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In this work, we  inferred the gene regulatory network (GRN) of the fungus Fusarium 
oxysporum by using the regulatory networks of Aspergillus nidulans FGSC A4, Neurospora 
crassa OR74A, Saccharomyces cerevisiae S288c, and Fusarium graminearum PH-1 as 
templates for sequence comparisons. Topological properties to infer the role of transcription 
factors (TFs) and to identify functional modules were calculated in the GRN. From these 
analyzes, five TFs were identified as hubs, including FOXG_04688 and FOXG_05432, 
which regulate 2,404 and 1,864 target genes, respectively. In addition, 16 communities 
were identified in the GRN, where the largest contains 1,923 genes and the smallest 
contains 227 genes. Finally, the genes associated with virulence were extracted from the 
GRN and exhaustively analyzed, and we identified a giant module with ten TFs and 273 
target genes, where the most highly connected node corresponds to the transcription 
factor FOXG_05265, homologous to the putative bZip transcription factor CPTF1 of 
Claviceps purpurea, which is involved in ergotism disease that affects cereal crops and 
grasses. The results described in this work can be used for the study of gene regulation 
in this organism and open the possibility to explore putative genes associated with 
virulence against their host.

Keywords: Fusarium oxysporum, virulence, gene regulation, regulatory networks, transcription factors, 
comparative genomics

INTRODUCTION

The species Fusarium oxysporum comprises a group of ubiquitous inhabitants of soils and 
plant pathogens causing vascular wilt and root diseases on a broad range of agricultural and 
ornamental plants worldwide. F. oxysporum can be divided into more than 120 formae speciales 
(Fusarium sp.) according to the pathogenicity to a set of host plants, and some formae speciales 
of F. oxysporum are further divided into several physiological races (Guo et  al., 2014).

In recent years, gene regulatory networks (GRNs) have grown popular as an effective applied 
biology approach for describing relationships between regulatory components (transcription 
factors, or TFs) and their target genes, or TGs (e.g., enzymes and structural proteins), key 
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components of cell circuits (Mercatelli et  al., 2020). GRNs 
have been used to understand many global cellular processes, 
such as diseases, cell growth, and the improvement of omics 
data interpretation, including single-cell RNA sequencing 
(Jackson et  al., 2020; Lenz et  al., 2020). In this regard, a GRN 
is a collection of interactions represented in a graph, where 
genes or proteins are represented as vertices and their regulatory 
interactions are represented as edges. The network can 
be  directed, where the interaction goes from the tail (u) to 
the head (v), or undirected, where there is no direction of 
the interaction.

To date, in the fungi scope, GRNs have extensively focused 
on Saccharomyces cerevisiae S288C (Guelzim et  al., 2002; Lee 
et  al., 2002; Pe'er et  al., 2002; Segal et  al., 2003; Nachman 
et  al., 2004; Kim et  al., 2006; Darabos et  al., 2011; Jackson 
et  al., 2020), Neurospora crassa OR74A (Hu et  al., 2018), 
Aspergillus nidulans FGSC A4 (Hu et  al., 2018), and Fusarium 
graminearum PH-1 (Guo et al., 2014). In contrast, the inference 
and analysis of GRNs for filamentous fungi remain incipient. 
In this regard, for F. oxysporum there have been no in-depth 
studies for the GRN. Therefore, it remains to be  determined 
how cellular components work systemically to regulate 
F. oxysporum development, invasive growth, and virulence, 
among other processes.

