

Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas

ANÁLISIS DE SRNA EN RESPUESTA A LA INTERACCIÓN POR PMeV-Mx EN *Carica papaya* var. Maradol EN ETAPA DE PREFLORACIÓN

Tesis que presenta Estefanía de Guadalupe Ravell Mujica En opción al título de MAESTRA EN CIENCIAS BIOLOGICAS BIOQUÍMICA Y BIOLOGÍA MOLECULAR

Mérida, Yucatán, México

2024

CENTRO DE INVESTIGACIÓN CIENTÍFICA DE YUCATÁN, A. C. POSGRADO EN CIENCIAS BIOLÓGICAS

RECONOCIMIENTO

Por medio de la presente, hago constar que el trabajo de tesis de Estefanía Ravell Mujica titulado Análisis de RNAs pequeños en respuesta a la interacción por PMeV-Mx en Carica papaya var. maradol en etapa de prefloración, fue realizado en la Unidad de Biología Integrativa, en el Laboratorio USF10, en la línea de investigación de interacción planta ambiente del Centro de Investigación Científica de Yucatán, A.C. bajo la dirección de la Dra. Luisa Alhucema López Ochoa y la Codirección de la Dra. Elsa Beatriz Góngora Castillo, dentro de la opción de Bioquímica y Biología Molecular, perteneciente al Programa de Posgrado en Ciencias Biológicas de este Centro.

Atentamente

inter 1.

Dra. Cecilia Hernández Zepeda Directora de Docencia

Mérida, Yucatán, México, a 9 de abril de 2024

DECLARACIÓN DE PROPIEDAD

Declaro que la información contenida en la sección de Materiales y Métodos, los Resultados y Discusión de este documento proviene de las actividades de investigación realizadas durante el período que se me asignó para desarrollar mi trabajo de tesis, en las Unidades y Laboratorios del Centro de Investigación Científica de Yucatán, A.C., y que a razón de lo anterior y en contraprestación de los servicios educativos o de apoyo que me fueron brindados, dicha información, en términos de la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, le pertenece patrimonialmente a dicho Centro de Investigación. Por otra parte, en virtud de lo ya manifestado, reconozco que de igual manera los productos intelectuales o desarrollos tecnológicos que deriven o pudieran derivar de lo correspondiente a dicha información, le pertenecen patrimonialmente al Centro de Investigación Científica de Yucatán, A.C., y en el mismo tenor, reconozco que si derivaren de este trabajo productos intelectuales o desarrollos tecnológicos, en lo especial, estos se regirán en todo caso por lo dispuesto por la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, en el tenor de lo expuesto en la presente Declaración.

Firma:

IBQ. Estefanía Ravell Mujica

Este trabajo se llevó a cabo en la Unidad de Bioquímica y Biología Molecular de Plantas del Centro de Investigación Científica de Yucatán, A.C., y forma parte del proyecto titulado "Disección molecular de los componentes genómicos de PMeV-Mx, un virus similar a umbravirus asociado a meleira de la papaya en México" con clave A1-S-19850, cuyo responsable técnico fue la Dra. Luisa A. López Ochoa.

AGRADECIMIENTOS

Al CONACYT por la beca otorgada 669545 y por el financiamiento para el proyecto titulado "Disección molecular de los componentes genómicos de PMeV-Mx, un virus similar a *umbravirus* asociado a meleira de la papaya en México" con clave A1-S-19850, bajo la dirección de la Dra. Luisa A. López Ochoa.

A mis directoras de tesis: Dra. Luisa A. López Ochoa y Dra. Elsa Góngora Castillo por haberme aceptado y asesorado, por sus observaciones, sugerencias y comentarios que sirvieron para la elaboración de esta tesis. Gracias por la paciencia y ánimos conmigo, crecí mucho en lo profesional y personal.

A mi comité revisor formado por la Dra. Georgina Estrada Tapia, Dr. Jorge Humberto Ramírez Prado y Dr. Hernán Villanueva Alonso por sus observaciones y sugerencias que ayudaron a enriquecer este documento.

A la Dra. Arianna Chan León por su apoyo en la parte experimental con el cultivo e inoculación de las plantas de papaya, así como en la extracción de RNA. También, por su apoyo incondicional y consejos en los momentos difíciles de la maestría.

Al M.C. Roberto Ku por el apoyo técnico brindado, en el mantenimiento de las plantas de papaya en casa sombra.

A mis compañeras y amigas de los laboratorios USF10 de la UBBMP (virología molecular y laboratorio de Biotecnología informática de la UBT por sus sugerencias en los seminarios de grupo. En especial a mi compañera Perla Contreras por su apoyo y consejos durante la maestría, así como a Alethia Toriz Bravo, por el esquema de la organización genómica de virus similares a *umbravirus* datos de la

predicción de estructura secundaria del genoma de PMeV-Mx, previo a su publicación.

A mí, por permitirme intentar superarme cada día a pesar de las situaciones externas e internas que se me presentan.

DEDICATORIAS

A mi familia y a mi pareja. En especial a mis padres Lourdes y Ramón por siempre apoyarme en todo. David, gracias por estar en mi vida y alentarme a continuar con mi meta, me has demostrado que puedo lograr lo que me propongo.

Y, por último, pero no menos importante a Dios.

ÍNDICE

INTRODUCCIÓN	1
CAPÍTULO I	3
ANTECEDENTES	3
1.1 Cultivo de la papaya	3
1.2 Enfermedad de la meleira de la papaya	5
1.3 Virus de la meleira de la papaya (PMeV)	6
1.4 Virus de la meleira de la papaya en México (PMEV-MX)	6
1.5 Umbravirus	7
1.6 Complejos de virus asociados a la meleira de la papaya	7
1.7 RNA pequeños en plantas	10
1.8 RNA de interferencia (iRNA) en la interacción planta-virus	12
1.9 microRNA en <i>C. papaya</i>	14
1.10 RNA largos no codificantes en virus	15
1.11 Estructuras secundarias en regiones codificantes y no codificantes en Umbravirus y similares a Umbravirus	[,] virus 15
1.12 Secuenciación de nueva generación para la identificación de RNA pequeños	16
JUSTIFICACIÓN	17
PREGUNTAS DE INVESTIGACIÓN:	18
OBJETIVO GENERAL:	18
OBJETIVOS ESPECÍFICOS:	18
ESTRATEGIA EXPERIMENTAL	19
CAPÍTULO II	20
MATERIALES Y MÉTODOS	20
2.1 Obtención del material vegetal	20
2.2 Inoculación con PMeV-Mx	20

2.3 Detección de PMeV-Mx por RT-PCR	21
2.4 Colecta de material biológico	22
2.5 Extracción de RNA total	22
2.6 cuantificación y calidad del RNA total	23
2.7 Secuenciación de los RNA pequeños de la muestra de hojas DE C. papaya	23
2.8 Análisis bioinformático	24
2.9 Módulo 1: pre-procesamiento	25
2.10 Identificación de microRNA por homología y <i>de novo</i> en mirDeep2	25
2.11 Determinación de los RNA de interferencia virales en la interacción de PMeV-Mx con <i>Car papaya</i> var. Maradol	rica 26
2.12 Visualización del alineamiento de las secuencias sanas e infectadas alineadas a genomas de <i>C. papaya</i> y PMeV-Mx	los 26
2.13 Predicción teórica de las estructuras secundarias precursoras de los RNA de interferen virales con presencia en las regiones ORF1, ORF2 y RNA largo no codificante de PMeV-Mx	cia 26
2.14 Identificación de los RNA de interferencia de la planta en la interacción de PMeV-Mx o <i>Carica papaya</i> var. Maradol	on 27
CAPITULO III	28
RESULTADOS	28
3.2 Secuenciación de RNA pequeños y procesamiento de secuencias.	28
3.1 Resultados del alineamiento para identificar mirna conocidos	30
3.2 Identificación de los miRNA más abundantes en plantas sanas e infectadas en hojas de papaya	С. 30
3.3 Comparación de miRNA expresados en plantas de papaya con meleira en Brasil y México	033
3.4 Análisis de los miRNA <i>de novo</i>	34
3.5 Identificación de los vsiRNA virales en la interacción C. papaya PMeV-Mx	35
3.6 RNA de interferencia virales en el 5´ UTR y el ORF1 de PMeV-Mx	36

3.7 Predicción de las estructuras secundarias que originan los vsiRNA más abundantes en el ORF1
3.8 RNA de interferencia virales en la región intergénica y el ORF2 de PMeV-Mx42
3.9 vsiRNA sobresalientes en horquillas putativas en el ORF2 de PMeV-Mx45
3.10 RNA de interferencia virales en el RNA largo no codificante de PMeV-Mx46
3.11 RNA de interferencia endógenos en plantas sanas e infectadas de <i>C. papaya</i> var. Maradol
3.12 Abundancia y blancos putativos de los siRNA en el transcriptoma de <i>C. papaya</i> var. Maradol
CAPITULO IV
DISCUSIÓN
CAPITULO V
CONCLUSIÓN GENERALES Y PERSPECTIVAS
CONCLUSIÓN
PERSPECTIVA
BIBLIOGRAFÍA60
ANEXOS

LISTADO DE FIGURAS

Figura 1.1 Plantas de <i>C. papaya</i>
Figura 1.2. Sintomatología de la meleira de la papaya en frutos y hojas de papaya5
Figura 1.3 Representación gráfica de la organización del virus de la meleira de la papaya, aislado de Brasil
Figura 1.4 Representación gráfica de la organización genómica de los virus similares a <i>Umbravirus</i> asociados a la meleira de la papaya9
Figura 1.5. Esquema de la biogénesis de los RNA pequeños12
Figura 3.1. Abundancia de las lecturas en las bibliotecas de los RNAs por tamaño(nucleótido)
Figura 3.2 Diagrama de la distribución de los vsiRNA en el ORF1
Figura 3.3 Distribución de la abundancia de los vsiRNA del ORF1 según su tamaño (en nucleótidos)
Figura 3.4 Mapa de calor de los vsiRNA más abundantes en el ORF138
Figura 3.5. Estructuras secundarias del RNA genómico del PMeV-Mx que pueden dar origen a los vsiRNA más predominantes en el 5´UTR y el ORF140
Figura 3.6 Mapa de calor de los vsiRNA más abundantes en el sitio resbaladizo -1PRF de PMeV-Mx41
Figura 3.7 Estructura secundaria de horquilla que engloba el sitio resbaladizo putativo -1PRF de PMeV-Mx42
Figura 3.8 Distribución de las secuencias en la región ORF2. sentido directo (azul) y sentido reverso (rojo)43
Figura 3.9 Distribución de la abundancia de los vsiRNA del ORF2 según su tamaño (nucleótidos)44
Figura 3.10 Mapa de calor de los vsiRNA más abundantes en el ORF2 de PMeV-Mx45
Figura 3.11 Estructuras secundarias de dsRNA con los vsiRNA más predominantes en el ORF2 46

