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Abstract: Coffee is one of the most important agricultural commodities of Mexico. Mapping coffee
land cover is still a challenge because it is grown mainly on small areas in agroforestry systems (AFS),
which are located in hard-to-access mountainous regions. The objective of this research was to map
coffee AFS types in a mountainous region using the changing spectral response patterns over the dry
season as well as supplementary data. We employed Sentinel-1, Sentinel-2 and ALOS-Palsar images,
a digital elevation model, soil moisture layers, and 150 field plots. First, we defined three coffee
AFS types based on their structural and spectral characteristics. Then, we performed a recursive
feature elimination analysis to identify the most relevant predictor variables for each land use/cover
class in the region. Next, we constructed a predictor variable dataset for each AFS type and one
for the remaining land use/cover classes. Afterward, four maps were generated using a random
forest (RF) classifier. Finally, we combined the four maps into a unique land-cover map through a
maximum likelihood algorithm. Using a validation sample of 932 sites derived from Planet images
(4.5 m pixel size), we estimated a 95% map overall accuracy. Two AFS types were classified as having
low error; the third, with the highest tree density, had the lowest accuracy. The results obtained
show that the infrared and near-infrared bands from the Sentinel-2 scenes are particularly useful for
coffee AFS discrimination. However, supplementary data are required to improve the performance
of the classifier. Our findings also highlight the importance of the multi-temporal and multi-dataset
approach for identifying complex production systems in areas of high topographic heterogeneity.

Keywords: Sierra Madre; Chiapas; random forest; shade coffee; recursive feature elimination

1. Introduction

Coffee is one of the most important agroforestry crops in Latin America; 80% of the
global production of Arabic coffee is grown in this region [1]. Given its importance, this crop
has significantly modified the structure of rural landscapes in coffee-growing regions [2].
About 25 million rural farmers depend on coffee growing for their livelihoods; most of
them are small farmers with crops ranging from 1 to 5 ha [3].

In Mexico, coffee is cultivated mainly in agroforestry systems (AFS), also known
as shade coffee [4]. In AFS, coffee plants grow in the understory under the canopy of
native or introduced tree species [5]. Shade trees, which can be either timber or fruit trees,
regulate light conditions for optimal coffee growing, capture carbon, control soil erosion,
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and provide shelter for biodiversity [6]. Additionally, these trees are a source of firewood,
food, and additional economic income for farmers [7,8]. Coffee agroforestry systems are
found in a wide variety of socio-environmental contexts with different anthropic alteration
level, densities and compositions of shade trees, and involving several varieties of coffee
plants adapted to various geographic regions [9]. These modifications have also been aimed
at reducing the incidence of pests and diseases [10].

Coffee AFS can be characterized by a combination of attributes, such as the density of
shade trees, the abundance of non-native species and the use of agrochemicals, which can
be used to describe the levels of anthropogenic crop disturbance. In this regard, Toledo and
Moguel [11] elaborated a proposal for a disturbance gradient with four classes. According
to their proposal, the AFS with the lowest disturbance level, ”rustic systems”, are those
where coffee cultivation is introduced into the mature native forest, either replacing or sup-
plementing the vegetation in the understory. In contrast, the system with the higher levels
of anthropic impact, or ”shade monocultures”, are those where coffee plants are established
under trees of a single species and often require the application of agrochemicals; these
systems provide fewer environmental services [12]. Finally, these authors also included a
fifth and the highest disturbance class, corresponding to coffee crops without shade trees
(i.e., not an AFS), also known as sun coffee. In Mexico, coffee production is concentrated
in four states: Chiapas, Veracruz, Oaxaca, and Puebla. The first covers 35% of the total
area cultivated in Mexico, or approximately 252,000 ha, with 90% involving some type of
AFS [4,13]. However, the incidence of pests and diseases, particularly coffee rust (Hemileia
vastatrix), has forced many farmers to replace their old coffee varieties with more resistant
ones that require fewer shade trees, thus increasing the anthropization of coffee-growing
systems [14].