In this context, F. oxysporum is a ubiquitous, soil-borne 
pathogen which causes devastating vascular wilt in more 
than 100 plant species and poses a serious threat to a wide 
range of economically important crops, such as banana, 
cotton, melon, and tomato (Gordon and Martyn, 1997). 
Thus, F. oxysporum represents a good fungal model to 
determine and expand the repertoire of genes associated 
with virulence mechanisms. In this regard, a network 
comprising interconnected and overlapping signaling pathways 
is activated once F. oxysporum recognizes a host in its 
vicinity. These pathways include mitogen-activated protein 
kinase signaling pathways (Di Pietro et al., 2001), Ras proteins 
and G-protein signaling components and their downstream 
pathways (Jain et  al., 2002, 2005; Martínez-Rocha et  al., 
2008), components of the Velvet complex (LaeA/VeA/VelB) 
(López-Berges et  al., 2013), and cAMP pathways (Jain et  al., 
2005), among others. The components of different pathways 
regulate expression of pathogenicity genes conferring virulence 
to F. oxysporum.

Therefore, in this work, based on a criterion of TF–TG 
orthology relationships of four related species with well-known 
regulatory interactions, combined with TF binding site (TFBS) 
predictions, we  inferred the GRN for a reference strain, 
F. oxysporum f. sp. lycopersici 4287, a tomato pathogen. First, 
GRNs of related species (A. nidulans, N. crassa, S. cerevisiae, 
and F. graminearum) allowed the mapping of orthologous 
interactions. Further, TFBS predictions provided accuracy to 
TF–TG relationships. Finally, based on sequence comparisons 
between virulence factors deposited in the Database of Fungal 
Virulence Factors (DFVF) and the genes in F. oxysporum, 
we analyzed those genes associated with virulence and identified 
the most prominent functions associated with them. We consider 
that the GRN inference for this reference strain opens the 

opportunity to explore novel genes associated with virulence 
against hosts in a context of regulatory interactions.

DATA AND METHODOLOGY

Fungal Genomes Analyzed
Genomic data for F. oxysporum f. sp. lycopersici 4287 (GCA_ 
000149955), F. graminearum PH-1 (GCA_000240135), N. crassa 
OR74A (GCA_000182925.2 NC12), and S. cerevisiae S288c 
(GCA_000146045.2 R64-1-1) were downloaded from the Ensembl 
Fungi server.1 Genomic data for A. nidulans FGSC A4 
(s10-m04-r16) were downloaded from AspGD.2

Identification of Orthologous Proteins
To identify orthologous proteins between F. oxysporum and 
model fungi (F. graminearum, N. crassa, S. cerevisiae, and 
A. nidulans), we  used the program ProteinOrtho (v 6.0.15; 
Lechner et  al., 2011) with an E-value of <1e-05, a sequence 
coverage of ≥  50%, and minimal percent identity of best Blast 
hits of 25%, except for the report of singleton genes without 
any hit (Lechner et al., 2011). In brief, ProteinOrtho implements 
an extended version of the reciprocal best heuristic alignment 
(Lechner et al., 2011), reducing the amount of memory required 
for orthology analysis, compared to OrthoMCL and Multi-
Paranoid, and the performance is comparable with that of 
OrthoMCL (Nichio et  al., 2017).

Identification of Transcription Factors
To assess the diversity of TFs, protein sequences of whole 
proteomes were used to search TF domains using InterProScan 
(v5.25–64.0; Jones et  al., 2014). InterProScan was used to map 
interpro families and domains, based on the PFAM database. 
We  used default parameters (hmmpfam –acc -A 0 –cpu 1 -E 
0.01 -Z 350000). Afterwards, PFAM predictions of each species 
were collected making use of the 91 DNA-binding domains 
described in the catalog of the main eukaryotic TF families 
(Weirauch and Hughes, 2011), which was also used for the 
CIS-BP database.

Upstream Sequences
DNA sequences comprising 1,000 bp upstream of each gene 
of F. oxysporum were extracted, considering the annotation in 
gff3 format and whole-genome sequences.

Weight Matrices Used to Identify TFBSs
The weight matrices associated with TFs from F. oxysporum 
were obtained from the CIS-BP Database (Weirauch et  al., 
2014). A cross-validation was performed to check locus tag 
and gene name for each TF, crossing information from the 
reference genome and CIS-BP.