Figura 3.12 Distribución de los vsiRNA en el IncRNA
Figura 3.13 Abundancia de vsiRNA el IncRNA de PMeV-Mx por tamaño (en nucleótidos)48
Figura 3.14 Mapa de calor de los vsiRNA más representados en el IncRNA de PMeV-Mx49
Figura 3.15 Estructuras secundarias de horquilla con las secuencias más predominantes en el IncRNA
Figura 3.16 Abundancia de siRNA alineados al transcriptoma de <i>C. papaya</i> var. Maradol por tamaño (en nucleótidos)

LISTADO DE TABLAS

Tabla 2.1 Reactivos para la síntesis de la primera cadena21
Tabla 2.2. Reactivos para la mezcla en la detección por RT-PCR de PMeV-Mx22
Tabla 2.3 Parámetros predeterminados de Bowtie2 para el alineamiento
Tabla 3.1 Resultados de la secuenciación de RNA pequeños enviados por novogene28
Tabla 3.2 Lecturas totales que se conservaron en las bibliotecas de plantas sanas e infectadas.
Tabla 3.3. Número de microRNA conocidos en plantas sanas e infectadas
tabla 3.3. miRNA más abundantes en plantas sanas e infectadas
tabla 3.4 miRNA poco abundantes con mayor expresión en plantas infectadas
Tabla 3.5 miRNA en respuesta a la meleira de la papaya en plantas de Brasil y México34
Tabla 3.6 Abundancia de los miRNA de novo identificados por mirDeep2 35
Tabla 3.7 Relación de lecturas alineadas a diferentes regiones del genoma de PMeV-Mx35
Tabla 3.9.Relación de lecturas de sRNA alineadas a los transcriptomas de C. papaya de plantassanas e infectadas
Tabla 3.10 Relación de la abundancia de los contig en plantas sanas y sus blancos putativos.53
Tabla 3.11 Relación de la abundancia de los contig en plantas infec y sus blancos putativos. .53

ABREVIATURAS

DNA	Ácido desoxirribonucleico
dsRNA	RNA bicatenario
iRNA	RNA de interferencia
kb	Kilobases (unidad de medida de longitud del DNA o RNA).
IncRNA	RNA largo no codificante
mRNA	RNA mensajero
miRNA	microRNA
ORF	Marco de lectura abierto
PRSV	Virus de la mancha anular de la papaya
PMeV	Virus de la meleira de la papaya
PMeV-Mx	Variante mexicana del virus de la meleira de la papaya
PpVQ	Papaya virus Q
PMeV2	Virus 2 de la meleira de la papaya
RdRP	RNA polimerasa dependiente de RNA
RNA	Ácido ribonucleico
sRNA	RNA pequeños
SAR	Resistencia sistémica adquirida
sivRNA	RNA pequeños de interferencia viral
ssRNA	RNA monocatenario

RESUMEN

El PMeV-Mx, es un virus vinculado a la meleira de la papaya en México, enfermedad que ha ganado notoriedad a nivel mundial debido a sus síntomas agresivos que emergen posterior a la floración, resultando en considerables pérdidas en los cultivos comerciales. Ante la amenaza de patógenos virales, las plantas despliegan diversos mecanismos defensivos, entre ellos el silenciamiento génico inducido por RNA, que involucra la producción de moléculas de RNA de 21 a 24 nucleótidos, para regular la expresión génica activar mecanismos de defensa o bien para degradar al RNA viral. En el contexto de las plantas, se manifiestan los microRNA y los RNA de interferencia. Estudios realizados en Brasil por el grupo de Abreu *et al.,* 2014 identificaron 11 microRNA asociados a la meleira de la papaya, los cuales regulan ciertos mecanismos de defensa durante la etapa de prefloración.

En este sentido, el propósito de este trabajo fue identificar las diversas poblaciones de RNAs pequeños expresados durante la etapa de prefloración en la infección de PMeV-Mx en *Carica papaya* variedad maradol. Los resultados de este estudio son el primer acercamiento para conocer las poblaciones de RNA pequeños que se expresan en dicha interacción.

ABSTRACT

The PMeV-Mx, a novel virus associated with papaya sticky disease in Mexico, has gained worldwide attention due to its aggressive symptoms that emerge after flowering, resulting in significant losses in commercial crops. Faced with the threat of viral pathogens, plants deploy various defense mechanisms, including RNA-induced gene silencing, which involves 21 to 24 nucleotide-long RNA molecules with no protein-coding function. In the context of plants, two types of these molecules manifest: microRNAs and small interfering RNAs. Studies conducted in Brazil by the Abreu *et al.,* in 2014 identified 11 microRNAs produced in response to meleira disease, which regulate certain defense mechanisms during the pre-flowering stage.

In this regard, the aim of this work is to identify the diverse populations of small RNAs expressed during the pre-flowering stage during PMeV-Mx infection in *Carica papaya* Maradol variety. The results of this study represent the first approach to understand the populations of small RNAs produced.

INTRODUCCIÓN

Los RNA pequeños no codificantes, desempeñan un papel diverso en una variedad de procesos reguladores en las plantas, y tienen un impacto significativo en la fisiopatología de enfermedades vegetales, lo que los convierte en objetivos potenciales para la intervención en las enfermedades virales que infectan a las plantas. Cuando las plantas enfrentan patógenos virales, activan respuestas de defensa, incluyendo el silenciamiento génico de RNA, un mecanismo que regula la expresión de genes mediante la síntesis de RNA pequeños (sRNA) a partir de moléculas precursoras de RNA de doble cadena dsRNA. Estos sRNA, con una longitud de alrededor de 20-25 nucleótidos, interactúan con complejos enzimáticos formados por Dicer y Argonaut, para reconocer secuencias complementarias de DNA o RNA para unirse. Este proceso bloquea la transcripción o induce la degradación de los transcritos, o ácidos nucleicos virales, resultando en el silenciamiento génico, tanto a nivel transcripcional como post-transcripcional. La infección viral se asocia con la síntesis de RNAs de interferencia virales (vsRNA) y con el desarrollo de la enfermedad en la planta (Akbar, *et al., 2022*).

La papaya (*Carica papaya*), un cultivo de gran importancia en América Latina, enfrenta desafíos notables debido a diversas enfermedades virales que afectan la calidad y producción de frutos. Entre estas destaca el complejo de virus que causa la Meleira, que ha ganado importancia a nivel mundial debido a sus síntomas agresivos, manifestándose tras la floración y generando pérdidas considerables en los cultivos comerciales (SADER, 2021). Debido a que los síntomas aparecen en etapas avanzadas y principalmente en los frutos, se ha planteado que las plantas afectadas muestran una respuesta temprana de resistencia sistémica adquirida (SAR) en las hojas, lo que sugiere una interacción anticipada con el virus antes de que los síntomas se manifiesten en los frutos. Este sistema de respuesta temprana puede involucrar la síntesis de RNA pequeños y su interacción con los mecanismos de defensa de la planta (Sa-Antunes, *et al.,* 2020).

1

En este proyecto, se buscó identificar y categorizar las diversas poblaciones de sRNA presentes en las hojas de plantas de *Carica papaya* var. Maradol, tanto en condiciones sanas como infectadas con PMeV-Mx, durante la etapa de prefloración. Además, se detectaron los RNA de interferencia derivados específicamente de PMeV-Mx con el fin de ampliar la comprensión de las interacciones entre los RNA pequeños y los virus en las plantas de papaya, lo que podría tener implicaciones significativas en el desarrollo de estrategias de manejo de enfermedades virales en los cultivos de papaya.

CAPÍTULO I ANTECEDENTES

1.1 Cultivo de la papaya

La papaya, *Carica papaya* L., pertenece a la familia *Caricaceae* es una planta herbácea de crecimiento arborescente relativamente rápido, puede alcanzar una altura que va desde 1.8 m en el caso de cultivares comerciales, hasta 6.1 m en los ejemplares silvestres. Se caracteriza por tener un solo tallo hueco, erecto, grueso de 20-30 cm de diámetro, presenta un gran número de hojas grandes y lobuladas. Su sistema radicular está formado por una raíz primaria y raíces secundarias. Las inflorescencias son ramificadas, las accesiones silvestres son dioicas, es decir presentan ya sea, flores femeninas o masculinas, mientras que, en las variedades comerciales, además se presentan plantas con flores hermafroditas por lo que se considera que es una planta polígama (Lee *et al.*, 2005) (**Fig. 1.1**).

Figura 1.1 Plantas de C. papaya. A) Silvestre, B) Comercial, variedad Maradol. (fotografía. G. Fuentes, Tomada de Girón-Ramírez *et al.,* 2023).

El cultivo de papaya es una actividad productiva de Centro y Sudamérica. México es uno de los principales productores y exportadores de papaya. Actualmente, es el primer exportador hacia Estados Unidos. Asimismo, la papaya es un producto de consumo doméstico, siendo las variedades más comunes en cultivos: Maradol roja, Criolla, Amarilla y Hawaiana (Tipo solo) (Madrigal *et al.* 2013). La papaya es producida en 19 entidades del país, donde en el 2020 lideraron, Oaxaca (31.2%), Colima (17.6%) y Chiapas (14.1%) estados que aportaron el 70% del volumen total nacional colocando a México en tercer lugar en el mercado internacional (SADER, 2021). El 90% de la papaya que se produce en México es de la variedad Maradol.

Los cultivos comerciales de papaya se ven afectados por enfermedades que tienen etiologías bióticas y abióticas que afectan la calidad del fruto, provocando grandes pérdidas económicas. Las enfermedades que más predominan son de tipo viral y fúngicas. Actualmente, la enfermedad con mayor presencia en los cultivos es de tipo fúngico, llamada antracnosis, causada por hongos del género *Colletrotrichum*. En menor orden de predominancia se presentan las enfermedades bacterianas. La enfermedad viral más importante es la mancha anular, causada por el Virus de la mancha anular de la papaya (PRSV-P por sus siglas en inglés) que tiene presencia mundial y que afecta severamente la producción de frutos (Fauquet *et al.,* 2005). Otra enfermedad viral que está tomando mucha importancia a nivel mundial recientemente es la meleira de la papaya o enfermedad pegajosa (PSD), debido a la presencia de sus síntomas extremadamente agresivos y que aparecen después de la floración, dejando grandes pérdidas en los cultivos comerciales (Revisado por Sa-Antunes *et al.,* 2020).