Despite the importance of shade coffee production in Chiapas, the detailed spatial
distribution of the different types of coffee agroforestry systems is still unknown. This lack
of information is caused by the poor accessibility to coffee plantations since a significant
number of coffee growers farmers are located in highly marginalized areas, with small
coffee plot areas (about one hectare) scattered in hard-to-access mountain landscapes [15].

Mapping the area covered by coffee AFS using remote sensors has been unsuccess-
ful, particularly regarding systems with a high density of shade trees, which have been
identified with low accuracy [16,17]. Topographic heterogeneity, AFS structural complex-
ity, and shade tree coverage are some of the factors that restrain correct identification
of these AFS. As a result of the complexity of coffee-growing landscapes, their spectral
patterns are often misidentified by other types of land cover, such as forests and secondary
vegetation [17,18].

In the case of sun coffee plantations, which have few shade trees, if any, land cover
classification has been performed well. Accuracy values above 90% have been reported in
plantations with reduced vegetation cover, by combining spectral bands and vegetation
indices from optical images [19] and including texture metrics as predictive variables [20].

In situations of intermediate complexity, using high-resolution images in areas with
homogeneous topography, Hebbar et al. [21] identified commercial poly- and monocultures
with low error. In more complex AFS, the use of supplementary information, including
slope, temperature, precipitation, and soil fertility, improved the accuracy of crop identifi-
cation [22]. Separately, Kelley et al. [23] used spectral indices and land surface temperature
derived from multi-seasonal Landsat 8 imagery to detect coffee AFS with a percentage of
shade trees above 30%.

On the other hand, the modification of AFS spectral patterns associated with pheno-
logical changes has been little explored. Few studies have attempted to discriminate the
types of AFS using temporal variations of their spectral response [23–26].

Considering the importance of the shade coffee plantations for Chiapas México and
the difficulties in identifying them, the aim of this study was twofold. First, we sought to
develop a method for the identification of coffee AFS types with different densities of shade
trees, using variations in spectral response throughout the dry season as well as spectral
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indices and auxiliary data. We also expected to improve the accuracy of land cover maps of
coffee of agroforestry systems of Chiapas using this approach.

2. Materials and Methods
2.1. Study Area

The study area stretches across 2381 km2 located in the central part of the mountain
range called Sierra Madre de Chiapas (Figure 1). This region harbors a high biodiversity
and has the highest coffee production in the state of Chiapas [27]. The study area was
limited to potential coffee growing areas, i.e., those between 700 and 2800 m above sea
level using a digital elevation model downloaded from the Digital Library of Maps of the
National Institute of Statistics, Geography, and Informatics [28].

Figure 1. Location of the study area. Source: World Imagery, ESRI, Copyright: © 2022 Esri, Digi-
talGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo,
and the GIS User Community.

Due to its mountainous relief, the area covers a wide altitudinal gradient, from 700 to
2700 m above sea level. In the dry season, the minimum temperate fluctuates between 9 and
15 °C and the maximum temperature between 21 and 33 °C, with precipitation between 25
and 300 mm [29]. The region encompasses a significant diversity of forest types, including
coniferous forest, mountain cloud forest, tropical dry forest and tropical wet forest. In some
cases, these show degradation and fragmentation of the forest cover as a result of illegal
logging, livestock ranching, and rain-fed agriculture. As a result, fragments of secondary
forests in different successional stages are also common [30].

2.2. Field Data and Characterization of Agroforestry Systems

The characterization of coffee AFS types and the calibration of the models were
conducted using an inventory of 263 shade coffee plots collected in 2019 by the Café de la
Concordia (CAFECO, for its acronym in Spanish) cooperative organization of coffee growers.
In each plot, CAFECO recorded information on coffee and the geographic coordinates of
the plot center, the number and varieties of coffee plants, and the number and botanical
names of the shade trees. We also collected similar data in an additional 15 plots; we also
registered the mean height, mean diameter at the breast height, crown diameter and the
number of strata of coffee plants and shade trees.