1 https://fungi.ensembl.org/
2 http://www.aspgd.org
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TFBS Predictions
For each TF–TG interaction, TFBS prediction was carried out. 
RSAT matrix-scan (http://rsat.sb-roscoff.fr/) was used to predict 
the TFBSs by using all the respective position weight matrices 
(PWMs) from F. oxysporum, obtained from the CIS-BP Database 
(Weirauch et  al., 2014). RSAT matrix-scan analyses were 
performed with “cis-bp” as matrix format. Other default 
parameters were maintained, including an p-value of < 1e-4 
as the upper threshold.

SQLite3 Database
All the information concerning the GRN was organized in a 
SQLite database by modeling six tables: “gene,” “ortho,” “pwm,” 
“regulation,” “tfbs_prediction,” and “network_node.” Input data 
obtained in the previous steps were inserted in the tables: 
“gene,” “ortho,” “pwm,” and “regulation” (these data are available 
as Supplementary Material S1).

Inference of the Gene Regulatory Network
To reconstruct the GRN of F. oxysporum, the interactions with 
experimental evidence collected in four model organisms were 
used: S. cerevisiae with 6,709 nodes and 179,601 interactions 
(Monteiro et  al., 2020); A. nidulans with 5,969 nodes and 
10,018 regulatory interactions; N. crassa (7,446 nodes and 
20,499 regulatory interactions; Hu et  al., 2018), and 
F. graminearum (13,153 nodes and 39,459 regulatory interactions; 
Guo et  al., 2014). In this regard, the inference is based on 
the hypothesis that orthologous TFs generally regulate the 
expression of orthologous TGs (Yu et  al., 2004; Galán-Vásquez 
et  al., 2016).

The orthology relationships can be  defined as 1:N, N:1 or 
N:N, found by ProteinOrtho were defined as all-to-all by our 
tool. For instance, the protein AN5067 of A. nidulans has a 
1:N orthology relationship; so it generated two entries in our 
orthologs database:

AN5067 FOXG_11784.
AN5067 FOXG_15825.

However, the absolute majority of orthology relationships 
found were 1:1, as shown below:

F. graminearum 260 of 9,302.
A. nidulans 673 of 5,763.
N. crassa 383 of 5,649.
S. cerevisiae 372 of 2,143.

Therefore, the orthology of TFs and TGs considering 
the GRNs previously characterized in the model organisms 
was mapped, if both elements were identified in F. oxysporum. 
In addition, we  reinforced the assignment with TFBS  
predictions.

Virulence Proteins
A total set of 2,058 proteins related to virulence were downloaded 
from the DFVF (Lu et al., 2012). The DFVF contains information 
about 2,058 pathogenic genes expressed by 228 fungal strains 

from 85 genera. Based on these proteins, we  identified by 
orthology the virulence protein-encoding genes within the GRN 
of F. oxysporum. The program ProteinOrtho (v 6.0.15) was 
used with parameters as previously described.

RESULTS AND DISCUSSION

Prediction of TFs in Fusarium oxysporum
To identify those proteins devoted to regulation of gene expression 
in F. oxysporum (GCA_000149955), the repertoire of TFs was 
identified by Pfam assignments and considering a dataset of 
91 Pfam IDs associated with TFs described in the catalog of 
the main eukaryotic transcription factor families (Weirauch 
and Hughes, 2011), also used by the CIS-BP database. From 
these assignments, 503 proteins were identified as TFs; in other 
words, 2.3% of the total proteins (17,696) that F. oxysporum 
contains are associated with gene regulation. These proteins 
are classified into 39 different families, where the Fungal Zn(2)–
Cys(6) binuclear cluster domain (PF00172) is the more abundant, 
with 264 members, followed by Zinc finger, C2H2 type (PF00096) 
with 67 members is the most abundant family of TFs, and 
Helix–loop–helix (HLH) DNA-binding domain (PF00010) with 
37 members. These three families enclosed 73.1% of the proteins 
identified in F. oxysporum, whereas 36 families contributed to 
26.9% of the total repertoire of TFs. From a functional perspective, 
members of the Zn(2)–Cys(6) family regulate diverse cellular 
processes, such as sugar and amino acid metabolism, cell cycle, 
and nitrogen utilization, which are among the most crucial 
processes for survival (MacPherson et  al., 2006). Indeed, zinc 
cluster TFs exhibit diverse regulatory roles, can have overlapping 
functions (Shelest, 2008), and include a high number of proteins 
with experimental evidence in fungi (Shelest, 2017).

