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Abstract: Newer effectorome prediction algorithms are considering effectors that may not comply
with the canonical characteristics of small, secreted, cysteine-rich proteins. The use of effector-related
motifs and domains is an emerging strategy for effector identification, but its use has been limited
to individual species, whether oomycete or fungal, and certain domains and motifs have only been
associated with one or the other. The use of these strategies is important for the identification of
novel, non-canonical effectors (NCEs) which we have found to constitute approximately 90% of the
effectoromes. We produced an algorithm in Bash called WideEffHunter that is founded on integrating
three key characteristics: the presence of effector motifs, effector domains and homology to validated
existing effectors. Interestingly, we found similar numbers of effectors with motifs and domains
within two different taxonomic kingdoms: fungi and oomycetes, indicating that with respect to their
effector content, the two organisms may be more similar than previously believed. WideEffHunter
can identify the entire effectorome (non-canonical and canonical effectors) of oomycetes and fungi
whether pathogenic or non-pathogenic, unifying effector prediction in these two kingdoms as well
as the two different lifestyles. The elucidation of complete effectoromes is a crucial step towards
advancing effectoromics and disease management in agriculture.

Keywords: effectoromics; effector prediction; fungi and oomycetes; non-canonical effectors;
effector-related domains; effector-related motifs

1. Introduction

Fungi and oomycete pathogens are the principal constraints to achieving world food
security. These pathogens infect their hosts by releasing effectors, virulence-promoting
molecules that manipulate a variety of host processes. Some effectors alter chromatin
configuration, mimic host transcriptional activators, target host transcription factors, or
interfere with the biosynthesis of phytoregulators, among other functions that alter host
physiology. Effectors ultimately suppress plant defense responses, enabling the pathogen
to form an association with the plant host which can result in disease.

Alternatively, effectors can have a positive impact on plant health when they are
recognized by resistance receptors in the host. This recognition triggers the hypersensitive
response which prevents further disease development. The current applications of effectors
involve their use in genetic improvement programs [1,2], screening germplasm for effector
cognates; primarily resistance proteins (R) [3] or susceptibility proteins that are targeted
by effectors [4]. These efforts are propelling effectoromics as a key area of investigation in
phytopathology.

Effector identification has been facilitated, in large part, by next generation sequencing
and the accessibility of information deposited in public databases. Recently effectors
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have been identified from genomic, proteomic, and transcriptomic studies, particularly
in pathosystems like that of Pseudocercospora fijiensis—banana [5], Zymoseptoria tritici—
rice [6], Ustilago hordei—barley [7] and Puccinia striiformis—wheat [8] among others. Effector
identification has become a staple of plant-pathogen investigations as the need heightens
for novel and sustainable solutions to disease management.

The identification of effector proteins has been based primarily on bioinformatic
pipelines that use common or “canonical” criteria to facilitate effector identification. These
canonical characteristics include the presence of a peptide signal, protein length ≤400 amino
acids, cysteine-rich amino acid content (≥4 cysteines) and the absence of transmembrane
domains (TMD) [9–12]. These criteria classify canonical effectors, the effector type predom-
inantly identified in high-throughput effector studies of the last two decades.

However, effector proteins that differ in one or more of these canonical criteria also
exist and we will refer to them as “non-canonical effectors” (NCEs). Non-canonical effectors
have been identified based on specific searches for motifs and domains that are associated
with other characterized effectors [13–15], or because of overexpression data observed in
transcriptomes of plant-pathogen interactions [8,16]. The effector Pi04314 (PexRD24) was
identified while searching for the “RXLR” motif deduced from ESTs of the oomycete Phy-
tophthora infestans during its interaction with potato and tomato. This non-canonical effector
does not have a signal peptide in its sequence, but it has been shown to be secreted and
then translocated to the host nucleus, promoting the host’s susceptibility to infection [17].
In the fungus, Blumeria graminis, a non-canonical effector called CSEP0064, found within
a group of proteins containing a “RNase-like” domain denominated “RALPH”, has only
two cysteines and was identified as part of a general search for domains within the small,
secreted proteins of the fungus [18]. PsIsc1 and VdIsc1 are NCEs lacking signal peptides
that were found by BLASTing sequences of known isochorismate synthases from other
organisms and identifying their homologs in Phytophthora sojae and Verticillium dahliae [19].
Other NCEs surpass the 300 or 400 amino acid limit of canonical effectors. SAD1 of Sporiso-
rium reilianum induces the loss of apical dominance in maize and Arabidopsis and is a NCE
with 626 amino acids [20]. Similarly, the Puccinia graminis f. sp. tritici effector AvrSr35
is a secreted protein which interacts with the Sr35 cognate in wheat and is 578 amino
acids in length [21]. AvrSr35 is not recognized as an effector by EffHunter or EffectorP
2.0. Like the other examples mentioned, these NCEs were proven to be effectors though
functional characterization after identification. Other experimentally validated NCEs are
not recognized by EffHunter or EffectorP 2.0 individually, or both [12]. The contribution of
NCEs cannot be understated for the elucidation of complete pathogen effectoromes.

Many recent reports continue to base their predictions of effectors on short amino acid
lengths and cysteine richness [22,23], but others are searching by other means [8,13–16].
Available algorithms include the EffectorP machine learning (ML) series, among which the
latest version, EffectorP 3.0, is able to classify effectors in the apoplast and cytoplast [24].
Sperschneider and Dodds (2022) [24], classified 176 true, experimentally-validated effectors;
64 were predicted apoplastic (extracellular) while a significantly larger 112 were predicted
to be cytoplasmic, revealing a bias in effector identification based on canonical criteria.
Another recent predictor, EffHunter, is a Perl script that is suitable for canonical effector
classification since it strictly retrieves canonical effectors [12]. FunEffector-Pred, a ML
algorithm, was trained with a similar number of proteins in both datasets to overcome
the resulting bias of EffectorP which was trained with imbalanced positive and negative
datasets [25]. Predector is another ML algorithm dedicated to fungal effectoromes, but for
the predictive ranking of candidate effectors [26]. In the case of oomycete effectors, Nur et al.
(2021) [27] constructed Effector-O, following a similar approach like that of FunEffector-
Pred; this ML algorithm was trained with balanced 1:1 positive to negative training datasets,
but Effector-O refines the prediction by retrieving the lineage-specific proteins.

The identification of effectors can be challenging, but the advent of these algorithms
has facilitated faster effector identification. All aforementioned algorithms were trained on
validated true effectors, and these datasets comprise effectors that were identified following
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the criteria of canonical effectors. Previously, motifs such as RxLR-dEER and Y/F/WxC
were once believed to be exclusive to oomycetes and were therefore excluded in the identi-
fication of fungal effectors. A turning point occurred when Godfrey et al. (2010) [28] found
the motifs RxLR-dEER and Y/F/WxC within the N-terminal of 35 and 107 candidates,
respectively, in Blumeria graminis f.sp. hordei. Recently, Zhang et al. (2020) [22] identified ef-
fectors in the transcriptome of the interaction of the basidiomycete fungus, Puccinia triticina
and wheat. These authors used a Perl script that encompassed a motif search including
RxLR found in oomycetes, [Y/F/W]xC found in powdery mildew, G[I/F/Y][A/L/S/T]R
of flax rust, and [L/I]xAR, [R/K]CxxCx12H, and YxSL[R/K] of Magnaporthe oryzae, where
they identified 635 effector candidates. Interestingly, part of them match the canonical
criteria, but 45 had no cysteines at all, while 47 had only one. It is important to note
that 244 cysteine-rich small, extracellular proteins of P. triticina had the [Y/F/W]xC motif,
24 had RxLR, 5 had G[I/F/Y][A/L/S/T]R, 64 had [L/I]xAR, and 2 had YxSL[R/K], indi-
cating that these motifs are not exclusive to oomycetes. In contrast, Wood et al. (2020) [29]
found effector candidates in the oomycete pathogen, Bremia lactucae, containing the WY
domain but lacking the canonical RXLR motif. This shows that going beyond the canonical
criteria allows for the expansion of effectoromes and the discovery of novel effectors. Like-
wise, Nur et al. (2021) [27], predicted 5814 candidates in the effectorome of Phytophthora
infestans; they used a new identification approach which focused on seven biochemical
characteristics of the N-terminus of the protein sequence instead of the classical oomycete
effector motifs. The sum of the novel effectors found was one order of magnitude larger
than the previously estimated effectorome of this pathogen. These results emphasize the
need for an innovative algorithm that goes beyond classical effector identification, one that
can identify both canonical and non-canonical effectors. Realistic estimations of pathogen
effectoromes can provide a wide range of tools which can be exploited for disease control,
for example, selecting non-redundant effector families, or designing strategies to target all
members of a redundant family.