According to an analysis of field data (abundance and species composition of shade
trees, and density of coffee plants) and a visual interpretation of satellite images, we
generated a dataset of 150 field plots and grouped into three classes of AFS (Figure 2).
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The definition of these classes partially matches that proposed by Moguel and Toledo [31],
adapted to the particular characteristics of the local production systems in the study area.
The definitions of coffee AFS types used in this study are the following:

1. Reduced-shade coffee polyculture. This system has one or two tree strata and an
understory layer with coffee plants. The highest stratum shows some trees of natural
vegetation, usually the tallest trees (>7 m). When there is an intermediate stratum, it
usually includes fruit and timber tree species; the most common species are naranja
(Citrus × sinensis (L.) Osb.), aguacate (Persea americana Mill.), plátano (Musa paradisiaca
L.), zapote (Pouteria sapota (Jacq.) H.E. Moore and Stearn), and mango (Mangifera indica
L.). The percent shade is generally less than or equal to 30%, the tree density varies
from 16 to 30 trees per hectare, and the density of coffee plants ranges from 2500
to 4400 plants per hectare. Although trees are not evenly distributed, the distance
between shade trees is usually wide, so there are open areas, and coffee plants are
frequently apparent in high-resolution images (Figure 2b).

2. Rustic coffee polyculture. This AFS has two tree strata and an understory of coffee plants.
The highest stratum includes trees of natural vegetation, in some cases alternating
with introduced timber trees, mainly cedro (Cedrela odorata L.) and roble (Quercus robur
L.); the average height of this stratum is 10 m. The second stratum generally comprises
introduced species with a mean height of 6 m, commonly chalum (Inga vera Willd.),
caspirol (Inga laurina (Sw.) Willd.), paterna (Inga spuria H and B. Ex Willd.), and fruit
trees such as naranja (Citrus × sinensis (L.) Osb.), among others. The percent shade
ranges from 30% to 60%. The density of shade trees varies between 24 and 38 trees/ha,
and the density of coffee plants, between 2500 and 4800 plants/ha. In satellite images,
these systems appear more homogeneous in color compared to forests and tropical
forests and are less fragmented (Figure 2c) and less intensely colored than reduced-
shade polycultures.

3. Rustic coffee. This system also has one or two strata of tree vegetation; the highest
stratum is dominated by species of natural vegetation, with occasional introduced
trees. The intermediate stratum consists mainly of timber trees, including chalum (Inga
vera Willd.), caspirol (Inga laurina (Sw.) Willd.) and paterna (Inga spuria H and B. Ex
Willd.) of lower height.
The percent shade is greater than 60%. Compared to the other AFS classes, this
class has a higher density of shade trees (30–44 trees/ha), with a similar density of
coffee plants (2500–3300 plants/ha). This system is the one leading to greater spectral
confusion with forests and tropical forests because the three show similar tonalities
and texture patterns (Figure 2d).

The study area has no sun coffee plantations but includes other types of land cover,
such as mature forests, disturbed forests, shrub and herbaceous secondary vegetation,
human settlements, pastures, oil palm (Elaeis guineensis Jacq.), mango plantations and bare
soil. These land covers were classified into three groups. The final classes used for a land
cover map with coffee plantations are shown in Table 1. The sixth group, other classes,
includes human settlements, agriculture and bare soil.

Table 1. AFS and land-cover classes in the study area.

ID Classes

1 Reduced-shade coffee polyculture
2 Rustic coffee polyculture
3 Rustic coffee
4 Mature forests
5 Disturbed forests
6 Other classes
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Figure 2. Coffee agroforestry systems defined for the study area. (a) Sample polygons of each type
of coffee agroforestry system, (b) reduced-shade coffee polyculture, (c) rustic coffee polyculture,
(d) rustic coffee.

2.3. Imagery and Auxiliary Data

To reduce the presence of clouds and haze, we selected optical satellite imagery from
January to May 2019 only, corresponding to the dry season. We used a monthly time series
of five Sentinel-2 images (Level 1C); two Sentinel-2 scenes covered the whole study area.
We also analyzed five Sentinel-1 (Interferometric Wide Swath Level 1) radar images with
VV and VH polarization acquired on similar dates as the optical data and one Alos Palsar
with HH and HV polarization from the JAXA Earth Observation Research Center (https:
//www.eorc.jaxa.jp (accessed on: 7 January 2019)). Satellite imagery were downloaded
from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/ (accessed on: 10
January 2019)). The auxiliary data employed consist of a digital elevation model (DEM)
and a climatic data set. A 30 m pixel size DEM was downloaded from the Digital Library of
Maps of the National Institute of Statistics, Geography, and Informatics (Instituto Nacional
de Estadística, Geografía e Informática) [28]. We used the following climatic data: monthly
temperature (minimum and maximum), monthly precipitation, and soil moisture. These
variables were interpolated from meteorological data and prepared in raster layers with a
pixel size of 120 m (for further details, refer to Hernández-Stefanoni et al. [32]).