The HLH family contains proteins that regulate cellular 
differentiation, and morphogenesis and metabolism in Candida 
albicans (Doedt et  al., 2004), developmental complexity in 
filamentous fungi (Dutton et  al., 1997), and regulation of the 
cell cycle (Whitehall et  al., 1999), among others. In addition, 
some members of this family are involved in determining 
virulence [such as Efg1p of C. albicans (Stoldt et  al., 1997)], 
suggesting the versatility of regulatory roles they are involved in.

Gene Regulatory Network
The GRN in F. oxysporum was inferred after considering orthology 
information from curated regulatory interactions of fungal models: 
A. nidulans, N. crassa, S. cerevisiae, and F. graminearum. When 
orthologues of a TF–TG relationship in a model organism were 
identified for both the TF and TG in F. oxysporum, a regulatory 
interaction was established (Yu et al., 2004; Galán-Vásquez et al., 
2016). This inference is based on the hypothesis that if the 
sequences corresponding to TFs and TGs are conserved in the 
model organisms and in F. oxysporum, then regulatory interactions 
are also conserved. Similar approaches have been proposed for 
Penicillium echinulatum 2HH, Penicillium oxalicum 114–2, and 
Ustilago maydis (Lenz et al., 2020; Soberanes-Gutiérrez et al., 2021).

The inferred network contains 10,128 nodes and 43,572 
edges, and covers 57.23% of the total proteins that F. oxysporum 
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encodes (Figure  1; Supplementary Table S1). In this GRN, 
184 TFs of 503 predicted were included, and they were associated 
with 10,125 TGs. In topological terms, the GRN has an average 
degree of 4.3, and 20 self-loops. In this regard, the fungal_trans 
domain-containing protein, FOXG_04688, was identified with 
2,404 target genes, the maximum “out degree” identified in 
the network. This protein contains a zinc finger domain and 
it is homologous to fungal regulatory proteins associated with 
sucrose utilization in the Ascomycota Tolypocladium paradoxum 
and to the maltose fermentation regulatory protein MAL13 of 
Metarhizium anisopliae. The Zn–Cys binuclear cluster 
DNA-binding domain consists of two helices organized around 
a Zn(2)Cys(6) motifs and binds to sequences containing two 
DNA half-sites composed of three to five C/G combinations, 
whereas three proteins, alcohol dehydrogenase (FOXG_12790), 
glutamate dehydrogenase (FOXG_01626), and non-reducing 

end alpha-L-arabinofuranosidase (FOXG_02500), were found 
with the maximum “in degree” (regulated by 24 TFs each).

In functional terms, the GRN has 8,650 interactions inferred 
as activators, 6,051 as repressors, and 28,871 with no evident 
regulation. Based on TFBS assignments, 2013 of 43,572 had 
one TFBS associated, 436 had two TFBSs, and 105 had three 
or more binding sites. The regulatory interactions inferred were 
preferentially assigned from S. cerevisiae (1,425 interactions), 
N. crassa (14,109 interactions), A. nidulans (3,548 interactions), 
and F. graminearum (24,789 interactions; Table  1).