We present a new effector identification tool called WideEffHunter. This is a user-
friendly, modular and stand-alone algorithm for the identification of canonical and non-
canonical fungal and oomycete protein effectors. The algorithm conducts a search in
deduced proteomes for effectors containing domains or motifs, as well as proteins with
homology to known fungal and oomycete effectors. Recent reports have shown in some fun-
gal effectors the existence of previously believed oomycete effector exclusive motifs. Con-
versely, domains from fungal proteins have been identified in oomycete effectors [22,29,30].
Similarly, WideEffHunter found classical motifs of oomycete effectors in fungal effector can-
didates, meanwhile in Phytophthora infestans, the algorithm was able to identify LysM and
other domains commonly found in fungal effectors. Characterization of effectoromes with
EffHunter shows that the subset of canonical effectors comprises less than 10% of predicted
effectoromes, suggesting that they represent just the tip of the iceberg in effectoromes.
Interestingly, the comparison of the predicted effectoromes in fungi and oomycetes showed
similar proportions of effectors containing domains, effectors containing motifs, and ef-
fectors that share homology with validated effectors, i.e., similar abundancies of effector
conserved families. This suggests that evolution has shaped similar effectorome patterns
in fungi and oomycetes, contrary to what is currently believed. It is worth mentioning
that meanwhile other predictors were designed to be dedicated to one kingdom (fungi or
oomycetes), or even to a particular lifestyle (for example only pathogens), the results for
WideEffHunter support that this new predictor can be applied to both fungi and oomycetes,
whether pathogenic or non-pathogenic to the plant host.

2. Results
2.1. Protein Databases

The true fungal effector dataset comprises validated effector proteins from diverse
reports (Table 1); a non-redundant list of effectors was compiled which contains 228 true
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fungal effectors. The oomycete dataset was similarly constructed and it comprises 86 true
oomycete effectors, as shown in Table 1.

Table 1. List of positive datasets compiled in the present study.

Type of Dataset Sequence Origin Protein Sequences Reference

Fungal EffHunter 134 [12]
EffectorP v2.0 20 [31]

FunEffector-Pred 25 [25]
Predector 36 [26]

- * 13 This study

Oomycete EffHunter 9 [12]
EffectorO 74 [27]

- * 3 This study
* Sequences obtained from this study.

With respect to the non-canonical effectors, a comprehensive search of recent literature
for novel, validated (true) non-canonical effectors was done. Thirteen NCEs were added
to the fungal dataset, and three to the oomycete dataset. The lists of effectors comprising
the fungal database are provided in Supplementary Table S1 while the list of oomycete
effectors is provided in Supplementary Table S2.

2.2. In Silico Characterization of True Effectors

Effector identification is challenging, and even confusing at times, as different combi-
nations of criteria can be used. The literature frequently states that not all effectors meet
all the established effector criteria. Some predictions allow one or two TMDs, meanwhile
others do not allow for proteins with any TMD. Similarly, the protein length cut-off used
for effector identification is variable, between 200 to 400 amino acids. Other criteria such as
cysteine content may also vary according to the study [5,12,32–34].

To help researchers prioritize the most important criteria for selecting or ranking
effectors, as well as to identify properties that could aid in WideEffHunter’s design, true
effectors were in silico characterized.

Consistent with current criteria for effector identification, the majority (281 protein
sequences, ~89%) was shorter than 400 amino acids, but 10.5% of them were not small
proteins. The length of the largest known effectors is between 415 and 847 amino acids.
Among them, KEX1, a yeast carboxypeptidase B-like killer toxin, has 847 amino acids. Other
examples include PsCRN108, a CRN effector of Phytophthora sojae, which has 820 amino
acids, and Jsi1, an effector of Ustilago maydis that interferes in host jasmonate/ethylene
signaling and has a length of 641 amino acids. It is evident that large effectors occur both in
fungal and oomycete kingdoms, but usually elude the current predictors.

According to EffHunter, 142 proteins were canonical (45%), i.e., they had less than
400 amino acids, at least 4 Cys residues, a signal peptide for secretion and no TMD [12].
Non-canonical effectors (172 protein sequences, 54.7%) do not meet some of these criteria.
Twenty-eight effectors had one or two TMDs (8.9%), meanwhile 3 effectors had 3–6 TMDs
(Supplementary Tables S1 and S2). Only 11 effectors (3.5%) were predicted to have a
Glycosylphosphatidylinositol (GPI) anchor domain.

The order or ranking of the weight of each criterion based on the percentage of effectors
that complied is as follows: No GPI (96.5%), no TMD (91.1%), sequence length less than
400 amino acids (89.4%), signal peptide (85%), extracellular (71.6%), ≥4% Cys (54.4%).
Forty-five percent had only 0 to 3 Cys residues. Results are shown in Table 2.
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Table 2. Summary of in silico characterization of canonical and non-canonical fungal/oomycete
true effectors.

Canonical Non-Canonical Total Percentage (%) *

Length
<400 amino acids 142 139 281 89.5

Length
>400 amino acids - 33 ** 33 10.5

zero cysteine - 47 47 15
1–3 cysteines - 96 96 30.8
4–8 cysteines 111 19 130 41

9–10 cysteines 15 0 15 4.7
11–16 cysteines 14 7 21 6.8
17–19 cysteines 0 1 1 0.3
20–25 cysteines 2 2 4 1.3

No signal peptide - 47 47 15
Signal peptide 142 125 267 85

No TMD 142 143 285 90.7
TMD - 29 & 29 9.3

No GPI 133 170 303 96.
GPI-anchor 9 2 11 3.5

Extracellular 113 112 225 71.6
Intracellular 29 60 # 89 28.4

* Considering 314 effectors as the total (142 canonical and 172 non-canonical). ** Rank between 415 and 847 amino
acids. & 1–6 TMDs. # cytoplasmic or organelle localized.

To better evaluate the effectors of each of these kingdoms (fungi and oomycetes), the
analyses were repeated on each database independently. Here, differences were evident
between both groups. While 57% of fungal effectors were canonical, 86% of oomycete
effectors were non-canonical (Table 3). With respect to fungi, only 7% of effectors had
no cysteines, meanwhile 36% of oomycete effectors were cysteine-free. In total, 79.2% of
oomycete effectors contained 3 cysteines or less, compared with 32.9% of fungal effectors.
Conversely, 67% of fungal effectors had 4 cysteines or more, compared with 20.8% of
oomycete effectors. Both classes coincide regarding TMDs, with the 90% of fungi and 93%
of oomycete effectors having no TMD. Similarly, ~96 and 99% of fungi and oomycetes,
respectively, had no GPI anchors (Table 3).