2.4. Image Processing

Using the software SNAP [33], atmospheric corrections were applied to all optical
images to reduce the potential effect of water vapor and obtain bottom-of-atmosphere
(BOA) reflectance values. Bands were resampled using the Sen2Res algorithm to match the
pixel size to 10 m.

To highlight any changes in the spectral response of AFS during the dry season,
the following six vegetation indices were calculated for each of the five months analyzed.

https://www.eorc.jaxa.jp
https://www.eorc.jaxa.jp
https://earthexplorer.usgs.gov/
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The chlorophyll vegetation index (CVI) and modified simple ratio for vegetation (MSR) highlight
information associated with chlorophyll content [34]. The combination of the modified
chlorophyll absorption in reflection index (MCARI) and the optimized soil adjusted vegetation
index (OSAVI) reduce background reflectance and improve sensitivity to variability in
the leaf chlorophyll content [35]; this combination is especially useful for reducing the
reflectance of non-photosynthetic components and soil [34]. In addition, we calculated the
Beison Datt vegetation index (DATT), the RGB intensity, and the soil background line (SBL) to
evaluate more efficient alternatives for estimating canopy attributes and color saturation in
RGB composites, and to discriminate between soil and vegetation cover (Table 2).

We preprocessed the Sentinel-1 images using the standard generic workflow available
in SNAP. This workflow applies a precise orbit of acquisition, removes thermal and edge
noise, and performs radiometric calibration and geometric terrain correction [36]. The layers
used are shown in Table 3.

Table 2. Equations of the vegetation indices used in this study. Ri = Reflectance in range i.

Vegetation
Index Equation Reference

CVI R842
R665

R560
2 (1) [37]

MSR
R800 − R445
R680 − R445

(2) [38]

MCARI/OSAVI
[(R700 − R670)− 0.2(R700 − R550)](

R700
R670

)

(1 + 0.16) (R800−R670
R800+R670+0.16

(3) [35]

DATT
R850

R550 × R708
(4) [38]

RGB Inten-
sity

(
1

30.5
)(R0.490 + R0.560 + R0.665) (5) [39]

SBL R945 − 2.4 × R0.665 (6) [40]

2.5. Data Analysis and Land Cover Classification

To aim in the selection of explanatory variables, we plotted the monthly values of veg-
etation indices and spectral bands for each type of AFS. This preliminary analysis revealed
that some AFS showed changes in spectral patterns in certain months, i.e., bigger separa-
bility between index values/spectral bands, so we tried to keep these variables/months
in the following stages. Then, a correlation analysis was performed with all possible ex-
planatory variables, including spectral bands, vegetation indices and auxiliary data; the
Spearman index was used to detect possible cases of non-linear correlation. At this stage,
all highly correlated variables were eliminated, i.e., those with a Spearman index greater
than 0.85. With the resulted set of predictor variables, four subsets were constructed—one
for each AFS type and one for the rest of land-cover types in the study area. The recursive
feature elimination (RFE) algorithm was used to select the best subset of predictors for each
model [41] under the criterion of mean decrease in accuracy (MDA). The MDA was calcu-
lated through random permutation of the input variables, and the decrease in the accuracy
of the resulting prediction was assessed [42]. Each tested model included reflectance and
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backscatter data from optical and radar images, vegetation indices, and supplementary
data (soil moisture, altitude, temperature and precipitation).

Table 3. Data used for the identification of coffee agroforestry systems.