Topological Properties of the GRN
In order to evaluate the global structure of the GRN of 
F. oxysporum and compare it against the fungal models, the 
topological properties were calculated for the five organisms. 
From this comparison, we  found that F. oxysporum contains 

FIGURE 1 | Gene regulatory network (GRN) of Fusarium oxysporum. Each color represents a different community and the size of the node is proportional to the 
output degree. Ten TFs are plotted as highly connected nodes, and these regulate 50.28% of the network nodes.
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the second highest number of nodes in comparison to the 
other organisms, with 10,228, whereas S. cerevisiae contains 
the greater number of edges (179,601). When we  compared 
the average degree, S. cerevisiae also contained the highest 
number in all the genomes (26.77), whereas F. oxysporum had 
4.3, the second highest in comparison with the other organisms. 
This discrepancy could be associated with the fact that S. cerevisiae 
is the most studied yeast species.

In this regard, the highest clustering coefficient, or 1, indicates 
that nodes whose neighbors are connected between them form 
complete graphs. In the GRN of F. oxysporum, we  identified 
50 nodes (representing 0.49% of the network) with a clustering 
coefficient of 1, indicating that there are substructures such 
as triangles or more complex motifs; this is consistent with 
previous reconstructed networks (Lenz et  al., 2020; Soberanes-
Gutiérrez et al., 2021). On the other hand, 4,542 nodes (44.84% 
of nodes in the network) have a clustering coefficient equal 
to 0, whereas 1791 of the nodes in the network have a degree 
of 1 and 2. We  also found a mean 0.111 clustering coefficient 
for the network, indicating that neighbors have <⅓ connections 
among them. In this regard, the nodes with the highest clustering 
coefficient indicate that there are small highly connected groups, 
suggesting the existence of a modularity in the network. This 
modularity enables the identification of groups of genes that 
can work independently in an organism’s biological process 
(Resendis-Antonio et  al., 2005; Martínez-Antonio et  al., 2008).

In addition, we identified the top five most important nodes, 
based on their connectivity and on the shortest paths between 
each pair of nodes (Table  2). In this regard, FOXG_04688, 
which codes for a zinc finger domain-containing protein, was 
found to be  the most important node in degree centrality 
(0.2382739). This TF was also identified with the maximum 
out degree (see previous section).

Furthermore, we identified that FOXG_14504 (cursive xynA; 
endo-1,4-beta-xylanase) is the node that minimizes the sum 
of distances to the other nodes, i.e., the node with the highest 
closeness score (0.00538830). FOXG_02500 (an alpha-L-
arabinofuranosidase) is the node that interacts with other highly 
connected nodes, i.e., the node with the highest eigenvector 
centrality (0.05238574). From a functional perspective, 
FOXG_14504 is a central node regulated by 22 TFs, mainly 
associated with the Zn(2)–Cys(6) binuclear cluster domain, 
suggesting that these proteins regulate similar processes. 
FOXG_14504 is homologous to XynC of Aspergillus fumigatus, 
involved in degradation of plant cell wall polysaccharides, a 
central process in infection mechanisms (de Vries and Visser, 
2001). In addition to the highest closeness centrality, the protein 
XynA (FOXG_14504; endo-1,4-beta-xylanase) is a xylanolytic 
enzyme involved in the degradation of xylan, the main component 
of hemicellulose. Efficient hydrolysis of hemicellulose is also 
supported by other enzymes which act synergistically, like 
FOXG_02500 (alpha-L-arabinofuranosidase), which has the 
highest eigenvector centrality. Hemicellulose constitutes about 
30% of plant cell walls; consequently, hemicellulose degradation 
genes play a central role in the fungal nutrition strategy (Andlar 
et  al., 2018) and infection mechanisms (de Vries and Visser, 
2001), which can be observed by analyzing the centrality metrics 
in the F. oxysporum GRN.

FOXG_04688, a regulatory protein probably involved in 
maltose and sucrose metabolism (as described for its homologues 
in S. cerevisiae) was also found to be  the most significant 
when the betweenness centrality of a node v (0.001342) was 
calculated. In this regard, the betweenness centrality of a node 
is defined as the sum of the fraction of all-pairs shortest paths 
that pass-through v, i.e., the influence of a vertex over the 
flow of information between every pair of vertices under the 
assumption that information primarily flows over the shortest 
paths between two vertices.