2.3. Functional Annotation of Fungal/Oomycete Effector Proteins: Domains and Motifs

Recently, with the intention of expanding effector prediction in fungal genomes,
Huang et al. (2022) [13], Jaswal et al. (2021) [14] and Zhao et al. (2020) [15] conduced
searches based on motifs, a strategy typically used to identify oomycete effectors (the motifs
RXLR, ERR, LXL, FLAK, are usually associated with oomycete effectors). Conversely, motif-
independent prediction of effectors was recently applied in oomycetes [27]. In both cases,
the change of strategy rendered larger effectoromes.

To gain a better understanding of the role of domains and motifs in effector prediction,
the fungal and oomycete effector databases were analyzed with the program InterProScan
version 5.39–77.0 [35], which automatically and simultaneously searches in the databases of
the modules CDD [36], PFAM [37], PRINTS [38], SMART [39] and TIGRFAM [40], among
others; default parameter settings were used.

Fifty-six domains were identified (Table 4). Some domains were identified only
in fungal effectors (LysM, CFEM, cerato-platanin, among others), others in oomycetes
(RXLR, Tetratricopeptide repeat domain, cystatin/monellin, RuvA domain), and others
were shared among effectors of both kingdoms (glycosyl hydrolase, pectin lyase fold,
NPP1, PROKAR lipoprotein, among others). The crinkler domain, usually associated with
oomycete effectors, is present in RiNLE1, a nuclear-targeted effector of the arbuscular
mycorrhizal fungus Rhizophagus irregularis [41]. This is a non-canonical fungal effector,
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since its length is 469 amino acids and no signal peptide is computationally deduced. The
Localizer program predicts nuclear localization for RiNLE1, congruent with the report of
Wang et al. (2021) [41]. Details of in silico characterization are provided in Supplementary
Tables S1 and S2.

Table 3. Characterization and comparison of fungal and oomycete effectors.

Fungal % in Fungal
Database * Oomycete % in Oomycete

Database ** Total % in Fungal +
Oomycete Database

Canonical 130 57 12 13.9 142 45.2
Non-canonical 98 43 74 86.1 172 54.8

Length
<400 amino acids 211 92.5 70 81.4 281 89.4

Length
>400 amino acids 17 7.5 16 18.6 36 10.6

zero cysteine 16 7 31 36.1 47 15
1–3 cysteines 59 25.9 37 43.1 96 30.6
4–8 cysteines 116 50.9 14 16.4 130 41.4
9–10 cysteines 14 6.1 1 1.1 15 4.7

11–16 cysteines 19 8.4 2 2.2 21 6.7
17–19 cysteines 0 - 1 1.1 1 0.3
20–25 cysteines 4 1.7 0 - 4 1.3

No signal peptide 17 7.5 30 34.9 47 14.9
Signal peptide 211 92.5 56 65.1 267 85.1

No TMD 205 89.9 80 93 285 90.7
TMD 23 10.1 6 7 29 9.3

No GPI 218 95.6 85 98.8 303 96.5
GPI-anchor 10 4.4 1 1.2 11 3.5

Extracellular 174 76.3 51 59.3 225 71.6
Intracellular 54 23.7 35 40.7 89 28.4

* Total was 228 protein sequences; ** total was 86 protein sequences.

In total, 133 effectors contained at least one INTERPRO-domain; 49 domains were
present in the fungal dataset (in 99 protein sequences), and 17 in the oomycete dataset (in
34 effectors). Details are included in Supplementary Tables S1 and S2. The most frequently
occurring domains are related to carbohydrate binding or hydrolysis (LysM, glycosyl
hydrolase, pectin lyase fold), since they play critical roles in host cell wall damage and
pathogen cell wall-remodeling. Other effector functions are associated with entering the
host cell, for example RXLR signatures in oomycete effectors, and fungal hydrophobins and
cerato-platanins. In the important category of host defense suppression, the following do-
mains were identified: crinkler, isochorismatase and chorismate mutase domain-containing
effector. Various other domains are related to protein-protein interactions, which is ex-
pected since effectors need to bind their targets. Some effectors have domains characteristic
of enzymes, such as lipases and different classes of proteases, meanwhile other effectors
have protease-inhibitor domains.

Motifs have been used as probes to retrieve effector candidates, but usually only
the most frequently occurring motifs are taken into consideration [13–15,22]. To date, no
database of effector domains exists and the creation of this comprehensive list of effector
domains represents a valuable tool for effectoromics. With respect to the number of known
motifs, this list is still small. Further discovery of novel classes of effectors by genome
mining and comparison of effectoromes may help to discover new effector-related domains.

In the positive dataset used here, no domains were identified in 181 effectors (57.6%):
129 from fungi (56.6%), and 52 (60.4%) from oomycete. All domain-free oomycete effectors
belong to the non-canonical classification (Supplementary Table S2), but with respect
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to fungi, 64 non-canonical and 65 canonical effectors lacked domains. Table 5 shows a
summary of these results, and details can be found in Supplementary Tables S1 and S2.

Table 4. Functional domains identified in fungal and oomycete effectors.

Domain Fungi Oomycete Total Function

Glycosyl hydrolase 13 2 15 Glycoside hydrolase

LysM 13 - 13 Peptidoglycan binding

RXLR signature - 11 11 Effector translocation into host cells

Pectin lyase fold 7 1 8 Pectolytic enzyme, pectin lyase, which acts as a virulence factor.

RlpA 7 - 7 Transglycolase, endoglucanase. Lytic transglycosylase with a strong
preference for naked glycan strands

CFEM domain 6 - 6 Fungal specific cysteine-rich domain, found in some proteins
involved in fungal pathogenesis

NPP1 4 1 5 Necrosis-inducing protein

Cerato-platanin 4 - 4 Functional similarities with expansins; may facilitate the mechanical
penetration of fungi

Peptidase_A1 4 - 4 Protease

Metalloprotease 4 - 4 Protease

Crinkler 1 3 4 CRN proteins participate in processes controlling plant cell death
and immunity

PROKAR lipoprotein 1 3 4
Relatedto prokaryotic membrane lipoproteins. Domain present in

enzymes, inhibitors, transporters, structural proteins, and virulence
factors

Chitin binding
Peritrophin-A domain 3 - 3 A six-conserved-cysteine domain found in chitin binding proteins,

chitinases

Elicitin signature - 3 3 Signature present in some oomycete extracellular avirulence or
virulence factors

Nudix Box 1 1 2

Present in pyrophosphohydrolases, isopentenyl diphosphate
isomerases, adenine/guanine mismatch-specific adenine

glycosylases (A/G-specific adenine glycosylases), and
non-enzymatic activities involved in protein/protein interaction

and transcriptional regulation

Fungal cellulose
binding domain 2 - 2 Cellulose binding

Aspartic peptidase,
active sit 2 - 2 Protease

Thiamine binding 2 - 2 Role in protein-protein interactions

alpha/beta hydrolase 2 - 2 Domain in hydrolytic enzymes of widely differing phylogenetic
origin and catalytic function

Egh16 2 - 2 Virulence factor

Nis1 2 - 2 Play critical roles in plant-microbe interactions (be required for
pathogen virulence), but specific functions are still unknown

Fungal hydrophobin
signature 2 - 2 Spontaneously assemble into amphipathic layers at

hydrophilic-hydrophobic interfaces

ToxA 2 - 2 Proteinaceous host-selective toxin. Cause cell death in susceptible
wheat cultivars

Subtilisin 2 - 2 Peptidase S8
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Table 4. Cont.

Domain Fungi Oomycete Total Function

Chymotrypsin - 2 2 Peptidase S1A, serine protease

Kazal - 2 2 Serine protease inhibitor

Concanavalin A-like
lectin 1 1 2 Carbohydrate binding

Cutinase signature 1 1 2 Cutin alpha/beta hydrolase

Domain of unknown
function 1 1 2 No characterized function

Zinc finger CCHC-type 1 1 2 High-affinity binding to single-stranded nucleic acids, especially
single-stranded RNAs.