Data Type Sources Date Input Variables

Optical Sentinel-2
(Dry Season)

01/23/2019
02/20/2019
03/24/2019
04/23/2019
05/24/2019

Reflectance bands:
Band 2—Blue
Band 3—Green
Band 4—Red
Band 5—Red edge
Band 7—Red edge
Band 8—NIR
Band 8A—Red edge
Band 9—Water vapour Band 11—SWIR

Vegetation indices:
CVI
MSR
MCARI/OSAVI
DATT
SBL
RGB Intensity

Auxiliary data DEM Altitude

Climatic data

Mean monthly soil moisture
(January, February, March, April, May)
Mean monthly temperature
(January, February, March, April, May)
Mean monthly precipitation
(January, February, March, April, May)

Radar Sentinel-1A
(Dry Season)

02/12/2019
03/24/2019
05/08/2019

Beam mode: IW
Polarization: VV + VH
Band: C-Band
Spatial resolution: 20 m
Ascending

Sentinel-1B
(Dry Season)

01/25/2019
04/23/2019

Beam mode: IW
Polarization: VV + VH
Band: C-Band
Spatial resolution: 20 m
Ascending

Alos PALSAR
(Dry Season) 2019

Beam mode: FBD
Polarization: HH + HV
Band: L-Band
Spatial resolution: 25 m

The parameters of the best sets of predictive variables defined for each model were
adjusted using the random forest algorithm. Through the cross-validation of ten inter-
actions, the ntree (number of trees to grow) and mtry (number of variables randomly
sampled as candidates in each division) parameters were chosen for the selection of the
best classification model.

Once the models were calibrated, the four respective classifications were obtained,
which were spatially overlaid to identify conflicting pixels, i.e., those assigned to more than
one type of AFS or land cover class. The class to which each conflicting pixel should belong
was assigned using the maximum likelihood algorithm; Sentinel-2 scenes and the training
areas previously were used as input data. The resulting classifications were combined to
generate a single land cover map with the different types of AFS identified. The overall
methodological outline is shown in Figure 3.
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Figure 3. Methodology for the identification of AFS classes.

2.6. Map Validation

We followed the recommendations of Oloffson et al. [43] to validate the final map.
A stratified random sampling design was used to estimate the size and distribution of the
reference sample. The number of validation sites in each land-cover class was allocated
proportionally to their size; small classes were assigned at least 50 sites. Thematic accuracy
statistics were derived according to the equations described in Oloffson et al. [44].

The ground truth of the reference data was obtained by visual interpretation of high
spatial resolution imagery; Planet image mosaics (4.7 m pixel size) downloaded from the
NICFI Satellite Data Program (https://www.planet.com/nicfi/ (accessed on: 25 January
2019)) and satellite data from ESRI’s World Imagery platform were used. This platform
provides 1 m resolution images worldwide (accessed on: 11 January 2019) [45].

3. Results
3.1. Selecting Predictors and Applying the Classification Model

The subsets defined for each model from the implementation of the RFE algorithm
are shown in Table 4. The two January NIR bands functioned well as predictive variables
for the three AFS types but played no significant role in the model for other land-cover
types. Green and red-edge bands are important for the two AFS with the highest tree
density, but their role is taken up by the SWIR band in the model with the lowest tree
density (reduced-shade polyculture). In all models, only the first four or five variables have
high predictive importance. However, eliminating any variable with low importance in
the models increases the error in the resulting classified map. In Figure 4, we show the
predictors’ importance for each model. Note that none of the models contain variables
derived from radar imagery.

Table 4. Predictors selected for each classification process. NIR = Near infrared, SWIR = Short-wave
infrared, Bi = band i.

Class Predictors Selected Using RFE

Reduced-shade coffee
polyculture

NIR B8 (January), NIR B8A (January), SWIR B11 (April, May),
CVI (January), MSR (January)

Rustic coffee polyculture
Red edge B7 (January), NIR B8 (January), NIR B8A (January),
Green B3 (January), MCARI/OSAVI (January), Soil humidity
(January)

Rustic coffee
Red edge B7 (January), NIR B8 (January), NIR B8A (January),
Green B3 (January), Red edge B5 (January), RGB Intensity (Jan-
uary)

Mature forests, disturbed
forests and other classes

Blue B2 (January, February, March), SWIR B11 (May), RGB In-
tensity (February), DATT (January), SBL (January)

https://www.planet.com/nicfi/
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Figure 4. Predictors and their influence for each class in the RF classification. SD = standard deviation.