1.2 Enfermedad de la meleira de la papaya

La meleira de la papaya fue detectada por primera vez en Brasil en los años 80 del siglo pasado. Su sintomatología se caracteriza por la exudación espontánea anormal de látex acuoso en los frutos que tarda más de 2 minutos en coagular (**Figura 2b, panel izquierdo**). El látex se oxida al entrar en contacto con el oxígeno y provoca que el fruto y el borde de las hojas tengan manchas oscuras (Maciel-Zambolim *et al.,* 2003) (**Figura 1.2**). También, la pulpa de la fruta presenta pequeñas manchas con una consistencia más suave (**Figura 1.2**).

En México en el año 2008, se observaron síntomas similares a la meleira de la papaya en plantaciones de papaya ubicada en el estado de Quintana Roo, México (Pérez-Brito *et al.,* 2012).

Figura 1.2. Sintomatología de la meleira de la papaya en frutos y hojas de papaya. a) Manchas por oxidación del látex. b) Comparación de la exudación del látex de un fruto sano y otro infectado.
c) Manchas en la pulpa del fruto. d) Necrosis en las hojas jóvenes de la planta (Tomado de Perez-Brito *et al.*, 2012).

1.3 Virus de la meleira de la papaya (PMeV)

En 1993 Kitajima y colaboradores identificaron partículas isométricas de 50 nm en los laticíferos de las plantas de papaya enfermas y un RNA bicatenario (dsRNA) estimado en 10-12 kb. En 2003 Maciel-Zambolim y colaboradores realizaron la purificación partículas virales del látex de frutos papaya y las utilizaron para inocular plántulas de papaya sanas, que posteriormente desarrollaron síntomas típicos de meleira. Al extraer ácidos nucleicos de las partículas purificadas, identificaron dsRNA, que migraba en geles de agarosa a una altura de 12 kb con marcadores de DNA. Con estos experimentos confirmaron que el agente causal de la enfermedad era un virus con genoma de dsRNA designado Virus de la meleira de la papaya (PMeV). En el año 2015, Abreu y colaboradores, reportaron la primera secuencia completa y organizada del genoma de 8.7 kb de PMeV, aislado en la Región Norte (RN) de Brasil (PMeV-RN), el cual contiene dos marcos de lectura abiertos (ORF) que codifican una proteína de la cápside (CP) y una RNA polimerasa dependiente de RNA (RdRp) (Abreu, et al., 2015). Este genoma viral guardaba relación estrecha con miembros de la familia Totiviridae, pero recientemente se lo ha propuesto en la familia tentativa Fusagraviridae (Maurastoni et al., 2023). Posteriormente, se secuenció un genoma de PMeV de 8,809 nt, aislado de Espiritu Santo, Brasil (PMeV-ES), que interesantemente comparte una baja identidad de secuencias proteicas con PMeV-RN, 75% para la CP y 67% para la RdRP (Sa-Antunes, et al., 2016) representado en la Figura 1.3.

		1264		
	651	530/	5366 8809 1	nt
-		СР	RdRp	
-		(177.6 kDa)	(132.8 kDa)	

Figura 1.3 Representación gráfica de la organización del Virus de la meleira de la Papaya, aislado ES, Brasil. CP representa la proteína de la cápside putativa, y RdRP, la RNA polimerasa (Modificado de Sa-Antunes, *et al.*, 2016).

1.4 Virus de la meleira de la papaya en México (PMeV-Mx)

En el 2008, se observaron síntomas similares a los de meleira en plantaciones de papaya Maradol de la Península de Yucatán, México, encontrando un RNA extraído del látex de frutos en el cual se observaban dos bandas de que migraban a la altura de 10 y 4.5 Kb en marcadores de DNA. La enfermedad también podría transmitirse a través del látex de papaya infectada a plantas sanas (Perez-Brito et al., 2012). El grupo de trabajo de la Dra. López Ochoa obtuvo en 2011 una secuencia de 1154 pb, que al ser traducida codifica una RdRP con 42% de identidad a la RdRP de miembros del género umbravirus. Como también se identificaron fragmentos con alta identidad a dicha secuencia en plantas infectadas de Brasil, al virus identificado se le denominó variante mexicana del virus de la meleira de la papaya (PMeV-Mx) (Zamudio-Moreno et al 2015). Meses más tarde, cuando se publicó el genoma del PMeV (Abreu et al., 2015), fue evidente que PMeV-Mx corresponde a un virus nuevo, distinto al PMeV y no una variante de este. Actualmente, en el grupo de trabajo se cuenta con el genoma completo de PMeV-Mx, el cual tiene un genoma de ssRNA de 4,346 nucleótidos, con dos marcos de lectura abiertos (ORF), seguidos de un RNA largo no codificante (Figura 1.4 A) (Toriz-Bravo., et al., sometido). El ORF1 codifica una proteína no caracterizada, mientras que el ORF2 codifica la RdRp. Al igual que los Umbravirus, el genoma de PMeV-Mx carece de una proteína de la cápside. PMeV-Mx es considerado como un virus similar a umbravirus. PMeV-Mx se transmite por semillas y por la chicharra Empoasca papayae (García-Cámara et al., 2019; Tapia-Tusell et al., 2015).

1.5 Umbravirus

Umbravirus es un género virus vegetales perteneciente a la familia Tombusviridae cuyo genoma carece de un ORF para una proteína de la cápside y contiene cuatro ORF. ORF1 codifica una proteína de 30 a 32 kDa que posiblemente es auxiliar de la replicación, como en otros géneros de la familia Tombusviridae. El ORF2 una RdRP, ORF3 y ORF codifican para proteínas del movimiento viral. Los *umbravirus*, al carecer de una cápside, dependen de un virus ayudador para llevar a cabo la encapsidación y la transmisión por insectos (Ryabov y Taliansky, 2021).

1.6 Complejos de virus asociados a la meleira de la papaya

En Ecuador se reportó la secuencia parcial de un virus relacionado filogenéticamente con PMeV-Mx, en plantas de papaya que presentaban síntomas de mancha anular de la

papaya, en el que se encontró al PRSV y un virus similar a umbravirus, al que se denominó papaya virus Q (PpVQ). Este último comparte hasta un 70% de identidad con PMeV-Mx (Quito-Avila, et al., 2015) (Figura 1.4 C). Recientemente se reportó la meleira de la papaya en Ecuador, encontrándose en las plantas sintomáticas, tanto al PpVQ como a un virus muy similar al PMeV de Brasil, estableciendo que para que se produzca la enfermedad se requiere la presencia de ambos virus (Quito-Avila, et al., 2023). Así mismo, en 2016 en Brasil, se mostró que las plantas con síntomas de meleira estaban infectadas con dos virus, PMeV y un virus similar a PMeV-Mx y a PpVQ, al que se denominó Virus de la meleira de la papaya 2 (PMeV2) (Figura 1.4 B) (Sa-Antunes et al., 2016). En estas plantas se observaron dos poblaciones de partículas virales, unas que contenían al dsRNA de PMeV y otras al ssRNA de PMeV2, por lo que se planteó que al igual que los Umbravirus, los virus similares a umbravirus de papaya, en particular PMeV2, requieren de un virus ayudador para su transmisión por vectores, aunque esto aún no se ha demostrado (Sa-Antunes et al., 2016). Actualmente se conoce la secuencia genómica de cuatro virus similares a Umbravirus asociados a la meleira de la papaya: PMeV-Mx, PpVQ, PMeV2 y Babaco virus Q (Figura 1.4 C). Este último en plantas de babaco, o papaya de monte, un pariente silvestre de papaya (Cornejo Franco, et al., 2021). El genoma de los virus similares a umbravirus asociados a la meleira de la papaya tiene de 3600 a 4500 nucleótidos (nt) de largo, contiene dos ORFs y un RNA largo no codificante (IncRNA). Su organización genómica se esquematiza en la Figura 1.4.

La meleira también se ha extendido a Australia (Pathania *et al.*, 2019), donde se encontró a un virus similar a *umbravirus* asociado a la enfermedad, el cual, al igual que PMeV-Mx (Tapia-Tusell, *et al.*, 2015) también se transmite por semillas (Pathania *et al.*, 2019). En México y Australia aún no se ha identificado al Fusagravirus equivalente al PMeV. A pesar de que el genoma de PMeV-Mx comparte hasta 71% de identidad a nivel de nucleótidos con PMeV2 y PpVQ (Quito-Avila, *et al.*, 2023; Toriz-Bravo *et al.*, sometido; Sa-Antunes *et al.*, 2016) estos se consideran especies distintas de virus (Toriz-Bravo *et al.*, sometido).

Figura 1.4 Representación gráfica de la organización genómica de los virus similares a umbravirus asociados a la meleira de la papaya. a) PMeV-Mx, b) PMeV2, c) PpVQ d) BabVQ. (Toriz-Bravo *et al.*, sometido).

1.7 RNA pequeños en plantas

Los sRNA desempeñan un papel esencial en las plantas para regular de la expresión génica y de esta manera controlar procesos esenciales de desarrollo y crecimiento, así como en la respuesta al estrés biótico y abiótico (Dexheimer *et al.*, 2020). Por lo general, la longitud de los sRNA varía de 18 a 26 nt, aunque se han encontrado hasta de 30 nt (Bartel *et al.*, 2018). En términos de clasificación, los sRNA de plantas se dividen principalmente en dos categorías: los microRNA (miRNA) y los RNA pequeños de interferencia (siRNA) (Deng *et al.*, 2022). Los miRNA regulan negativamente la expresión de genes endógenos a través del corte de RNA mensajeros (mRNA) blanco, la represión de la traducción o la metilación del DNA, de esta forma controlan múltiples procesos del desarrollo de las plantas como: el desarrollo del meristemo, el establecimiento de la polaridad celular y los límites de los órganos laterales, el crecimiento de los órganos vegetativos y reproductivos y la formación de patrones foliares; así como respuestas al estrés abiótico y biótico (Li *et al.*, 2023).

La síntesis de los miRNA inicia por la transcripción de un gen MIR, cuyo transcrito primario (pri-miRNA) no codificante se pliega sobre sí mismo para formar una estructura secundaria de horquilla (tallo y asa) que luego se procesa por enzimas endonucleasas llamadas Dicer-like (DCL) en un transcrito precursor (pre-miRNA) más corto, para finalmente producir sRNA de 21 a 23 nt (**Figura 1.5**) (Ivanova *et al.,* 2022).