RAB5, RABX5 1 - 1 Key factor in early endocytosis

Hce2 1 - 1 Putative necrosis-inducing factor

M35_deuterolysin_like 1 - 1 Lysine-specific metallo-endopeptidase

Alternaria alternata
allergen 1 1 - 1 In fungal exclusive protein family, with unknown function.

Commonly secreted by fungi in Alternaria genus

ToxB 1 - 1 Proteinaceous host-selective toxin that causes chlorophyll
degradation and foliar chlorosis

Isochorismatase 1 - 1 Conversion of isochorismate into 2,3-dihydroxybenzoate and
pyruvate; disrupts the plant salicylate metabolism pathway

Fungal_RNase 1 - 1 Guanine-specific ribonuclease

VPS9 1 - 1 Vacuolar protein sorting-associated protein

Beta-lactamase-
inhibitor
protein II

1 - 1 Inhibitors of class A β-lactamases

Allergen V5/Tpx-1
family signature 1 - 1

Domain present in mammalian testis-specific protein (Tpx-1);
venom allergen 5 from vespid wasps and venom allergen 3 from fire

ants. The function in pathogen proteins is unclear

Rhomboid domain 1 - 1
Conserved domain in some proteases, that cleaves type-1

transmembrane domains using a catalytic dyad composed of serine
and histidine. Peptidase S54

Mitochondrial carrier
domain 1 - 1 Mitochondrial basic amino acids transporter

Integrin 1 - 1 Ubiquitously cell surface receptors involved in regulating the cell
interaction

AroQ 1 - 1 Chorismate mutase. Suppression of plant immunity by
manipulating the salicylic acid pathway

Pyridoxal
phosphate-dependent

transferase, major
domain

1 - 1 Cys/Met metabolism

PAN domain 1 - 1 Mediation of protein-protein and protein-carbohydrate interactions

MD-2 1 - 1 Lipid-recognition domain

Ribonuclease/ribotoxin; 1 - 1 Extracellular guanyl-specific ribonuclease

Ribonuclease Inhibitor 1 - 1 Enzyme that inhibits RNase activity

Fungal calcium binding 1 - 1 Involved in events where calcium is a second messenger

Chitin biosynthesis
protein CHS5 1 - 1 Found at the N-terminus of fungal chitin biosynthesis protein CHS5.

It functions as a dimerization domain
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Table 4. Cont.

Domain Fungi Oomycete Total Function

Fungalysin
(M36)/Thermolysin

signature
1 - 1 Metallopeptidase

Lipase (class 3) 1 - 1 Triacylglycerol lipase

Tetratricopeptide
repeat domain - 1 1 Module for protein interaction and mediators for multiprotein

complex

Cystatin/monellin - 1 1 Cysteine protease inhibitors

RuvA domain - 1 1
Domain related to prokaryotic proteins; DNA helicase that binds
DNA at Holliday junction and promotes ATP-dependent branch

migration on the hetero-duplex

Table 5. Classification of fungal and oomycete effectors with respect to functional domains present.

Database Protein Sequences Domain No Domain

Fungi 228 99 (65 C, 34 NC) 129 (65 C, 64 NC)

Oomycetes 86 34 (12 C, 22 NC) 52 (52 NC)

Total 317 133 (77 C, 56 NC) 181 (65 C, 116 NC)
C, canonical; NC, non-canonical.

To test the regex designed here for domains, as well as the regex compiled from the
literature regarding motifs, both regexes were used to mine the database of true effectors
(positive dataset). As expected, these domains and motifs were found in the positive
dataset (not shown). In fungi there were 110 hits, YFWxC being the most frequent (36),
followed by motifs EAR (23), LysM (16), and [LI]xAR (16); curiously, 9 fungal true effectors
had the RXLR motif. In the oomycete effectors, in addition to classical motifs for these
microorganisms, the LysM domain was identified in 5 effectors and one was identified with
a ToxA domain.

To potentially find novel motifs, the sequences of the true effectors were analyzed
using MEME suite. Table 6 shows the top 15 motifs found in fungal and oomycete effectors,
respectively. The most frequent motif in fungi was MKFFTILL, found in 173 effectors
(77.6% of fungal effectors; 55% considering the total database of 314 effectors). The other
14 motifs in fungal effectors were only present in 2 to 7 effectors. Regarding oomycetes,
the most frequent motif was the RXLR motif found in 59 effectors (68.6%). The second
most frequent was the motif MRLCYFLFVAAAAI, which was identified in 36 effectors, and
the third, LYEHWHMRGCTPEHVYTILKLN, in 28 effectors. Similarly, the other 12 motifs
were present in 2 to 7 effectors. For these most frequently occurring motifs (one for fungi
and two for oomycete) found by MEME, a regex was created for them to be included
in WideEffHunter.

Analyses conducted here, even with these still limited sets of validated effectors,
enable us to discover novel domains and motifs in fungal and oomycete effectors. Further
discovery of novel classes of effectors through genome mining and effectorome comparative
analysis may discover new effector-related domains and motifs.

2.4. Construction and Validation of WideEffHunter Algorithm

The WideEffHunter code concatenates the mining of each regex for effector-related
domains and motifs, including the three new motifs found here by MEME in the positive
dataset (Table 6), and the results of Local Blastp against the database of true effectors. After
pooling all hits, redundancy was eliminated which resulted in the predicted effectorome.
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Table 6. Sequence motifs found in fungal and oomycete true effectors. Top15 MEME motifs found in
true, validated fungal and oomycete effectors.