The optimal parameters for the random forest classification models (mty = 3 and
ntree = 500) achieved accuracy values above 98% for the three AFS models and above 99%
for the other land-cover classes.
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The individual maps for reduced-shade polycultures, rustic polycultures, rustic coffee,
and other classes are shown in Figure 5.

Figure 5. Individual maps for (a) reduced-shade coffee polyculture, (b) rustic coffee polyculture,
(c) rustic coffee, and (d) mature forest, disturbed forest and other classes.

The conflicting pixels identified from class overlaying accounted for 0.71% of the total
study area. The disturbed forest was the class that showed the greatest misidentification
with other classes, mainly with rustic polycultures and rustic coffee.

Reduced-shade polycultures shade was frequently located in areas adjacent to human
settlements and areas with agricultural or livestock activities, between 700 and 1500 m
above sea level. Rustic polycultures and introduced coffee were identified mainly in dis-
turbed forests areas near mature forests and tropical forests at altitudes above 1400 m a.s.l.
However, rustic coffee plantations were located near disturbed forests with a higher tree
density. Of the total area identified as an agroforestry coffee system, reduced-shade polycul-
tures were the systems that comprised the largest area (40%), while rustic coffee plantations
encompassed the smallest area (23%); the extent occupied by AFS was considerably smaller
compared with mature and disturbed forests.

The information in the infrared range of the electromagnetic spectrum contributed
significantly to differentiation between disturbed forest and coffee AFS because the coffee
flowering phase of the phenological cycle produces an apparent change in the red edge
and SWIR bands in the spectral signature of coffee AFS (Figure 6).
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Figure 6. Spectral profile variations for coffee agroforestry systems in color infrared (B8, B4, B3)
from Sentinel-2.

3.2. Model Validation

The map resulting from the overlay of individual classifications is shown in Figure 7.
Table 5 shows the confusion matrix obtained from the reference sample, and Table 6
shows their respective accuracy statistics. The global accuracy of the map was 95.04%.
The AFS identified with less error are the reduced-shade coffee polyculture and rustic coffee
polycultures, which involve a more significant anthropic influence within the proposed
AFS classification. Reduced-shade coffee polycultures showed only two instance of a
validation site misclassified as rustic coffee polyculture. Rustic coffee polycultures are
misclassified either as reduced-shade coffee polyculture or rustic coffee, mainly at sites
that transition from one AFS to another, whereas the rustic coffee class was confused a
couple of times with disturbed forest and rustic coffee polyculture. Two of the three AFS
were well identified, with high accuracy (>92%), but the third, rustic coffee, was the class
with the most significant error. This error is mainly due to their spectral similarity with
disturbed forests.

Figure 7. Final map after to overlap all models classifications.
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Table 5. Confusion matrix generated using 932 validation sites.

Reference Prediction Reduced-Shade Coffee
Polyculture

Rustic Coffee
Polyculture

Rustic
Coffee

Mature
Forest

Disturbed
Forest

Other
Classes Total

Reduced-shade coffee polyculture 48 2 0 0 2 0 52
Rustic coffee polyculture 2 47 2 0 0 0 51

Rustic coffee 0 1 46 0 2 0 49
Mature forest 0 0 0 50 2 0 52

Disturbed forest 0 0 2 1 525 7 535
Other classes 0 0 0 0 29 164 193

Total 50 50 50 51 560 171 932

Table 6. Accuracy statistics, where CI = confidence interval, PA = producer accuracy, UA = user
accuracy, OA = Overall accuracy, ± = variance.