Por otro lado, los siRNA son moléculas de dsRNA de 21 a 24 nt que derivan de transcritos de doble cadena provenientes de diferentes orígenes, endógenos o exógenos (como los RNA virales) que se subdividen en varias categorías: 1) siRNA derivados de RNA endógenos activados por virus, de 21 y 22 nt (vasi-RNA); 2) sRNA de interferencia derivados de RNA virales (vsiRNA); 3) transcritos antisentido naturales (nat-siRNA) de 21 a 24 nt; 4) siRNA derivados de horquillas (hp-siRNA); 5) siRNA que actúan en *trans* (tasi-RNA), específicamente en factores de transcripción 6) siRNA en fase (phasi-iRNA), de 21 a 24 nt, activados por RNA endógenos derivados de un miRNA; 7) iRNA heterocromático (het-siRNA) de 24 nt, generado por DCL3; siRNA asociados epigenéticamente (easi-RNA) de 21 nt derivados de transposones, debido a la pérdida de metilación dependiente de RNA. Cada uno de estos tipos de siRNA tienen origen y vía de síntesis distinta, e involucran precursores y enzimas específicos (Pantaleo, *et al.*, 2021) (**Figura 1.5**). El RNAi tiene varios

componentes conservados: 1) regiones de dsRNA perfectos (apareamientos sin interrupciones o mismatches) o dsRNA imperfectos que son procesados por enzimas DCL en siRNA de 21 a 24 nt; 2) los siRNA se dirigen a la proteína Argonauta (AGO) para formar parte del complejo de silenciamiento inducido por RNA (RISC); 3) los siRNA guían al complejo RISC para unirse de manera específica a los ácidos nucleicos para ejercer su función, ya sea en silenciamiento transcripcional (TGS) o postranscripcional (PTGS). El TGS interactúa con diversos componentes del genoma de las plantas, incluyendo genes y elementos transponibles para afectar la producción de transcritos. El PTGS actúa sobre transcritos blancos específicos a través de la complementariedad de secuencias, induciendo la degradación del mRNA. Este por lo general se dirige a mRNA endógenos e incluye a miRNA, tasi-RNA, nat-siRNA y phasi-RNA (Pantaleo, *et al., 2021*).

Las proteínas Dicer-like (DCL) son actores clave que generan sRNA de diferentes longitudes, que varían de 21 a 26 nt. Por ejemplo, DCL1 produce miRNA de 21 y 22 nt, mientras que DCL2, DCL3 y DCL4 generan sRNA de 22, 24 y 21 nt, respectivamente, a partir de sustratos de RNA de doble cadena largos. La diversidad de las proteínas DCL contribuye a la especificidad de los RNA pequeños producidos (**Figura 1.5**) (Ivanova *et al.,* 2022).

Figura 1.5. Esquema de la biogénesis de los RNA pequeños. Síntesis de **a**) miRNA a partir del gen MIR, **b**) iRNA que actúan a nivel postranscripcional, **c**) iRNA que son activados por miRNA **d**) iRNA que actúan en la heterocromatina, **e**) iRNA de interferencia virales a a partir de una doble cadena (Tomado de Ivanova *et al.*, 2022).

1.8 RNA de interferencia (iRNA) en la interacción planta-virus

Cuando un virus infecta una planta comienza su ciclo replicativo utilizando sus recursos metabólicos. Durante este proceso, las partículas virales se desplazan de célula u órgano a través de los plasmodesmos o tejidos del floema, lo que puede desencadenar una infección sistémica. En este momento se puede activar el proceso de iRNA viral como mecanismo de defensa de las plantas, para degradar los genomas virales, en el caso de virus con genomas de RNA, o para afectar la síntesis de los transcritos virales o degradar dichos transcritos (Pantaleon, *et al.*, 2021).

La maquinaria de defensa antiviral de las plantas se activa al detectar dsRNA virales, cuyo origen varía: 1) genomas virales de dsRNA, como los endornavirus o el fusagravirus, que incluyen al PMeV; 2) estados replicativos de virus con genomas de ssRNA, como los virus similares a *umbravirus*; 4) productos de la transcripción bidereccional de genes sobrelapados (en sentido directo y antisentido), como en el caso de los geminivirus; 4) estructuras de RNA tipo horquillas o pseudonudos de genomas de virus de ssRNA; 5) dsRNAs producidos por una RNA polimerasa dependiente de RNA de la planta (RDR), al reconocer RNA virales. Una vez detectados los dsRNA virales, enzimas DCLs asociadas con enzimas DBRs para producir dsRNA de 21 a 24 nt llamados vsi-RNA primarios. Los dsRNA virales citoplásmicos (de los virus de genomas de RNA) son procesados por DCL 2 y 4, mientras que los dsRNA virales nucleares, derivados de virus genomas de DNA, son procesados por DCL 1 y 3 (García-Ruiz *et al.*, 2010; Rosa *et al.*, 2018; Incarbone *et al.*, 2013). Posteriormente los vsiRNA de cadena doble, se incorporan a AGO y al complejo RISC, donde se elimina la cadena pasajera, mientras que la cadera de RNA guía dirige al complejo RISC, para atacar el genoma o transcritos virales (Pantaleo, *et al.*, 2021).

Se han hecho numerosos trabajos para identificar miRNA y vsiRNA producidos durante la interacción planta virus, y así entender los mecanismos de defensa de la planta contra la infección viral. En papaya se han identificado previamente varios miRNA, que se describen en el siguiente apartado, pero no hay reportes de la identificación de vsiRNA en respuesta la infección por virus.

Se ha reportado que combinaciones diferentes de virus y plantas pueden generar vsiRNA con características distintas, lo que puede conduce a la diferencia de síntomas. Los perfiles de vsiRNA cambian en diferentes plantas infectadas con el mismo virus. Por ejemplo, las características de los vsiRNA derivados de la infección del Virus de la marchitez manchada del tomate (TSWV) en *Solanum lycopersicum* y *Nicotiana benthamiana* fueron significativamente diferentes (Milter *et al.,* 2013). También se ha visto que los vsiRNA presentan diferentes características en la misma especie de planta infectada con diferentes cepas de virus: por ejemplo, los perfiles de vsiRNA variaron entre las plantas de *Solanum tuberosum* infectadas con diferentes cepas del virus Y de la papa (PVY), probablemente debido a las diferentes respuestas al silenciamiento del RNA (Naveed, *et al.,* 2014).

1.9 microRNA en C. papaya

Diversos estudios han explorado el transcriptoma y la expresión génica de la papaya en diferentes tejidos y en respuesta a distintos estímulos. En 2007, se realizó un estudio para identificar genes expresados en las raíces de la papaya, con el fin de entender su función en el desarrollo y la defensa de la planta. Este estudio permitió identificar genes relacionados con la defensa contra patógenos, interacción planta-virus, estrés abiótico y desarrollo vegetal, así como RNA no codificantes y el precursor del miR162a, el primer microRNA identificado en la papaya (Porter et al., 2007). En 2012, se identificaron 60 miRNA en papaya variedad SunUp, 24 conservados en otras especies vegetales y 36 nuevos específicos de papaya. Se encontró mayor acumulación de lecturas de 21 y 24 nt en hojas de plantas infectadas por PRSV que, en hojas sanas, así como mayor expresión de siete miRNA* en hojas infectadas (Aryal, et al., 2012). En 2013, empleando secuenciación masiva, se identificaron 75 miRNA en papaya conservados en otras especies, de los cuales miR156 and miR535 se expresaron altamente en hojas de papaya. También identificaron 11 miRNA nuevos específicos de papaya y se predijeron los genes blanco, entre ellos el gene Argonauta 1, afectado por miR168 y miR530 (Liang et al., 2013). En 2014, Abreu y colaboradores alinearon los 75 miRNA conocidos de payaya logrando identificar 72 familias, con 462 secuencias distintas, de los cuales seleccionaron 11 miRNA para análisis por qRT-PCR en hojas de plantas sanas e infectadas con el complejo PMeV/PMeV2 en Brasil. La expresión de miR164, miR172, miR396 y miR399, implicados en la respuesta a estrés biótico, aumentó en plantas infectadas. También se observó que miR162, miR398 y miR408, cuyos blancos regulan el proteasoma, incrementó en plantas con baja carga viral, pero disminuyó al incrementar la carga viral (Abreu et al., 2014). En 2021, se realizó un estudio comparativo de sRNA durante la maduración de frutos en papaya, donde se identificaron 213 miRNA, de los cuales 44 eran miRNA conocidos y 169 eran nuevos (Cai, et al., 2021). Finalmente, en 2022, se completó el ensamblaje del genoma de la papaya SunUp, lo que permitió la identificación de 90 nuevos microRNAs, pero estos no están disponibles en las bases de datos (Yue et al., 2022). Aunque se conocen aproximadamente 213 miRNA identificados en el genoma de papaya, hasta ahora solo se ha elucidado la función de algunos de ellos. Esta información ha sido crucial para mejorar nuestra comprensión de la regulación génica en la papaya y su relación con diversos procesos biológicos.

1.10 RNA largos no codificantes en virus

Los RNA largos no codificantes (IncRNA) representan una categoría de RNA con una longitud superior a 200 nt que no participan en la síntesis de proteínas. Están presentes en animales, plantas y levaduras, procariotas y virus. En plantas los IncRNA cuentan con una variedad de funciones, incluida la regulación postranscripcional y la infección con virus (Shrestha *et al.*, 2020). Durante la infección viral, se ha observado que la célula hospedera produce múltiples IncRNA como respuesta contra la infección. Paralelamente, los propios virus también generan IncRNA como parte de su estrategia para resistir la actividad antiviral celular (Liu *et al.*, 2017). También, se ha observado que los IncRNA son precursores de RNA pequeños que funcionan como reguladores negativos o positivos de la inmunidad de las plantas (Wang *et al.*, 2023).