Finally, we  identified that six proteins are in the top five 
having more than one centrality: FOXG_04688, FOXG_05432, 
FOXG_01037, FOXG_01037  in degree and betweenness 
centrality; and FOXG_02500 and FOXG_12790  in closeness 
and eigenvector centrality. These proteins have been described 
as serine/threonine-protein kinase PLK1-like, Mannose-1-
phosphate guanylyltransferase, methyl-accepting chemotaxis 
protein; K03776 aerotaxis receptor, bZIP domain-containing 
protein, non-reducing end alpha-L-arabinofuranosidase, and 
alcohol dehydrogenase, respectively. Therefore, these proteins 
are important for monitoring and transmitting information 
within the network, i.e., they can be  affected quickly by 
changes in any part of the network and can modulate expression 
changes in other parts of the organisms.

TABLE 1 | GRN of five species (four fungal models and F. oxysporum).

F. oxysporum S. cerevisiae A. nidulans N. crassa F. graminearum

Nodes 10,228 6,709 5,969 7,446 13,153
Edges 43,572 179,601 10,018 20,499 39,459
Average degree 4.3 26.77 1.67 2.75 3.0

TABLE 2 | Centralities of top 5 nodes.

Level
Degree 

centrality
Closeness 
centrality

Betweenness 
centrality

Eigenvector 
centrality

1 FOXG_04688 
(0.2382739)*

FOXG_14504 
(0.00538830)

FOXG_04688 
(0.001342)

FOXG_02500 
(0.05238574)

2 FOXG_05432 
(0.18485237)

FOXG_08042 
(0.00537961)

FOXG_05432 
(0.0010579)

FOXG_03418 
(0.05093478)

3 FOXG_01037 
(0.11987755)

FOXG_02500 
(0.00537207)

FOXG_01037 
(0.0009947)

FOXG_01626 
(0.0498954)

4 FOXG_04255 
(0.0987459)

FOXG_12790 
(0.00530916)

FOXG_05265 
(0.0009814)

FOXG_00928 
(0.0498882)

5 FOXG_05265 
(0.09045126)

FOXG_03680 
(0.0052953)

FOXG_04255 
(0.0009301)

FOXG_12790 
(0.04926705)

*Between parentheses, the value of centrality of each gene is added, the higher the 
value, the more important the gene.
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At the structural level, these proteins can connect the different 
subunits of the network. Thus, to identify the most connected 
TFs associated with the reconstructed network, we  identified 
the five top hubs (Table  3). A hub was defined as a TF with 
connections with many other nodes. From these hubs, the 
two most connected are the Fungal_trans domain-containing 
protein (FOXG_04688), which regulates 2,404 targets, and 
Mannose-1-phosphate guanylyltransferase (FOXG_05432), which 
regulates 1,864 genes.

Identification of Communities in the GRN
In order to identify the most related elements in the GRN, 
the inferred network was analyzed in terms of communities. 
To this end, a community was defined as a subset of nodes 
densely connected in comparison with the rest of the network 
(Radicchi et al., 2004). The communities were determined using 
the Blondel’s method, which allocates a new community to 
each node in the network and then moves a node to the 
community of one of its neighbors with whom it achieves the 
maximum positive contribution to modularity. This process is 
performed for all nodes until no further improvement is possible. 
Then, each community is treated as a separate node, and the 
process is continued until there is only one node remaining 
or the modularity cannot be  raised in a single step (Blondel 
et  al., 2008). Finally, these modules were functionally analyzed 
with gene ontology (GO) term enrichment. From this analysis, 
the F. oxysporum network contains 16 communities, where 
the longest contains 1,923 genes and the smallest contains 227 
genes (Supplementary Table S2). In functional terms, the 
communities with the greatest diversity of enriched biological 
processes correspond to: Community-12, with a large proportion 
of genes related to protein metabolic processes and organelle 
organization, among others, with 23 proteins predicted as TFs; 
Community-13, with genes associated with organonitrogen 
compound metabolic processes and small molecule metabolic 
processes and contains 14 proteins predicted as TFs; and 

Community-3, which contains genes related to signal transduction 
and cell communication, with 13 proteins predicted as TFs. 
On the other hand, communities 2, 6, 8, 9, and 11 do not 
contain enriched biological processes, indicating a high functional 
diversity (Figure  2).