Area Per Class (km2) Area Estimated Per
Class (km2)

CI of Estimated Area
(km2±) PA (%) UA (%) OA (%)

Reduced-shade coffee polyculture 26.82 26.47 3.06 93.55 92.31 95.04
Rustic coffee polyculture 43.56 42.09 3.96 95.39 92.16

Rustic coffee 44.56 52.03 12.37 80.39 93.88
Mature forest 208.80 205.02 13.81 97.93 96.15

Disturbed forest 2271.90 2344.68 45.20 95.08 98.13
Other classes 694.56 619.93 41.38 95.20 84.97

4. Discussion

To improve the accuracy of coffee agroforestry maps, we used a strategy of adjusting
separate models for each AFS type allowed, using a small and specific number of predictor
variables for each land cover class, without affecting their performance. The resulting map
showed a global accuracy of 95.04%. The incorporation of different vegetation indices for
each AFS type increased the accuracy of each model; in other words, the use of different sets
of predictor variables was more efficient in discriminating agroforestry systems with differ-
ent shade densities. Although a potential disadvantage of this approach is the presence
of conflicting pixels, particularly in land-cover classes that were not clearly differentiated
spectrally, in the present study, those pixels represented only 0.7% of the study area and
mostly corresponded to AFS with high tree density and disturbed forests.

In addition, although some variables were repeated in several models, the explana-
tory importance of each varied across the four models. Vegetation indices were key for
discriminating AFS with lower tree density; high values of the CVI and MSR vegetation
indices in the coffee flowering phases contrasted with the response of the disturbed forest.
On the other hand, topographic or climatic data did not play a significant role in the models
(except for one), probably due to their low spatial resolution.

Although it is difficult to compare the level of success of this work with that of other
studies (due to the diversity of AFS types, landscape complexity or data sources), broadly
speaking, the accuracies obtained in this study are moderately higher than those reported
under similar conditions. In highly heterogeneous landscapes, the present study improved
the accuracy of open-canopy coffee AFS (canopy opening greater than 60%) and closed-
canopy coffee AFS (canopy opening between 20 to 60%) identification by approximately
30% [22,25,46]. Compared with studies using radar images, this research achieved greater
accuracy in identifying reduced-shade polycultures versus AFS with similar characteristics,
such as commercial polycultures or coffee plantations with a low tree coverage [47]. Our
methodological approach also was efficient for differentiating AFS within forest landscapes,
reported as a common issue when using conventional satellite images [48,49].

It should be noted that in the present study, in addition to optical images, we also
tested Sentinel-1 and an ALOS-PALSAR images. However, the REF algorithm consistently
eliminated them from the set of predictive variables since they provided little information.
The topographic complexity of the study area appeared to be an obstacle for the use of
radar data.
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Usually, the flowering of coffee plants occurs at the end of the dry season [50]; this
phenomenon causes changes in the concentrations of chlorophyll a and b and the leaf
area index [51,52]. These phenological changes represent the leading cause of changes
in spectral patterns in coffee-growing areas, consistent with the results of the studies
by Bernardes et al. [50] and Júnior et al. [53], that addressed the relationship of coffee
production at different stages of the cycle and the variation in vegetation indices over
several years. Regarding our results, one model uses spectral data from the beginning and
the end of the study period (January and April–May). This model corresponds to the AFS
with few shade trees, so it is probably the one that is capturing the phenological changes of
the coffee plants.

Accurate mapping of coffee agroforestry systems is essential for understanding the
level of anthropic disturbance and change in the plant cover of coffee production areas.

According to our results, at least 50% of the AFS areas is heavily anthropized. This
finding is consistent with the trends in other studies that reported changes in management
practices to fight coffee rust, which generally involved replacing coffee varieties and
reducing shade-tree density [54].

5. Conclusions

This study used a differentiated analysis approach by type of AFS to map coffee
production in areas of high heterogeneity. The results reported herein are significant
given the limitations highlighted in previous studies of the conventional use of remote
sensing data for mapping coffee agroforestry systems and the accuracy levels reported
for similar implementation contexts. The accurate identification of AFS contributes to the
knowledge of the anthropic disturbance dynamics associated with coffee production by
highlighting three different levels of landscape alteration for agroforestry practices. In this
sense, subsequent studies may use this same approach in other coffee-growing areas in
the state of Chiapas to explore the existence of systems with different characteristics than
the AFS described herein and to evaluate the replicability of the method under different
landscape characteristics. On the other hand, future studies may use specific subsets for
other types of plant cover or land use, such as mature and disturbed forests, to further
improve the accuracy of the resulting classification.
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