1.11 Estructuras secundarias en regiones codificantes y no codificantes en *umbravirus* y virus similares a *umbravirus*

Los genomas de los *umbravirus* y virus similares a *umbravirus*, presentan señales (secuencias y estructuras de RNA) para llevar a cabo el desplazamiento del marco de lectura en un nucleótido y con esto, producir una proteína de fusión del ORF1 y el ORF2-1 (Liu *et al.*, 2021). Así mismo, existen otras estructuras secundarias en el genoma de estos virus, que pueden tener diversas funciones, por ejemplo, para la replicación del genoma viral y la traducción de sus proteínas (Liu *et al.*, 2021), tal como ocurre en el Virus de las enaciones de los chícharos (PEMV), un *umbravirus*, y en virus del género Carmovirus, ambos de la familia Tombusviridae (Panaviene, *et al.*, 2005). PMeV-Mx presenta estructuras secundarias en el extremo 3´terminal del PMeV-Mx, una horquilla denominada H5 que contiene 4 guanidinas (5´GGGG 3´) en el bucle de la horquilla H5, la cual podría formar un Pseudonudo, denominado Ψ 1, al interactuar con cuatro citocinas (5´GGGG3´) del extremo 3´ terminal del genoma viral (Toriz-Bravo, 2022; Toriz-Bravo *et al.*, sometido) tal como ocurre en algunos miembros de los géneros *Umbravirus*, Carmovirus y

Tombusvirus (McCormack *et al.,* 2008; Kwon *et al.,* 2021), en los cuales, estas estructuras están asociadas a la replicación (Panaviene *et al.,* 2003).

1.12 Secuenciación de nueva generación para la identificación de RNA pequeños

Hace 20 años, se lanzaron al mercado tecnologías de secuenciación de próxima generación (NGS). En la actualidad, es más preciso referirse a ello como secuenciación masiva, ya que han salido nuevas generaciones de secuenciadores que emplean diversas tecnologías simultáneamente. Entre ellas, se incluye la secuenciación por ligación (Sequencing by Oligonucleotide Ligation and Detection) del equipo SOLiD, introducido al mercado en 2007 por Life Technologies y ahora descontinuado. Asimismo, destaca la secuenciación por síntesis y semiconducción del lon Torrent. La secuenciación por síntesis en clusters de la empresa Solexa, más tarde adquirida por Illumina y en secuenciadores posteriores como el MiSeq o HiSeq desde 2011 (Maiden et al., 2013). La secuenciación masiva por Illumina ha permitido la detección de una gran cantidad de sRNA involucrados en diversos procesos y funciones biológicas. El procedimiento implica aislar los sRNA del resto de moléculas biológicas presentes en las células y tejidos de las plantas, excluyendo incluso los RNA de alto peso molecular. Luego, se purifican y, mediante la unión de adaptadores de RNA, se preparan bibliotecas que implican la síntesis de DNA complementario (cDNA) y la unión de adaptadores, para la secuenciación masiva de toda la población de sRNA. Esta técnica de secuenciación permite identificar tanto sRNA previamente conocidos como nuevos, incluso si son escasos en cantidad. Después de aplicar las técnicas de análisis bioinformático a la población de sRNA, se pueden comparar y medir la cantidad en que un sRNA específico se acumuló con respecto a un control, de esta manera, se pueden identificar RNA pequeños con patrones de acumulación alterados debido al tratamiento (Payet et al., 2023).

JUSTIFICACIÓN

El silenciamiento génico es un mecanismo para controlar procesos del desarrollo y defensa de las plantas contra patógenos, mediante el control de la expresión génica. Se caracteriza por la producción de sRNAs que tienen diversas funciones, pero que que se clasifican en dos tipos principales, miRNA y siRNA. Se han reportado distintas especies virales asociadas a la meleira de la papaya, la cual ha adquirido relevancia a nivel global debido a sus síntomas agresivos que aparecen después de la floración, causando grandes pérdidas en los cultivos. La enfermedad en Brasil y Ecuador es causada por un complejo de dos virus; uno de genoma de dsRNA llamado PMeV y uno de genoma de ssRNA similar a Umbravirus, llamado PMeV2 en Brasil y PpVQ en Ecuador. En México, se ha identificado un genoma viral de ssRNA con 70% de identidad al PMeV2 y a PpVQ, denominado PMeV-Mx. Estos virus, denominados similares a *umbravirus*, se consideran especies distintintas y contienen dos ORF seguidos de un RNA largo no codificante (IncRNA). Los IncRNA tienen la capacidad de formar estructuras secundarias en sus regiones no traducidas, lo cual puede inducir la síntesis de vsiRNA. A la fecha se han identificado 213 microRNA en papaya, de los cuales se han caracterizado 11 que en participan respuesta a la infección de papaya por el complejo PMeV/PMeV2. También se han identificado algunos miRNA asociados a la respuesta a PRSV en papaya de la variedad SunUp. Pero no se han hecho estudios de los perfiles globales de miRNA y siRNA, en respuesta a la infección por virus en papaya. En virtud de que los virus asociados a la meleira de la papaya en Ecuador, Brasil y México sin distintos, y a que distintas cepas virales pueden producir distintos perfiles de sRNA en las plantas, es necesario hacer una caracterización completa de los sRNA producidos en respuesta a la meleira de la papaya. En este trabajo se buscó identificar y categorizar las distintas poblaciones de sRNA presentes en las hojas de Carica papaya var. Maradol en respuesta a la infección por PMeV-Mx, en la etapa de prefloración, a fin de identificar sRNAs endógenos que se expresen diferencialmente en plantas infectadas y sanas, así como sviRNA, como parte del mecanismo de defensa de las plantas de papaya. Estos estudios sentarán las bases de futuras estrategias de control de la enfermedad.

Preguntas de investigación:

- 1. ¿Qué RNAs pequeños se producen diferencialmente entre plantas sanas e infectadas con PMeV-Mx en hojas de *Carica papaya* var maradol en la etapa de prefloración?
- 2. ¿Qué regiones del genoma de PMeV-Mx son blanco del silenciamiento génico?

Objetivo general:

Identificar y categorizar las distintas poblaciones de RNAs pequeños en hojas de *Carica papaya* var. Maradol sanas e infectadas con PMeV-Mx en la etapa de prefloración.

Objetivos específicos:

- Identificar los microRNA (miRNA) producidos en plantas de papaya infectadas con PMeV-Mx.
- 2. Identificar los RNA de interferencia (iRNA) producidos en plantas de papaya durante la infección con PMeV-Mx.
- 3. Determinar los RNA de interferencia virales (viRNA) derivados de PMeV-Mx durante el proceso de infección en plantas de papaya.

ESTRATEGIA EXPERIMENTAL

CAPÍTULO II

MATERIALES Y MÉTODOS

2.1 Obtención del material vegetal

Se germinaron semillas de C. papaya var. Maradol en un invernadero del Centro de Investigación Científica de Yucatán, A.C. en jaulas con malla antiáfidos. Se les aplicó un tratamiento pre-germinativo que consistió en remojarlas en agua potable por 15 min, esto sirvió para eliminar la sarcotesta, posteriormente, en un matraz de 2 L se colocaron 30 semillas de papaya y se agregó 1 L de solución de KNO₃ (50 g/L), se puso en agitación constante para favorecer la oxigenación por un período de 48 -72 hrs a 30 °C, se realizaron decantaciones cada 24 hrs con solución nueva de KNO₃, transcurrido ese tiempo se decantó la solución. Seguidamente se agregaron 100 mL de solución de GA₃ a 400 ppm (1 g/L) y se dejó incubar a 35°C por 2-3 hrs en agitación constante. Para el tratamiento germinativo, se decantó la solución de GA₃ y se colocaron las semillas en franelas húmedas (previamente esterilizadas) y se cubrieron con las mismas para mantener su temperatura. Las franelas con las semillas se colocaron en una cámara de germinación acondicionada de 30 a 35°C. En la cámara de germinación, cada 4 horas se humedecieron las franelas con un atomizador, evitando el exceso de humedad. Después del tercer día se supervisó la germinación de las semillas y aproximadamente a los 15 días se observó el inicio de la germinación. Para el trasplante a charolas, se colocó el sustrato húmedo Peat Most: agrolita (2:1) en las charolas de plástico (27 cm de ancho x 54 cm de largo y 5.5 cm de altura) de 50 cavidades, se procedió a trasplantar las semillas a los 15 días después de sembradas. Las charolas se mantuvieron a una temperatura de 30 ± 2 °C, 65 ± 2 % de humedad relativa y 200 µmol m-2 s-1 de luz, hasta observar la presencia del par de hojas cotiledonarias. Seguidamente, las plantas al presentar 4 hojas verdaderas fueron trasplantadas a bolsas negras donde crecieron hasta los 2 meses en el invernadero.

2.2 Inoculación con PMeV-Mx

Como fuente de inóculo se utilizó látex de frutos inmaduros de plantas mantenidas en casa sombra positivas para PMeV-Mx. Para ello, fue importante lavar el fruto con detergente líquido, agua y una esponja suave, seguidamente se enjuagó el fruto con abundante agua
destilada. El látex se obtuvo mediante ralladuras en la superficie del fruto con un filo de bisturí estéril. En tubos cónicos de 15 mL se colectó el látex, por cada 1 mL de látex se diluyó en 1 mL de amortiguador de citrato de amonio 0.1 M (pH 6.5) se mezcló bien, para su posterior uso. Previo a la inoculación se hizo una dilución 1:1 con amortiguador de fosfatos pH6.0, como se reportó previamente (Zamudio-Moreno, *et al.*, 2015). Se inocularon plantas sanas de *C. papaya* L. var. Maradol inyectando 500 µL de la solución de látex/citrato de amonio/ Amortiguador de fosfatos en el meristemo apical de las plantas de plantas sanas, usando una jeringa estéril (insulina), en un cuarto de crecimiento del invernadero, que tenía una temperatura de 32°C ± 2 °C. Como controles negativos (plantas sanas) se inocularon plantas únicamente con amortiguador de fosfatos pH 6,0. Se evaluó la presencia de PMeV-Mx en todas las plantas cada 7 días durante 20 días después de la inoculación.

2.3 Detección de PMeV-Mx por RT-PCR

Para verificar que las plantas se inocularon eficazmente con el PMeV-Mx, se realizó la detección mediante RT-PCR. Para ello, se colectó un fragmento de hoja cercano al sitio de la inoculación y se realizó la extracción del RNA total. Seguidamente se realizó la síntesis de cDNA utilizando 100 ng de RNA total y 2, tal como se describe en Zamudio Moreno *et al.*, 2015.

Tabla 2.1 Reactivos para la síntesis de la primera cadena
Keactivos
10 U de transcriptasa reversa murina (M-MuLV RT)
50 ng de hexámeros al azar
Amortiguador 1X M-MuL V RT
dNTP 0.25 mM
Ditiotreitol 0.25 mM
RNAse OUT (invitrogene)

Primer se incubaron a 95 °C por 5 minutos una mezcla con el RNA y el agua para eliminar la estructura secundaria y se transfirió inmediatamente a hielo. Se adicionaron los reactivos restantes y se incubó la reacción durante 1 h a 42 °C, posteriormente se detuvo la reacción incubando por 15 min a 70 °C, por último, se ajustó en un volumen a 50 µL. La primera cadena se almacenó a -20 °C hasta su uso.