MEME ID
Num. of

Hits in the
Positive db *

Width E-Value Best Possible Match

Fungal positive database

MEME-1 7 50 4.60 × 10−143 GHNTDGFDIGSSNHITIDGAHVYNQDDCMAINSGTNITFTNGYCSGGHGL

MEME-2 6 49 8.30 × 10−98 DGTRVIFEGRTTFGYQEWEGPLISISGKNIKVKGAPGNKIDGDGARWWD

MEME-3 7 50 4.60 × 10−98 NVTYEDITLSEISKYGIVVQQDYKNGKPTGTPTTGVPITNITFNKVTGNV

MEME-4 7 40 2.80 × 10−61 SIGSVGGRSDNTVKDVHIANSKVTKSMNGVRIKTVAGATG

MEME-5 4 50 2.40 × 10−58 YDNVPVTLKKQGIIAKNAYSLYLNSPDAATGQIIFGGVDNAKYSGSLIAL

MEME-6 4 50 8.50 × 10−55 QPYDKCQLLFGVNDANILGDNFLRSAYIVYDLDDNEISLAQVKYTSASNI

MEME-7 4 50 8.30 × 10−51 PFSIEYGDGSSSQGTWYKDTVGFGGISIKKQQFADVTSTSIDQGILGIGY

MEME-8 173 8 1.60 × 10−43 MKFFTILL

MEME-9 4 41 1.60 × 10−40 KRQAVPVTLINEQVSYAADITVGSNKQKLNVIIDTGSSDLW

MEME-10 4 50 3.10 × 10−37 YLAPMYKGKLAFDYPPDDGEIDFLFEQIFNKYGQQWFSELHQQHPRWHRG

MEME-11 2 50 8.33 × 10−28 ICQQYNANFRFNSGFCSGKDRRWDCYDLNFPTTQSERRVQRRRVCRGEHQ

MEME-12 2 50 5.13 × 10−27 QFYDQDNGDYEYFNLSEICDRYQEQDGTVVIEHILVNDRQGRACAMMMIK

MEME-13 4 37 8.40 × 10−27 CKDTSKGQTYVRGAWHGGKYGIMYAWYMPKDQPATGN

MEME-14 6 29 4.00 × 10−27 AAQAIQKKTSCSTITLRNLKVPAGKTLDL

MEME-15 6 39 3.70 × 10−36 GNSEITNLNILNWPVHCFSINHAEGLTIFNINIDNSAGD

Oomycete positive database

MEME-1 3 50 8.20 × 10−29 SFQGCADDSGFSLLYSTALPDDDQYVKMCASDNCKSLIESVASLNPPNCD

MEME-2 59 11 1.00 × 10−29 RHLRSHYQDEE

MEME-3 28 22 9.90 × 10−19 LYEHWHMRGCTPEHVYTILKLN

MEME-4 2 31 9.50 × 10−10 CPEMCLDVYDPVGDGEGNEYSNQCYMEMAKC

MEME-5 36 14 1.70 × 10−16 MRLCYFLFVAAAAI

MEME-6 2 39 1.30 × 10−7 CCDMVCPDNEAPVCGSDGERYPNPCELGITACEHPEQNI

MEME-7 7 49 4.00 × 10−7 SPQFQQWMDYISHYNKENPTMQTSLYAALTTHYGDEEMANMLVEAMHSP

MEME-8 3 21 4.30 × 10−6 MVKLYCAVVGVAGSAFPVDID

MEME-9 2 43 5.00 × 10−5 GGGIIPVGQKTYSVGIRSTAGGDTFCGGALISPTHVLTTTMCT

MEME-10 2 40 7.90 × 10−5 FAPVKLPKADGSDIKPGMWSKAMGWGWTSFPNGARANEMQ

MEME-11 2 36 4.00 × 10−3 CNCVYVIGPSEVCAGGEEGKDKCVGDTGGPLIKENG

MEME-12 3 50 6.30 × 10−5 PCSGLCLNVVDLTCGFSGKCSSSSCTSNTASCAATSGTTEAPAATCAAPT

MEME-13 7 9 8.50 × 10−3 PVFNIWLEY

MEME-14 3 39 1.20 × 10−1 SPLQRTDEVQHQPDVDDKTNRFLTSEDKDLPLLVTSDGY

MEME-15 2 30 1.30 × 10−1 WVAVGTHYVNGTKDGEQLKVIQAQNHTDFN

* Database.

Table 7 shows validation results of WideEffHunter compared with SignalP 1.0 [9],
SignalP 2.0 [31], SignalP 3.0 [24], and EffectorO [27], comparing predictions on the positive
and negative datasets.

Since WideEffHunter includes the Blastp database of true effectors, it retrieves all
sequences when tested on the positive dataset. On the contrary, tested on the negative
dataset, WideEffHunter retrieves 1545 hits. This high number of “false positives” results in
a very low F1 score.
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Table 7. Validation of WideEffHunter for prediction of fungal and oomycete effector proteins and
comparison with EffectorP 3.0, EffectorP 2.0, EffectorP 1.0, and EffectorO.

WideEffHunter

Data Proteins
type

Total
proteins Results Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 Fungi 228 228
1859 1 0.658 0.168 0.68 0.341 0.287Set 2 Oomycete 86 86

Set 3 Negatives 4528 1545

Set 3 Negatives 4528 192 506 1 0.957 0.62 0.96 0.042 0.765

EffectorP 3.0

Data Proteins
type

Total
proteins Results Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 Fungi 228 184
476 0.845 0.952 0.557 0.945 0.047 0.669Set 2 Oomycete 86 79

Set 3 Negatives 4528 213

EffectorP 2.0

Data Proteins
type

Total
proteins Results Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 Fungi 228 153
243 0.564 0.985 0.736 0.958 0.014 0.638Set 2 Oomycete 86 26

Set 3 Negatives 4528 64

EffectorP 1.0

Data Proteins
type

Total
proteins Results Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 Fungi 228 142
255 0.579 0.983 0.713 0.957 0.016 0.639Set 2 Oomycete 86 40

Set 3 Negatives 4528 73

EffectorO

Data Proteins
type

Total
proteins Results Prediction Sen/Rec Spe PPV/Prec ACC FPR F1 score

Set 1 Fungi 228 97
961 0.573 0.827 0.187 0.811 0.172 0.281Set 2 Oomycete 86 83

Set 3 Negatives 4528 781

Set 1, validated fungal effectors; Set 2, validated oomycete effectors; Set 3, negative dataset, taken from Carreón-
Anguiano et al. (2020) [12]. Sen/Rec: Sensitivity/Recall; Spe: Specificity; PPV/Prec: Positive Predictive
Value/Precision; ACC: Accuracy; FPR: False positive rate; F1 score: Measure of the success of binary classi-
fier (score reaches its best value at 1, and worst score at 0).

To improve the performance of WideEffHunter, analysis of the negative dataset using
the MEME program was conducted. Supplementary Table S3 shows the top 15 motifs
found which were used to refine the prediction of effectoromes. The number of hits from
the positive dataset did not change because these motifs were not present in the dataset of
known true effectors. Elimination of hits in the negative dataset containing these MEME
motifs found in the negative sequence controls, reduced the number of false positives to
192. Specificity, precision, accuracy, false positive rate and F1 score parameters were all
improved; these values were close to those shown by the three EffectorP versions (Table 7)
and indicates that this version of WideEffHunter is sufficiently robust for effector prediction
in fungal and oomycete proteomes.

Figure 1 shows the WideEffHunter code and proposed downstream steps for effec-
torome characterization.
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Figure 1. (A) Workflow to predict fungal and oomycete effectors with WideEffHunter. Posi-
tive database of true (validated) effectors comprises 228 fungal effectors and 86 oomycete effec-
tors. Effector-related motifs were compiled from literature and enriched with motifs found in
true effectors by the MEME program. (B) Classification and characterization of canonical and
non-canonical effectors.

2.5. WideEffHunter Prediction of Effectoromes in Fungal and Oomycete Proteomes

WideEffHunter was used to predict effectors on deduced proteomes of selected fungi
and oomycetes.

With respect to the oomycete effectoromes of Bremia lactucae and Phytophthora infestans,
WideEffHunter predicted a similar number of effectors to that reported by Nur et al.
(2021) [27] for B. lactucae (1812 vs. 1777 in the reference), and a lower number of effectors
than that predicted by Nur et al. (2021) [27] for P. infestans (3811 in comparison with 5814 in
the reference). In fungi, in all examples predicted here, WideEffHunter expanded the
effectoromes: 3 times for Puccinia triticina, and 1.6 times for Venturia inaequalis (Table 8). In
the case of the fungal endophytes Pestalotiopsis fici and Xylona heveae, and in the antagonist
Trichoderma harzianum, the increases were significant, ranging from 6 to 18 times (Table 8).

Curiously, the number of effector candidates in unfiltered WideEffHunter’s predictions
is similar in most cases to predictions made by EffectorP 3.0, while the filtered predictions
(that is, candidates without MEME motifs found in the negative dataset) in the pathogens
P. triticina, V. inaequalis, P. infestans and B. lactucae were similar to those of EffectorP 2.0
(Table 8). Discrepancies between these two predictors were found with T. harzianum,
P. fici, and X. heveae, in which WideEffHunter predicted larger effectoromes. Predictions of
effectoromes of the non-pathogens P. fici and X. heveae by WideEffHunter were similar to
EffectorP 1.0 predictions (Table 8).
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Table 8. Effectoromes predicted by WideEffHunter in selected fungi and oomycetes and comparison with other predictors.