Module of Virulence-Related Genes
In order to study the genes associated with virulence in 
F. oxysporum, protein sequences derived from the virulence 
factor database were used to identify their homologues in the 
genome of F. oxysporum. From this analysis, we  identified 432 
proteins probably involved in this process, which included 
genes related to extracellular metalloproteases, subtilisin-like 
serine protease, dipeptidyl-peptidase, and vacuolar aspartic 
endopeptidase, and two TFs experimentally characterized, among 
others. From these, 283 genes were included in a module with 
467 regulatory interactions.

Topologically, the module consists of one giant component, 
with 10 TFs and 273 TGs, where the most highly connected 
node corresponds to a TF with a bZIP domain, FOXG_05265, 
which regulates 75 nodes that include 3 TFs and 72 TGs. 
This protein is homologous to the putative bZip transcription 
factor CPTF1 (Q8J0I5_CLAPU), involved in the ergotism disease 
caused by Claviceps purpurea, which affects cereal crops and 
grasses (Nathues et  al., 2004; Figure  3).

On the other hand, six different TFs regulate expression 
of the Malate synthase gene, FOXG_03099, which is the most 
regulated gene in the virulence module and is described as a 
malate synthase involved in step two of the sub pathway that 
synthesizes (S)-malate from isocitrate. The protein is homologous 
to the malate synthase Mls1 (Q5J4D6_PHAND) of Phaeosphaeria 
nodorum, related to Glume blotch of wheat and other grasses 
disease (Lu et  al., 2012).

In general, the genes associated with the virulence module 
are homologous to genes involved in 40 different diseases, 
such as leaf spot or ergotism (Figure  3), with a large cluster 
of 68 genes, mainly related to invasive candidal disease (mainly 
associated with cell communication, phosphate-containing 
compound metabolic process regulation of signaling, and 
response to stress, among others). As well as infection disease 
with 21 related genes (mainly exopeptidase, serine hydrolase, 
and carboxypeptidase activities), and Darling’s disease, with 
21 genes related to chloroplast stroma and cell septum (Figure 3).

CONCLUSION

The analysis described in this work, considers a guilt-by-
association approach to infer the GRNs in F. oxysporum, based 
on TF–TG orthology relationships of four fungal species with 
well-known regulatory interactions. In a posterior step, the 
reconstructed network was evaluated in terms of its topological 
properties, identifying TFs as hubs, modules, and co-regulated 
genes. The predicted GRN was considering the orthology 
relationships identified with Proteinortho, a method that 
implements a blast-based approach to determine sets of (co-)
orthologous protein sequences that generalizes the reciprocal 

TABLE 3 | Top 5 identified hubs in the reconstructed network.

Protein ID
Number of

TGs
Function

Biological  
process (GO)

FOXG_04688 2,404 Fungal-specific 
transcription factor 
domain

Metabolic process 
and single-organism 
process

FOXG_05432 1,864 Mannose-1-phosphate 
guanylyltransferase

Cellular process and 
response to stimulus

FOXG_01037 1,208 Cutinase gene 
palindrome-binding 
protein

Metabolic process 
and single-organism 
process

FOXG_04255 998 Conserved 
hypothetical protein

Organonitrogen 
compound 
biosynthetic process 
and organonitrogen 
compound metabolic 
process

FOXG_05265 910 Protein similar to bZIP 
transcription factor 
AtfA

Single-organism 
process
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FIGURE 2 | Communities in the network. The richest biological processes for each community were identified and hierarchically clustered based on Euclidean 
distance measures and Ward’s method for linkage analysis. Each row represents the gene ontology (GO) term for a biological process, and each column represents 
the community ID.
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best alignment heuristic (Lechner et  al., 2011); and reinforced 
(when it was possible) with TFBS predictions.