Tabla 2.2. Reactivos para la mezcla en la detecciórReactivos para la segunda cadena	n por RT-PCR de PMeV-Mx
Cebadores específicos 0.2 µM	
0.2 mM de dNTPs	
1.25 U de DNA polimerasa Taq NEBs	
Amortiguador Thermo Pol 1X NEBs	
2µL de cDNA	

Las reacciones de PCR se realizaron utilizando el siguiente programa: 94°C por 4 min, 30 ciclos de 30 s a 94°C, 52°-60°C durante 30 s, 72°C por 1 min y una extensión final de 10 min a 72 °C.

2.4 Colecta de material biológico

A los 21 días después de la inoculación (dpi), se diagnosticó la eficiencia de la inoculación de PMeV-Mx en *C. papaya* var. Maradol. Por lo tanto, se procedió a trasplantarlas en camas de tierra en la casa sombra #3, cubierta con malla antiáfidos del Centro de Investigación Científica de Yucatán, A.C. bajo condiciones lo más parecidas a campo. Se recolectó a los 90 dpi un grupo de tres hojas por planta sana e infectada, que se congelaron inmediatamente en nitrógeno líquido a y se alamcenaron a -80°C hasta su uso.

2.5 Extracción de RNA total

Se molieron 100 mg de cada hoja en un mortero con la ayuda de un pistilo, adicionando constantemente nitrógeno líquido para evitar la descongelación. El polvo fue transferido a un tubo de 2 mL, al que se le agregaron 800 µl de amortiguador CTAB junto con 20 µl de

β-mercaptoetanol. Se agitó vigorosamente en un vortex durante 30 segundos a velocidad máxima. Posteriormente, se incubó durante 15 minutos en un baño maría a 60°C, realizando agitación por inversión cada 2 minutos. Luego se agregó 650 mL de cloroformo: alcohol isoamílico (24:1) y se dejó incubar durante 20 minutos a -20 °C. Después, se centrifugó a 13,200 rpm durante 20 minutos a 4°C, se agregó 450 mL de LiCl 7.5 M y se dejó incubar toda la noche a -80°C. Al día siguiente, se centrifugó a 13,500 rpm durante 40 minutos a 4°C para eliminar el sobrenadante. Luego se agregó 80 mL de agua ultrapura junto con 25 μl de etanol al 75% y 10 μl de acetato de sodio 3M a pH 5.2, se dejó incubar por 1 hora a -80°C. Posteriormente se centrifugó a 13,500 rpm durante 40 minutos a 4°C, se eliminó el sobrenadante y se agregó 200 μL de etanol al 75%. Se volvió a centrifugar y se eliminó el sobrenadante. Por último, se re-suspendió la pastilla con 30 μL de agua ultrapura.

2.6 Cuantificación y calidad del RNA total

La concentración del RNA se determinó a 260 nm en un espectrofotómetro Nanodrop ND1000. La integridad del RNA se evaluó por medio de electroforesis en geles de agarosa al 1% cargando 5 µL, los geles fueron teñidos con bromuro de etidio y visualizados en una cámara digital de luz UV. La integridad del RNA total empleado para la síntesis de las bibliotecas de sRNA se evaluó empleando el ensayo Qubit Qubit RNA IQ, y el equipo del Dr. Jorge Santamaría en la UBT.

2.7 Secuenciación de los RNA pequeños de la muestra de hojas de C. papaya

Las muestras de RNA total extraído se enviaron a secuenciar a la compañía Novogene (sede Hong Kong, China) que utiliza la secuenciación de nueva generación (NGS) Illumina con la plataforma Miseq Benchtop Sequencer donde se obtuvieron secuencias de 50 pb. Es importante señalar que una vez verificada la calidad del RNA se juntaron los RNA de tres réplicas biológicas en un solo tubo, de acuerdo a su condición de planta sana o infectada. Y se procesaron de esta manera para la obtención de las bibliotecas que se nombraron como sanas e infectadas y su posterior secuenciación.

2.8 Análisis bioinformático

El análisis bioinformático de las secuencias se llevó a cabo utilizando el servidor en línea usegalaxy.eu (Afgan *et al.,* 2016). La pipeline constó de tres pasos o módulos: 1. Preprocesamiento de los datos, para garantizar la calidad de las secuencias; 2. Identificación de microRNA por homología e identificación *de novo*; 3. Identificación de RNA de interferencia (iRNA) de origen viral y de planta. El siguiente diagrama se empleo para la identificación de los RNA pequeños.

2.9 Módulo 1: Pre-procesamiento

En el pre-procesamiento de las secuencias se eliminó la contaminación cruzada de secuencias que pudieran dar lugar a fragmentos de RNA que no son de interés. Para este módulo se empleó una metodología descrita por Freeberg (2017) y disponible en la plataforma de galaxy.eu. Los parámetros establecidos en esta metodología permanecieron por default. Se utilizó la herramienta Trim Galore (versión 0.67; Felix Krueger, 2012) para la identificación y recorte de los adaptadores. La herramienta filter FASTQ (versión 0.12.1; Andrews, 2010) se utilizó para ajustar las secuencias a longitudes comprendidas entre 18 y 29 nt. Con el alineador HISAT2 (versión 2.2.1; Kim *et al.*, 2015) se lineraon las secuencias con la base de datos Rfam (Griffiths-Jones *et al.*,2003) (https://rfam.xfam.org/) para identificar y eliminar los RNA no codificantes (ncRNA) de no interés, como son RNA de transferencia (tRNA), RNA ribosomal (rRNA) y el RNA nucleolar (noRNA).

2.10 Identificación de microRNA por homología y de novo en Mirdeep2

Los miRNA fueron identificados utilizando el software MiRDeep2 (Mackowiak, 2011). El programa se basa en los siguientes criterios para identificar miRNAs:

1. Realiza la alineación de las lecturas con el genoma de referencia.

2. Verifica que el número de lecturas alineadas de miRNA maduro sea mayor a 10, ya que valores menores podrían deberse a errores en la secuenciación masiva.

3. Confirma que el resultado de RNAfold sea positivo ("yes"), lo que indica una alta probabilidad de plegamiento de la secuencia precursora del miRNA.

4. Consulta la base de datos miRBase (https://www.mirbase.org/) para verificar si las posibles secuencias de miRNA están reportadas. Las secuencias no encontradas se consideran como "nuevos miRNA" (miRNA de *novo*).

Las secuencias se mapearon al genoma de *C. papaya* var. Sun Up (CNCB Num. acceso *GWHBFSC0000000;* Yue *et al.,* 2022). Posteriormente, se utilizaron los 81 microRNA conocidos de *C. papaya* publicados en la base de datos miRBase (<u>https://www.mirbase.org/</u>) y 440 miRNA de diferentes especies. Se seleccionaron miRNA putativos cuya puntuación de calidad fue igual o mayor a 4. Los posibles precursores fueron seleccionados con base en el alineamiento al genoma, con al menos 10 lecturas alineadas en una región específica.

2.11 Determinación de los RNA de interferencia virales en la interacción de PMeV-Mx con *Carica papaya* var. Maradol

Para identificar de los RNA de interferencia virales (vsiRNA), se eligieron secuencias con longitudes comprendidas entre 20 nt y 26 nt, excluyendo aquellas que se identificaron como microRNA. Posteriormente, se realizó un alineamiento con el genoma completo de PMeV-Mx (GenBank, número de acceso MG680937; Toriz-Bravo *et al.*, sometido) mediante la herramienta bowtie2 (versión 2.5.0; Langmead *et al.*, 2009). el parámetro del mismatch en bowtie2 se consideró -N = 1, que permite un mismatch entre la lectura y la referencia, Los demás parámetros del alineamiento se mantuvieron con los parámetros establecidos por el alineador (**Tabla 2.3**). Para conocer la cobertura del alineamiento se utilizó la herramienta samtools coverage (versión 1.15.1 Li *et al.*, 2009)

2.12 Visualización del alineamiento de las secuencias sanas e infectadas alineadas a los genomas de *C. papaya* y PMeV-Mx

Para visualizar el alineamiento de las secuencias de siRNA con los genomas de *C. papaya* **y PMeV-Mx**, se utilizó el programa MISIS-2 (versión 2.1; Jonathan *et al.,* 2016), y el programa Integrative Genomics Viewer (IGV) (Robinson *et al.,* 2023).

2.13 Predicción teórica de las estructuras secundarias precursoras de los RNA de interferencia virales con presencia en las regiones ORF1, ORF2 y RNA largo no codificante de PMeV-Mx

Se realizó una predicción teórica de las estructuras secundarias de horquillas a partir de la identificación de las secuencias presentes en el ORF1, el ORF2 y el RNA largo no codificante de PMeV-Mx utilizando el servidor web Vienna RNA con la aplicación RNA fold

versión 2.6.3 (RNAfold Web server; Lorenz *et al.*, 2011). Se identificaron las estructuras secundarias de horquilla que contienen las secuencias de los RNA de interferencia y sus complementarios. El parámetro de la mínima energía libre para detectar una estructura secundaría (MFE, por sus siglas en inglés) se mantuvo con los valores por default, 37°C de la temperatura y 1.021 de la concentración molar(M).

2.14 Identificación de los RNA de interferencia de la planta en la interacción de PMeV-Mx con *Carica papaya* var. Maradol

Para identificar los RNA de interferencia producidos por la planta durante la infección por PMeV-Mx se utilizó la herramienta Filter FASTQ (Blankernberg *et al.*, 2010) para realizar un filtrado específico de secuencias de RNA de longitud entre 20 y 24 nucleótidos de las bibliotecas sanas e infectadas. Se excluyeron aquellas que se identificaron como RNA derivados de virus y microRNA., y se realizó un alineamiento al transcriptoma de *C. papaya* var. maradol (Chan-León, *et al.*, datos sin publicar) mediante la herramienta bowtie2 (versión 2.5.0; Langmead). Se consideró -N = 1, que permite un mismatch, mientras que los demás parámetros se corrieron con los valores pre-establecidos. (**Tabla 2.3**). Para estimar la abundancia de los iRNAs en plantas sanas e infectadas, se empleó la herramienta Express (versión 1.1.1; Roberts *et al.*, 2013). Para identificar los posibles blancos de los iRNAs, se realizó un análisis de Blastn en el servidor en línea NCBI (Sayer *et al.*, 2023).

Parámetro	valor
-i	S,1,1.15
n-ceil	L,0,0,15
dpad	15
gbar	4
end-to-end	End to End
score-min	L,0.6,-0.6

Tabla 2.3 Parámetros predeterminados de bowtie2 para el alineamiento.