Species Proteome
Effector

Prediction in
Reference

Reference Criteria for Effector
Prediction WideEffHunter 1 WideEffHunter 2 EffectorP

1.0
EffectorP

2.0
EffectorP

3.0 EffectorO

Puccinia
triticina 15,685 904 [15] Motifs 4334 2805 4162 2570 7488 11,782

Venturia
inaequalis 13,233 1369 [42] Homology to known

effectors 3847 2158 2744 1832 5524 8968

Phytophthora
infestans 17,797 5814 [27]

Motif- search and
lineage-specific

phylogenetic distribution
7143 3811 4749 3091 8879 11,952

Bremia lactucae 10,102 1777 [27]
Motif- search and
lineage-specific

phylogenetic distribution
3317 1812 2435 1625 4884 6355

Trichoderma
harzianum 14,095 307 [12] Size ≤400 amino acids, SP,

No TMD, ≥4 Cys 4935 2693 2893 1772 4900 8318

Pestalotiopsis
fici 15,413 381 [43]

Small secreted cysteine-rich
proteins, with no conserved

domain, with nuclear
localization signal (NLS),
and repeated sequences

(Repeat-containing
proteins, or (RCPs)

5201 2524 1907 1236 4488 9319

Xylona heveae 8205 84 [43]

Small secreted cysteine-rich
proteins, with no conserved

domain, with nuclear
localization signal (NLS),
and repeated sequences

(Repeat-containing
proteins, or (RCPs)

2828 1517 1322 756 2819 5680

1 Before filtering hits with MEME motifs found in the negative dataset; 2 After filtering hits with MEME motifs found in the negative dataset.
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Comparing the compositions of the effectoromes, we found that WideEffHunter
shared ~60–70% hits with EffectorP 3.0 and EffectorO (Supplementary Table S4, tab “pre-
diction”), but common hits were lower between WideEffHunter and EffectorP 3.0 for the
non-pathogens (~40–46%). The lowest number of shared sets for WideEffHunter were
observed in the effectoromes predicted by EffectorP 2.0 (~13–24%). Between 6 and 13% of
effectoromes predicted by WideEffHunter were shared with those predicted by EffectorP
1.0, EffectorP 2.0, EffectorP 3.0, and EffectorO (Supplementary Table S4, tab “prediction”).

Analysis of the catalogs of the effector candidates predicted by WideEffHunter re-
vealed that >87% were non-canonical (Supplementary Table S4, tab “classification”). Around
80% lack TMDs and 64–80% are <400 amino acids in length, ~50% have at least 4 Cys
residues, and less than 20% have signal peptides (Supplementary Table S4, tab “characteri-
zation”). The majority of effector candidates were predicted apoplastic (~50%), followed by
nuclear (~30%), meanwhile proportions for mitochondria and chloroplast targeting were
similar (~10–12%). Domains occurred in 40–60% of candidates and motifs were identified
in 80–96%; the lesser contributing factor to the effectoromes was the subset of homologs of
confirmed effectors (1.8–9.3%).

3. Discussion

Effectoromics is a central research area in plant pathology, but identification of effectors
has been slow, difficult, and even confusing. There are several criteria used for effector
identification, but not all effectors perfectly match the established criteria, making effector
identification a challenge [9,30,34,43,44]. Effector identification pipelines are quite variable;
the identification of effectors in fungi and oomycetes can permit the presence of one or
two TMDs [33] or entirely exclude TMDs altogether [12,32]. They can have a protein
size cutoff of 250 amino acids or less [5,33], 300 amino acids [43], or the upper limit can
be set to 400 amino acids [12,25]. Some pipelines define effectors as having a cysteine
content of ≥2% [45], ≥5% [46] while others consider at least 4 cysteine residues for effector
candidature [12,23]. Recent pipelines were based on sequence homology within species of
the same microbial genus [27,32], or the identification of domains or motifs, but the latter
strategy has been exclusive to either fungi (domains) or oomycete (motifs) [29,47], but with
no trans-kingdom application. Novel algorithms considering domains and motifs for both
fungal and oomycete effectoromes prediction are necessary.

Fortunately, during recent years, the number of validated effectors has been increasing
significantly. Sperschneider et al. (2018) [31] compiled 94 fungal and oomycete effector
protein sequences in order to train EffectorP v2.0. More recently, Carreón-Anguiano et al.
(2020) [12] compiled 150 effector sequences to validate EffHunter. In the present study we
compiled 314 protein sequences taken from different datasets of true effectors: 228 from
fungi, and 86 from oomycetes. This is the largest dataset of true effectors compiled to
date. We found the absence of GPI anchors in 96.5% of effectors and the absence of TMDs
in 90.7% of effectors. Additionally, sequence length was less than 400 amino acids in
89.4% of effectors, 85.1% had a signal peptide, 71.6% had extracellular localization, and
54.4% had a Cys content > 4% (Table 2). Cysteine content, one of the commonly used
effector identification criteria, is not met by almost 50% of the true effectors. Both fungi
and oomycete coincide in that >90% of effectors lack TMDs and no GPI anchors. This
knowledge about the weight of each criterion will help researchers make better decisions
when they are selecting effector candidates or creating new algorithms.

According to our analysis using WideEffHunter, around 50% of known fungal effectors
are canonical, while in oomycetes, more than 85% are non-canonical. These differences
may be attributed, in part, to genuine evolutionary differences among effectors in these
kingdoms; for example, while most known fungal effectors are secreted to the apoplast, the
majority of described oomycete effectors are translocated into the host cell [48]. However,
the observed differences may result from a bias in the pipelines used until this point for the
identification of effectors in these kingdoms; in fungi, effectors are usually identified based
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on protein length and cysteine content, while in oomycetes, the search is usually based on
motifs such as RXLR, ERR, LXL, and FLAK [22,25,48].

During the characterization of validated effectors (positive datasets), we compiled
a comprehensive list of motifs and domains present. It is important to mention that no
databases of effector domains existed before. In previous studies, the predictions only
considered a few domains such as LysM or CFEM, by mining proteomes with regular
expressions or Hidden Markov Models [13–15,49,50]. The newly created database of
effector-related domains, together with the motif database compiled from literature, repre-
sent valuable tools for effectoromics. The characterization of true effectors facilitated the
identification of new effector features, such as the motif MKFFTILL which was present in
173 fungal effectors, and RHLRSHYQDEE, present in 59 oomycete effectors. The potential
importance of novel effector motifs, especially in fungi, may be evidenced by citing the
comments of He et al. (2020) [48]; in their words “a breakthrough for oomycete pathogens
was the identification of the conserved amino acid motifs RxLR and LFLAK. These mo-
tifs define sets of several hundred intracellular effectors and have led to an upsurge in
research on effector–host target interactions. For fungal plant pathogens, there are no such
universal motifs, so the identification of bona fide intracellular effectors is a labor-intensive
process initiated by the broader bioinformatic prediction of secreted proteins”. There-
fore, these motif sequences enrich the current pool of computational tools available for
effector identification.

As mentioned before, domains and/or motifs have recently been used as probes to
retrieve effector candidates such as the frequently occurring LysM and CFEM domains
(fungi), and RXLR, LFLAK, Y/F/WxC, and CRN motifs (oomycetes). However, to date,
only a few studies have employed this new “out-of-box” strategy, where motifs were the
motor for fungal effector identification [13–15], or, in contrast, motif-independent searches
for oomycete effectors were executed [27]. This strategy identified 719 RXLR-like, 19 CRN-
like, and 138 Y/F/WxC new effector candidates in the fungus, P. graminis, in addition
to the previously predicted effectorome following classical fungal effector identification
methods [15]. This suggests that these classes of effectors are not exclusive to oomycetes
and may contribute greatly to fungal effectoromics. These strategies have not only helped
identify novel effectors, but have sometimes increased the number of known effectors by
one order of magnitude, as was the case for P. infestans with an initial 563 effectors [51]
which was further increased to 5814 [27]. According to WideEffHunter, fungal effectoromes
comprise ~90% motif-containing effectors (similar to the proportion found during our
analysis in oomycetes), and oomycete effectoromes comprise ~47–49% domain-containing
effectors (similar to the proportion found here in fungi); likewise, the proportion of nuclear-
targeted effector candidates are not very different between fungi and oomycetes. Actually,
it is noteworthy that the percentages of effectors for each particular characteristic are
similar among the predicted effectoromes (Supplementary Table S4, tabs “classification”
and “characterization”), which suggests that contrary to current belief, the effectoromes
in fungi and oomycetes have followed similar evolutionary histories. The occurrence of
shared motifs and domains can facilitate the development of bioinformatics tools suitable
for both kingdoms and will enable us to clarify whether fungi and oomycete effectoromes
follow different evolutive histories, or the differences resulted from biases in previous
identification methods.

