
to Iδ = 0.21 Acm−2; we sampled N2 = 10 uniform points on the profiles, overpotential,
and current density. In the estimation process, we included ~θRCD = {O2(0),η(0), η(lc)}.
We compared the estimated values with those reported in [13], and with estimated values
from the macro-homogeneous model in Table 8—Dataset 2. We present the simulated
polarization curve generated by the macro-homogeneous model using the estimated values
with SP-RCD in Figure 7b, as shown by the continuous magenta line.

The results of the numerical experiments in this work provide us with coherent
and similar results to those obtained in previous works [12,13,34] (see Tables 6 and 8).
The simulated polarization curves with the semi-empirical or macro-homogeneous models
using the estimated parameters of the SP-RCD are similar and close together, showing that
our methodology is adequate to describe PEMFC performances.

6. Conclusions

In this article, we described a proposal of a self-validating methodology using three
different mathematical models: semi-empirical (SE), macro-homogeneous (MH), and sin-
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gularly perturbed reaction–convection–diffusion (SP-RCD). The set of linked parameter
estimation problems, solved by the UMDAG, uses the benefits and advantages of each
model to circumvent the disadvantages of the others. With the proposal in this work,
it is possible to analyze the performance of a PEMFC, from the operational and con-
struction parameters to the structural and composition parameters in the catalyst layer.
The semi-empirical model describes the operational and construction parameters, such as
temperature, pressure, and membrane properties; meanwhile, the macro-homogeneous and
the SP-RCD models are useful to determine the composition parameters, such as platinum
mass loading mPt. The coupling of the models serves to take advantage of the polarization
curve region that is better fitted by each one; for instance, the SE model reproduces the cat-
alyst activation region; then, the MH takes the SE output to produce a gross approximation
of the boundary conditions of the concentration profiles and a set of parameters. The actual
boundary conditions and parameters are re-estimated with the SP-RCD model, producing
more precise solutions. This last precise solution is inputted into the MH model to obtain a
correction of the polarization curve.

The results are comparable with those reported in the literature; the simulated polar-
ization curves of the semi-empirical and macro-homogeneous models obtained using the
estimated parameters of the SP-RCD are similar and close together, validating the approxi-
mations between the models. The power of the method is to estimate parameters that are
difficult or impossible to measure, starting from experimental information. Nevertheless,
once we estimate the parameters that reproduce the experimental data, one can change a
few parameters to describe the performance of a different design. Furthermore, one can use
the model to optimize the performance of a PEMFC by testing parameters in a physically
plausible interval of values. This strategy equips the practitioners with complementary
information about parameters that are difficult to measure experimentally in a laboratory
and increases the confidence of the estimated parameters that consistently reproduce the
experimental data. Future work contemplates the optimization of the parameters. Notice
that a first step to optimizing a PEMFC is to have a reliable numerical simulation that repro-
duces the actual polarization curve and concentration species profiles. Once the adequate
parameters for the models have been determined by means of the proposed methodology,
it is possible to vary any parameter, not only the estimated ones, to find an optimized
value for improving the cell performance or cost. For example, it could be the platinum
mass loading mPt, for which optimization could reduce the cost while maintaining the
performance of the original design, or the operational parameters to increase the electricity
generation with the same design.
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