CAPITULO III RESULTADOS

Secuenciación de RNA pequeños y procesamiento de secuencias.

Las bibliotecas de las plantas sanas e infectadas que se descargaron de la plataforma de Novogene contienen un total de 11 mil millones y 15 mil millones de secuencias, respectivamente. La longitud de las secuencias en cada biblioteca es de 50 nt y tuvieron un valor de calidad de Phred arriba de 30. Las secuencias fueron limpiadas para eliminar adaptadores y, posteriormente, clasificadas por longitud, que de acuerdo al tamaño de los RNAs pequeños debe de ser entre 18 y 29 nt, (**Figura 3.1**). Una vez clasificadas las secuencias por tamaño, se eliminaron los RNA no codificantes (ncRNA) que no eran de interés (tRNA, rRNA, noRNA). Entonces, en el caso de la biblioteca de las plantas sanas, se conservaron un total de 6 millones de secuencias, mientras que para la biblioteca de las plantas infectadas se mantuvieron un total de 9 millones de secuencias (**Tabla 3.1**).

Bibliotecas_ID	Total de lecturas	%GC	Q	Longitud de secuencias
	(Millones)			(nt)
SpM	11	53%	36	50
IpM _{PMeV-Mx}	15	50%	36	50

Tabla 3.1 Resultados de la secuenciación de RNA pequeños enviados por Novogene.

Tabla 3.2 Lecturas totales que se conservaron en las bibliotecas de plantas sanas e infectadas.

Especie	ID biblioteca	Lecturas totales	Calidad de Phred
C. papaya var. Maradol	SpM	6,481,753	24 a 36
C.papaya var. Maradol con PMeV-Mx	IpM _{PMeV-Mx}	9,123,161	36

Figura 3.1. Abundancia de las lecturas en las bibliotecas de los RNAs por tamaño(nucleótido). a) Abundancia de la biblioteca de plantas sana por tamaño de nucleótido, b) abundancia de la biblioteca de plantas infectadas por tamaño de nucleótido

3.1 Resultados del alineamiento para identificar miRNA conocidos

En la **tabla 3.3**, se presentan los resultados que se obtuvieron en mirDeep2 de los miRNA conocidos en *C. papaya* y otras especies que se identificaron en las bibliotecas de las plantas sanas e infectadas. En total se usaron 521 miRNA conocidos. Como resultado, de los 521 miRNA conocidos en *C. papaya* se alinearon al genoma de *C. papaya* 234 miRNA para las plantas sanas y 259 miRNA para las plantas infectadas. De los miRNA conocidos que se alinearon al genoma de *C. papaya* 290 miRNA conocidos en las muestras de las plantas sanas y 97 en las muestras de las plantas infectadas.

Muestras	mirDeep2 score	Total de miRNA maduros conocidos	miRNA conocidos alineados en el genoma	miRNA identificados
Sanas	4	521	234	93(48%)
Infectadas	4	521	259	97(50%)

Tabla 3.3. Número de microRNA conocidos en plantas sanas e infectadas.

3.2 Identificación de los miRNA más abundantes en plantas sanas e infectadas en hojas de *C. papaya*

En la **tabla 3.4**, se muestran los miRNA más abundantes identificados tanto para plantas sanas como infectadas. En su mayoría son de 21 nt, a excepción de cpa_miRNA408 y cpa_miR408_isomir de 20 y 22 nt respectivamente. Se encontraron variaciones de un nucleótido con miRNA conocidos, por lo que se les añadió una letra como identificador (a,b,c, Etc). Así mismo se encontraron miRNAs provenientes de un mismo precursor, pero con variaciones de uno o dos nucleótidos, llamados "isomir". La variante del miR398, con secuencia 3´ UGUGUUCUCAGGUCGCCCCUG 5´ (miR398a), fue la más representada en plantas sanas e infectadas, con 2,871,101 y 307,865 lecturas, respectivamente. Otra variante de este, miR398b, fue la segunda más representada con 530,650 lecturas en plantas sanas y 130 lecturas en plantas infectadas. El miRNA498 tiene como blanco putativo en papaya el gene 3201500, que codifica para la enzima superóxido dismutasa, que en Arabidopsis regula la homeostasis de cobre (Liang, *et al.*, 2013). El miR408 fue el

tercero más abundante en plantas sanas con 530,650 lecturas, también con una expresión diferencial mayor que en plantas infectadas, donde se encontraron 6,179 lecturas. El blanco predicho para este miRNA es el gene 16412738 que codifica para una lacasa en C. papaya (Liang, et al., 2013). En las plantas, las lacasas participan en la lignificación y en la respuesta de defensa contra bacterias y hongos (revisado por Januz et al., 2020). Después del mi398, los miRNA más abundantes en plantas infectadas fueron el miR166a y el miR159a, con 68,633 y 34,528 lecturas, respectivamente; si bien, estos fueron más abundantes en plantas infectadas respecto a las plantas sanas, estas diferencias no son muy grandes, por lo que no parecen ser significativas (Tabla 3.3). Por otro lado, se observa una clara expresión diferencial para miR162a, miR166d, y miR167d, cuya expresión fue mayor en las plantas infectadas con respecto a las plantas sanas, con diferencias de dos a tres veces el número de lecturas. Interesantemente, el miR162a tiene como objetivo la enzima DCL1 para regular la expresión de otros miRNA (Liang, et al., 2013), mientras que la familia de los miR166 y el miARN167 regula factores de transcripción (Wang et al., 2005). Por el contrario, miR408_isomir y miR398_isoMIRc resultaron más abundantes en plantas sanas que en plantas infectadas, con valores de 22,415 y 5415 respectivamente.

Familia	MicroRNA	Secuencia	#	Abund	dancia
	maduro		nt	Sanas	Infectadas
398*	cpa_miR398_isomir a	UGUGUUCUCAGGUCGCCCCUG	21	2,871,101	307,865
398*	cpa_miR398_isomir b	UGUGUUCUCAGGUCGCCCC G G ¹	21	530,650	130
408*	cpa_miR408	CUGCACUGCCUCUUCCCUGGC	21	49,549	6,179
166	cpa_miR166a	UCGGACCAGGCUUCAUUCCCC	21	47,564	68,633
159	cpa_miR159a	UUUGGAUUGAAGGGAGCUCUA	21	22,415	34,528
408*	cpa_miR408_isomir	UGCACUGCCUCUUCCCUGGC	20	9,979	1,247
162**	cpa_miR162a	UCGAUAAACCUCUGCAUCCAG	21	9,468	27,958
166**	cpa_miR166d	UCGGACCAGGCUUCAUUCCCG	21	8,636	18,340
167**	cpa_miR167d	UGAAGCUGCCAGCAUGAUCUGA	22	5,217	14,321
398*	cpa_miR398_isomir c	UCGUGUGUUCUCAGGUCGCCC	21	5,182	873
398	cpa_miR398	CUGCACUGCCUCUUCCCUGGC	21	5,738	8,672
166	cpa_miR166-5p	GGAAUGUUGUCUGGCUCGAGG	21	6,935	7,627
166	Cpa_miR166d_isomir	UCUCGGACCAGGCUUCAUUCC	21	4,457	7,517

Tabla 3.3. miRNA más abundantes en plantas sanas e infectadas

* Expresión diferencial mayor en plantas sanas

** Expresión diferencial mayor en plantas infectadas

¹ Se indica en negritas el cambio de nucleótido

También se identificaron otros miRNA con baja abundancia, es decir con lecturas menores a 3,500, pero que presentaron expresión diferencial (**Tabla 3.4**). El miR477 y el miR8144, solo se encontraron en plantas infectadas, el primero con 155 lecturas y el segundo con 10, respectivamente. El miR477 ha sido implicado en la respuesta de defensa de las plantas de algodón contra el hongo *Verticillium dahliae* mediada por ácido salicílico (Hu *et al.,* 2020). Los miRNA miR167c, miR160d y miR390 si presentaron lecturas en plantas sanas, sin embargo, incrementaron su expresión hasta cuatro veces en plantas infectadas. El miR167 se ha involucrado en la respuesta a auxinas (Wang *et al.,* 2005). El miR390 se encontró en frutos de manzana durante el ataque del hongo *Colletotrichum gloeosporioides* (Shi *et al.,* 2022) y al miARN160 regulando factores de transcripción de respuesta a auxinas (ARF, por sus siglas en inglés) (Wang *et al.,* 2005). El miARN477 regula la respuesta de defensa de la planta al influir en los niveles de ácido salicílico (Hu *et al.,* 2020).

Familia	MicroRNA	Secuencia # nt Abundancia		undancia	
	maduro			Sanas	Infectadas
167	cpa_miR167c	UGAAGCUGCCAGCAUGAUCUU	21	823	3339
477	cpa_miR477	AUUGGAGGACUUUGGGGGAGC	21	0	155
8144	cpa_miR8144	AACAGUAGAACGAGUUAGAAAGGA	24	0	10
160	Cpa-miR160d	UCGGACCAGGCUUCAUUCCCG	21	397	1223
390	Cpa_miR390	AAGCUCAGGAGGGAUAGCGCC	21	252	1150

Tabla 3.4 miRNA poco abundantes con mayor expresión en plantas infectadas

3.3 Comparación de miRNA expresados en plantas de papaya con meleira en Brasil y México

Para determinar si se observa una expresión similar de los miRNA conocidos en plantas de papaya maradol infectadas con PMeV-Mx de este estudio y los 11 miRNA reportados previamente de papayas cultivar Golden en respuesta a la meleira de la papaya en Brasil, causada por el complejo PMeV/PMeV2 (Abreu, et al., 2014; Sa-Antunes et al., 2016), se anotan en la Tabla 3.5 las lecturas encontradas en este trabajo para esos miRNAs, así como con los resultados de expresión por qRT-PCR de Abreu y colaboradores. De manera interesante, los miRNA 162a, 156a, 166a y 390a, aumentan su expresión en plantas infectadas con PMeV-Mx, con respecto a las plantas sanas (Tabla 3.5). Sin embargo, los resultados de ambos trabajos son muy contrastantes, únicamente el miRNA162a presentó expresión similar, con mayores niveles en plantas infectadas que en sanas (Tabla 3.5). Las plantas de papaya cultivar (cv) maradol, tanto sanas como infectadas, no expresan los miRNA 172c, 390a, 397a y 399f (Tabla 3.5), mientras que estos si se expresan en papayas cv golden de Brasil, en las cuales, la expresión de tres miRNA (156a, 390a y 397a) disminuye en plantas infectadas con respecto a las sanas, y la expresión de siete aumenta en plantas infectadas (162a, 408a, 398b, 164a, 172c, 396a y 399f) con respecto a las sanas (Tabla 3.5) (Abreu et al., 2014). Otros resultados contrastantes son con los miR408, miR164a, miR398 y miR166a. Mientras que la expresión de los tres primeros disminuye en plantas maradol infectadas en con PMeV-Mx, esta aumenta en plantas cv Golden en Brasil infectadas con el complejo PMeV/PMeV2. Así mismo, la expresión del miRNA166a aumenta en 4.5 veces en plantas de papaya cv. maradol infectadas con PMeV-Mx, pero esta permanece constante en plantas de papaya cv. Golden sanas e infectadas con el complejo PMeV/PMeV2 en Brasil (Tabla 3.5).