Omics studies, especially transcriptomics and proteomics of plant-pathogen interactions,
have largely contributed to the discovery of novel, non-canonical effectors (Tables 2 and 3), but
these effectors are still the most elusive for computational identification. WideEffHunter
was constructed to expand effectoromes, combining domains and motifs found either in
fungal or oomycete effectors for the identification of both canonical and non-canonical
effectors. The in silico characterization of 172 NCEs (98 from fungi and 74 from oomycetes),
shows that 56 have functional domains but 116 effectors do not (Table 5). In agreement
with this result, recently in Fusarium sacchari, 41% of predicted effectors had no known
domains or motifs [13]. In order to widen the prediction capacity of WideEffHunter, the
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database of known true effectors was nested in WideEffHunter as a search tool, added to
the regex for motifs and domains.

Validation of WideEffHunter was carried out in two runs. In the first, it retrieved
1545 hits from the negative dataset (“false positives”) and had poor performance parame-
ters (F1 score 0.287). After the elimination of hits that contained motifs found by the MEME
program in the negative dataset, the retrieved hits from the negative control decreased to
192. All parameters of WideEffHunter were improved with that step (Table 7) and attained
parameter values closer to those shown by the EffectorP predictors. It was observed that
EffectorO retrieved 781 hits from the negative dataset. We checked the composition of the
retrieved hits from the negative dataset by WideEffHunter and EffectorO and observed
that most of them contain the motifs RXLR, EAR and CRN in the expected N-terminal
position on the effector proteins. Additionally, WideEffHunter hits were comprised of
52 false positives with LysM domains (not shown). It is worth mentioning that the Effec-
torO ML algorithm was created for mining oomycete proteomes, and the overestimation
observed here was because we analyzed the uploaded proteomes in Fasta files online with
default settings but did not later select those candidates with lineage-specific phylogenetic
distribution. That tool may improve EffectorO prediction, but we decided not to include
it since the EffectorO script discards all hits that match with homologs in fungi and we
would therefore not be able to apply this to fungal proteomes.

The possibility exists that some proteins in the negative dataset used in the present
study are undiscovered effectors, since this set contains proteases, lipases, scytalone de-
hydratases, among others. Construction of negative datasets is really challenging since
many non-effectors could be undiscovered effectors. Recently, in training the ML algo-
rithms Predector and EffectorP 2.0, the authors included proteins from saprophytes and
symbionts in the negative datasets, but the number of reports showing the presence of
effectors in saprophytes and symbionts is currently increasing [52,53], and these predictors
are most likely ruling out many potential true effectors. However, authors of EffectorP
algorithms acknowledged that EffectorP 2.0 was improved in pathogen effector identifi-
cation, since it excluded many proteins that are shared with non-pathogens compared to
EffectorP 1.0 [31]. In congruence with what was expected, EffectorP 2.0 predicted lower
effectoromes than WideEffHunter for the antagonist T. harzianum, and the endophytes P. fici
and X. heveae. WideEffHunter also expanded effectoromes in comparison with Queiroz
and Santana (2020) [43], since these authors restricted the identification to small, secreted
cysteine-rich proteins with no conserved domains, containing a nuclear localization signal
and repetitive sequences.

Curiously, predictions of WideEffHunter for pathogenic fungi and oomycete is closest
to predictions made by EffectorP 2.0, meanwhile WideEffHunter predictions for endophytes
match with predictions of EffectorP 1.0. This is congruent with the fact that EffectorP 1.0
was not designed to filter saprophytes. Therefore, it seems that WideEffHunter is suitable
for both pathogenic and non-pathogenic fungi and oomycetes. We also observed that,
on various proteomes, the prefiltered results of WideEffHunter are close to the results of
EffectorP 3.0.

As an additional test to evaluate its performance, WideEffHunter was used to predict
effectoromes that were previously predicted following different criteria, and WideEffHunter
performed well in these predictions (Table 8). This reinforces that while other predictors are
specialized for use in one kingdom, or even for a particular lifestyle (e.g., pathogens), Wide-
EffHunter suitably works on different lifestyles in fungal and oomycete kingdoms. Around
60% of effector candidates predicted by WideEffHunter are shared with those predicted by
EffectorP 3.0 or EffectorO (Supplementary Table S4). Therefore, WideEffHunter retrieves
~30–40% of novel candidates, expanding effectoromes. Effectors are so variable that no
predictor can detect all potential candidates so authors usually recommend combining
predictors [12,26,27,31]. Fungi and oomycetes are filamentous species that share similarities,
but also differ from each other [48,54,55] so the prediction of their effectoromes has also
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followed different routes [25,27]. The WideEffHunter algorithm unifies the prediction of
fungal and oomycete effectors.

Classification of effector candidates predicted by WideEffHunter shows that canon-
ical effectors comprise less than 10% of effectoromes, suggesting that NCEs play a more
important role than we previously believed.

Some effectors have been reported as elusive for current predictors; for example, PIIN
08944, and AvrSr355 which are not recognized by EffHunter or EffectorP 2.0; SAD1 and
BEC1054, that are not recognized by EffHunter, and Mg3LysM, BEC1019 and CSEP0105,
that are not recognized by EffectorP 2.0. WideEffHunter was able to retrieve all of these
effectors since one of the retrieving tools is homology-based Blastp against the true effectors
database. Effector candidates with homology represent 1.8 to 9% of effectoromes (Supple-
mentary Table S4, tab “characterization”), indicating that this additional tool improved
the performance of WideEffHunter. This result is congruent with the limited number
of conserved families known currently in effectoromics. Some effectors that are widely
distributed in fungi are Avr4, Ecp2, Ecp6, and NIS1, among others [30]. In oomycetes, the
HaRxL23 [56], RXLR effectors [57], as well as CRN12_997 and other CRN effectors are
conserved [58]. As more is revealed about complete effectoromes, more conserved families
of effectors will be revealed.

Since effectoromics is continuously expanding, WideEffHunter was constructed mod-
ularly (Figure 1), giving researchers the opportunity to use the WideEffHunter algorithm as
it was constructed, or to eliminate a particular regex of any domains or motifs for genome
mining in their organism of choice. The list of motifs, domains and validated effectors are
still limited, but further comparison of effectoromes may reveal new effectors, domains and
motifs. The WideEffHunter algorithm also allows users to continuously feed it with new
data, keeping the algorithm updated and making WideEffHunter a tool that continuously
catalyzes the discovery of novel effectors.

4. Materials and Methods
4.1. Data Protein Collection

The dataset of true fungal and oomycete effectors was constructed by combining
diverse datasets of experimentally validated effectors compiled in Carreón-Anguiano et al.,
(2020) [12], Jones et al., (2021) [26], Nur et al., (2021) [27], Sperschneider et al., (2018) [31],
Wang et al., (2020) [25]. Additionally, 18 validated effector proteins were taken directly
from their individual reports (sequences are provided in Supplementary Tables S1 and S2).