We understand that the apparent absence of the accuracy 
of the method could open questions about the reliability of 
the predictions; however, all inferences were considering the 
TF–TG interactions with experimental evidences (included as 
Supplementary Material), such as S. cerevisiae (Monteiro et al., 
2020), A. nidulans and N. crassa (Hu et  al., 2018), and 
F. graminearum (Guo et  al., 2014); whereas the orthology 
relationships were defined as 1:N, N:1 or N:N, found by 
ProteinOrtho. In this regard, the GRN was compared with 
Genomic feature of Fol4287 well documented by Ma et  al. 
(2010), finding a high proportion of proteins identified in 
different functional groups previously described (between 30 
and 92% of each dataset). Suggesting that our approach is 
able to identify those proteins associated with functional roles. 
In summary, we did not use expression data to infer the GRN, 
where diverse approaches to evaluate the accuracy of the method 
have been proposed. Instead, we  used orthology inferences 
based on fungal models with well-known experimental evidence. 
Alternatively, an approach previously suggested to evaluate the 
accuracy of the GRN, would consider a probabilistic approach 
to estimate the functional coupling between genes, using the 
functional annotations from a gold standard set; however, this 
approach is useful to expand a well-known network with not 

considering sequence comparisons. In our case, if this approach 
is implemented to compare the real versus inferred networks, 
(at least) two challenges are found. The first one, the pair of 
TF–TGs used to infer the network in a new genome, would 
exhibit functional similarity to the pair of genes used as 
reference; the second one, we  must assume that TF–TG used 
as a reference, exhibit functional congruency for large datasets, 
inclusive for TFs with multiple targets.

Since a functional perspective, the inference of the GRN 
of F. oxysporum provides an excellent opportunity to understand 
how genes and functional processes are interrelated in this 
organism. The GRN was analyzed in terms of its topological 
properties to infer the role of TFs in the context of the GRN 
and to identify functional modules. From these analyses, 
FOXG_04688 and FOXG_05265, which regulate 7,384 target 
genes, were identified as hubs. In addition, 16 communities 
were identified in the GRN, where the longest contains 1,923 
genes and the smallest contains 227 genes. Finally, the module 
of virulence with 467 regulatory interactions identified a giant 
module with 10 TFs and 273 TGs, where the most highly 
connected node corresponded to the TF FOXG_05265 with 
a bZIP domain. Besides genome-wide approaches, targeted 
analysis of regulatory regions can elucidate regulatory divergence 
after speciation. For example, analyzing TF binding specificity 
of the transcription factor LEAFY homologues from different 

FIGURE 3 | Virulence module in F. oxysporum. Nodes represent TFs and TGs, and the white edges represent regulatory interactions. The clusters show the most 
abundant diseases represented in the virulence module. The size of a node is proportional to its degree of output.
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plant species, mosses, and algae, among others, revealed subtle 
changes in their preferred TFBS motifs, suggesting that the 
DNA binding specificity of this TF changed during land plant 
evolution (Sayou et  al., 2016). Thus, the combination of 
numerous TFBS models with novel genome sequences could 
ultimately unlock mechanisms of GRN evolution. In this 
context, the inference of GRN described in this work can 
be  improved with experimental data, such as the ChIP-seq 
and prediction of TFBS by phylogenetic footprinting studies, 
among others. In this regard, comparative ChIP-seq studies 
have identified a highly conserved TFBS motif for two TFs, 
but highly divergent binding events on conserved genes of 
different species (Schmidt et  al., 2010). Therefore, we  do not 
only consider that the inference of GRN is central to 
understanding the general topology of the network, but is 
the base stone to complement experimental studies to understand 
the network dynamics, and open the possibility to explore 
putative genes associated with virulence against their host.
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