For the conversion of fasta files to text files and/or vice versa, the “Seqret” tool in
the European EMBOSS platform (https://www.ebi.ac.uk/Tools/sfc/embossseqret/) was
used. For the generation of a database in tabular format, the sequences in the fasta file
were converted using a Python v2.7.18 script, separating the header and sequence motif
information in a tab delimitated format.

4.2. In Silico Characterization of Effectors

A comprehensive analysis of each of the following effector criteria was done for
the 228 fungal and 86 oomycete effectors belonging to the positive datasets: number
of amino acids (length), cysteine residue number and percentage were analyzed with
ProtParam tool at Expasy (https://web.expasy.org/protparam/; access 20 January 2022),
transmembrane domain prediction with TMHMM [59], and the presence of signal peptides
with SignalP 5.0 [60]. Protein subcellular localization was analyzed using LOCALIZER [61],
and cell wall-bounded proteins were identified with PredGPI [62]. All programs were run
with default parameters.

Canonical effectors were identified with the EffHunter algorithm [12] and the re-
maining proteins, (WideEffHunter prediction minus EffHunter prediction), were classified
as non-canonical.

For functional domain identification, effector sequences were analyzed with PFAM [37]
and InterPro [63]. Motifs were identified using MEME suite [64] and were manually

https://www.ebi.ac.uk/Tools/sfc/emboss seqret/
https://web.expasy.org/protparam/
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searched for using motifs described in previous literature [9,10,13,15,65,66]. Functional
annotation was carried out using the PFAM module in InterproScan STANDALONE
mode [37].

4.3. Construction of Databases

Three databases were constructed: one for effector-related domains, another for
effector-related motifs, and the third for the true validated effectors.

4.3.1. Database of Domains

Consensus sequences of the domains (for example LysM, CFEM, etc.) were down-
loaded from the “Simple Modular Architecture Research Tool” (SMART) web platform [39],
selecting the consensus sequences with a value of 80%. Using “search SMART”, the infor-
mation pertaining to the domains and the alignment consensus sequences were obtained.
Consensus alignment sequences downloaded from SMART (Regex) were translated to
regular expressions (regex) in Perl language (Supplementary Tables S5.1 and S5.2).

4.3.2. Database of Motifs

Regexes for effector-related motifs were taken from Huang et al. (2022) [13], Zhao et al.
(2020) [15], Liu et al. (2019) [66], Sonah et al. (2016) [10], Adhikari et al. (2013) [65] and
Sperschneider et al. (2016) [9]. In addition to these motifs obtained from the literature, three
novel motifs identified by MEME were included: the MKFFTILL, motif found in fungi,
and two oomycete motifs, MRLCYFLFVAAAAI and LYEHWHMRGCTPEHVYTILKLN.
Regexes of motifs were designed in Perl language.

The databases of domain and motifs were created in tabular format as stated above.

4.3.3. Database of True Effectors

The list of amino acid sequences of fungal and oomycete validated effectors were
converted to Fasta Format, and later converted to an indexed database using the following
Linux command for BLAST “$:formatdb -i <Fasta.fasta> -p T –o T”.

4.4. Construction of WideEffHunter

WideEffHunter algorithm was constructed in Bash language 5.0.17 concatenating the
different regexes (in Perl 5.30.0) corresponding to effector-related domains and motifs; input
and output files are in Fasta format. Effector hits retrieved from the search for domains
were pooled with the hits retrieved by the other criterion, the presence of motifs). The third
search was performed using Local Blastp against the database of true effectors, and the hits
were also pooled with the list of effector candidates retrieved in the domains and motifs
searches. Redundancies were eliminated with the command pipeline “$: cat <File.txt> |
sort | uniq”. The resulting list was considered to be the predicted effectorome of the fungus
or oomycete under study.

All databases in FASTA and TAB format, positive protein datasets, open-source codes
and accessory scripts can be found on the GitHub platform (https://github.com/Gisel-
Carreon) and on the home page of Dr. Blondy Canto Canché (https://www.cicy.mx/
unidad-de-biotecnologia/investigador/blondy-beatriz-canto-canche).

The command to execute WideEffHunter once it is installed in a linux/unix system, is
“$: ./WideEffHunter.sh”.

It is worth mentioning that each step is modular; therefore, users can use the entire
WideEffHunter as it was originally constructed for automatic prediction, or the user can
delete a particular regex or database; likewise, users can add a regex for new effector-related
domains and motifs, as well as upload newly discovered effectors to the positive dataset.
In this way, WideEffHunter can be regularly updated.

https://github.com/Gisel-Carreon
https://github.com/Gisel-Carreon
https://www.cicy.mx/unidad-de-biotecnologia/investigador/blondy-beatriz-canto-canche
https://www.cicy.mx/unidad-de-biotecnologia/investigador/blondy-beatriz-canto-canche
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4.5. Validation of WideEffHunter

For the validation of WideEffHunter, the positive dataset was used containing a total
of 314 true effectors; 228 from fungi and 86 from oomycetes.

For the negative control, the dataset used in Carreón-Anguiano et al. (2020) [12] was
used. This dataset contains 4528 protein sequences of different lengths, presence/absence
of signal peptide and TMD. We selected this negative dataset because it was not con-
structed selecting proteins from saprophytes, as in other reports [26,31]. Saprophytes also
contain effectors [52,53], and negative datasets containing their proteins to train algorithms
may rule out novel, true effectors. Furthermore, during the validation of algorithms like
WideEffHunter, it may result in higher numbers of “supposedly false positives”.

Motifs in proteins in the negative dataset were found through analysis with MEME;
“negative exclusive” motifs were identified by searching for these motifs in the database of
true effectors. To refine the prediction of false positives by WideEffHunter, the hits retrieved
with the pipeline “domains + motifs + homologs of true effectors” were filtered eliminating
those containing MEME motifs exclusive to negative control proteins.

The numbers of true positives, true negatives, false positives, and false negatives,
were used to calculate sensitivity, specificity, precision and accuracy parameters as well as
the F1 score, a parameter widely used to measure and compare performances of different
software/pipelines [12,31].

The performance of WideEffHunter was compared with that of EffectorP 1.0 [9],
EffectorP 2.0 [31], EffectorP 3.0 [24] and EffectorO [27].

4.6. Prediction of Effector Proteins in Fungal and Oomycete Genomes

For comparative analysis, recent reports that predict effectors using domains and
motifs were selected. The genomes (rather deduced proteomes) that were searched with
WideEffHunter were from the oomycetes P. infestans and B. lactucae [27], and the fungal
pathogens P. triticina [15] and V. inaequalis [42]. In addition, the fungal endophytes P. fici
and X. heveae [43], and the antagonist T. harzianum [12], were included.

Subsequently, effector candidates were classified as canonical or non-canonical us-
ing EffHunter. The number of non-canonical effectors was estimated by subtracting the
prediction by EffHunter from the prediction by WideEffHunter.

Both classes, canonical and non-canonical effector candidates, were further in silico
characterized in terms of: (a) number of amino acids, cysteine content, signal peptide,
TMDs; (b) identification of effector-related domains; (c) identification of effector-related mo-
tifs and potential function (annotation); (d) homologs of true effectors; (e) cell localization.

5. Conclusions

WideEffHunter, an algorithm that predicts effectors based on effector-related domains
and motifs, as well as homology to known validated effectors, is suitable for the retrieval of
whole effectoromes (canonicals and non-canonical effector candidates) in pathogenic and
non-pathogenic fungi and oomycetes. This is a user-friendly and modular algorithm that
can be updated continuously with new domains, motifs and novel effectors, providing a
powerful tool to strengthen effectoromics research.

6. Patents

The present algorithm was certified at Mexican Public Copyright Registry with the
registration number 03-2022-101112004700-01.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113567/s1.
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