		PMeV/PMeV2, qRT-PCR		PMeV-Mx, lecturas		Rol		
			CV+	CV++	CV+++			
miRNA	Secuencia	sanas	AS	AS	AS	sanas	infectadas	
162a**	UCGAUAAACCUCUGCAUCCAG	1	1.5	0.3	1.2	9,468	27,958	СР
408	CUGCACUGCCUCUUCCCUGGC	1	3.5	0.5	1.3	49,549	6,179	СР
156a**	UGACAGAAGAGAGUGAGCAC	1	0.5	0.3	0.6	49	82	СР
398b	UGUGUUCUCAGGUCGCCCCUG	1	10	3.5	3	2,871,101	307,865	СР
164a	UGGAGAAGCAGGGCACGUGCA	1	0	3.9	2	3	1	RE
166a**	UCGGACCAGGCUUCAUUCC	1	1	1	1	405	1134	RE
172c	GGAGCAUCAUCAAGAUUCACA	1	1.5	3.5	3	0	0	RE
390a**	AAGCUCAGGAGGGAUAGCGCC	1	0.2	0.4	0.4	252	1150	RE
396a	UUCCACAGCUUUCUUGAACUG	1	0.2	1.8	1.2	0	0	RE
397a	UCAUUGAGUGCAGCGUUGAUG	1	0	0	0	0	0	RE
399f	UGCCAAAGGAGAUUUGCCCGG	1	0	5	0.8	0	0	RE

Tabla 3.5 miRNA en respuesta a la meleira de la papaya en plantas de Brasil y México

CP Control del proteasoma

RE Respuesta a estrés

CV+, CV++, CV+++ Carga viral baja, media y alta respectivamente

** Mayor expresión en plantas infectadas con PmeV-Mx que en plantas sanas, en este trabajo

3.4 Análisis de los miRNA de novo

Además de los miRNA previamente conocidos en papaya o en otras especies vegetales, también se identificaron algunos miRNA *de novo* putativos. En este análisis se utilizó el punto de corte de puntación de 4, lo que sugiere un umbral de detección que garantiza una confiabilidad en secuencias que pueden ser candidatas como posibles nuevos miRNA. El programa estimó como verdaderos positivos 31 miRNA únicos en plantas sanas y 31 en infectadas, respectivamente. De estos solo 20 se expresaron ambas condiciones con abundancia baja (**Anexo 1**). Se seleccionaron los cinco miRNA putativos con mayor abundancia e identificados en ambas bibliotecas, como criterios de selección (**Tabla 3.6**). Estos son de 21 nt de largo, a excepción del mirRNA_novo4, de 22. La secuencia con mayor expresión (3' UUUCGACUCUUGUGCUUGCAG 5') corresponde al miRNA_novo1 con 18,245 y 30,989 lecturas en plantas sanas e infectadas, respectivamente. Seguida de miRNA con abundancias que varían de 800 a 7000. De los cinco miRNA de novo putativos seleccionados, el miRNA_novo2 y miRNA_novo4 dos presentaron de tres a cuatro veces mayor expresión en plantas infectadas respecto a las plantas sanas, el resto tuvo un número

de lecturas mayor en plantas infectadas, pero no mayor del doble. Es importante considerar que los miRNA *de novo* putativos deben continuar caracterizándose experimentalmente, empleando métodos moleculares para descartar que no sean productos de degradación, e identificar su precursor (Friedlander, *et al.,* 2012).

abia dio Abanaandia de los mintra de novo lacininoados por minbeepz						
Código	Secuencia	# nt	Abundancia			
			sanas	infectadas		
miRNA_novo1**	UUUCGACUCUUGUGCUUGCAG	21	18245	30989		
miRNA_novo2**	UUCGACUCUUGUGCUUGCAGA	21	3756	7460		
miRNA_novo3**	GUUCAAUAAAGCUGUGGGAAG	21	2468	4015		
miRNA_novo4**	UUUCGACUCUUGUGCUUGCAGA	22	2068	7001		
miRNA_novo5**	UUGCUGUCCAGAACUGUUUGA	21	873	1103		

 Tabla 3.6 Abundancia de los miRNA de novo identificados por mirDeep2

** Expresión diferencial mayor en plantas infectadas

3.5 Identificación de los vsiRNA virales en la interacción C. papaya PMeV-Mx

Para identificar los vsiRNAs se realizó un alineamiento del genoma de PMeV-Mx, de las lecturas obtenidas de las plantas infectadas, previa eliminación de los productos de degradación putativos de RNA no codificante, como fragmentos de rRNA, snoRNAs, tRNAs, Etc. y de los miRNA identificados. Se alinearon 540,038 lecturas al genoma de PMeV-Mx (**Tabla 3.7**). Interesantemente, la mayoría de las lecturas se alineó al IncRNA (68%), el cual abarca el 43.5 % del genoma, mientras que el 32% de las lecturas se distribuyó en la región codificante (ORF1 y ORF2), el 5'UTR (posición 1- 10) y la región Intergénica de 246 nt (posición 974-1240). A continuación, se describen en mayor detalle los vsiRNAs identificados por regiones en el genoma de PMeV-Mx.

Tabla 3.7 Relación de lecturas a	alineadas a diferentes	regiones del genoma	de PMeV-Mx
----------------------------------	------------------------	---------------------	------------

Región	posición	longitud	% del	Número	% de
		nt	genoma	de lecturas	lecturas
5´UTR y ORF1	1-10 y 11-973	973	22.4	37,458	6.9
Intergénica	974-1240	266	6.4	26,646	4.93
ORF2	1241-2446	1205	27.7	107,671	19.93
3´UTR/IncRNA	2447-4346	1899	43.5	368,263	68.19

3.6 RNA de interferencia virales en el 5´ ÚTR y el ORF1 de PMeV-Mx

Se alinearon 37,458 lecturas en la región del 5'UTR y el ORF1 de PMeV-Mx (posición 11 a 973) (Toriz-Bravo et al., sometido), es decir, únicamente el 6.9 % de los vsiRNA, a pesar de esta región ocupa el 22% del genoma (Tabla 3.7). En la gráfica de la Figura 3.2 se puede observar la distribución de los vsiRNA tanto en sentido directo como reverso. Si bien. los vsiRNA se localizan a lo largo del ORF1, se observan algunos picos que corresponden a los de mayor abundancia (Figura 3.2). El largo de los vsiRNA más abundantes en sentido directo fue de 22 nt con alrededor de 9,300 lecturas, seguidas de las 22 nt con 9000 lecturas y de las de 24 nt con alrededor de 3,000. Los vsiRNA más abundantes en sentido reverso fueron de 21 nt con 7,000 lecturas (Figura 3.2). De esto se desprende que los vsiRNA predominantes corresponden al sentido directo (Figura 3.3). Cabe destacar que no se detectaron vsiRNA en las posiciones 1 a 5, correspondiente a la primera mitad del 5'UTR. Sin embargo, se encontraron vsiRNA en la mayor parte del ORF1, excepto en las posiciones: 268 a 292, 308 a 313, 403 a 447, 810 a 823 y 854. A partir de la posición 6 se detectaron alineamientos de vsiRNA que continuaron a todo lo largo del ORF1, por lo general, con una abundancia menor a 10 lecturas en cada posición, con algunas excepciones. La secuencia de 22 nt que se ubica en la posición 18 en el ORF1 es la más abundante en el sentido directo, con un total de 3,904 lecturas. Sin embargo, también se presentó otro vsiRNA muy abundante de 22 nt en la posición 19, por eso se ven dos picos juntos la Figura 3.3: la suma de ambos con secuencia en 5'UUUCGAACAUUCCCGUGGGACGU 3' es de 6,292 lecturas (Figura 3.4a). Para el sentido reverso, en la posición 227 la secuencia 5'GGAGUUCAGUGGGUUGAGAAA 3' de 21 nt que fue la más abundante, con 1764 lecturas (Figura 3.4b). En las demás posiciones del ORF1 se identificaron vsiRNA con una abundancia inferior a las secuencias más representadas (Anexo 2).

Figura 3.2 Diagrama de la distribución de los vsiRNA en el ORF1. Los vsiRNA de sentido directo y reverso son de color azul y rojo respectivamente. La flecha indica los dos vsiRNA de mayor abundancia sentido directo, posiciones 18 y 19.

Figura 3.3 Distribución de la abundancia de los vsiRNA del ORF1 según su tamaño (en nucleótidos). Sentido directo (+) barras grises oscuro y sentido reverso (-) barras grises claro.

3.7 Predicción de las estructuras secundarias que originan los vsiRNA más abundantes en el ORF1

Para determinar si los puntos calientes (hot spots) de producción de vsiRNA en la región del ORF1 del RNA genómico del PMeV-Mx son debidas a la presencia de estructura secundarias, se empleó el programa RNAfold (RNAfold web server) para la predicción de estructura secundaria. Se encontró una probabilidad significativa de plegamiento para formar dos estructuras de tallo y asa (horquillas) en la posición 1 a 52, entre las que se ubican los dos vsiRNA con mayor abundancia en sentido directo, con secuencia 5' UUUCGAACAUUCCCGUGGGACGU 3' en la posición 18 a la 40 (Figura 3.5a). Igualmente, el vsiRNA más abundante en sentido reverso, con secuencia 5 GGAGUUCAGUGGGUUGAGAAA 3' se ubicó en una región de estructura secundaria de dos horquillas, posición 201 a la 300, iniciando en la base, entre las dos horquillas y el lado izquierdo del tallo de la segunda horquilla, la cual contiene dos bucles intermedios (Figura **3.5b**). También se encontraron 798 lecturas, asociadas al sitio resbaladizo para el cambio de marco de lectura de PMeV-Mx (Figura 3.6) (Toriz-Bravo, et al., sometido), de las cuales, vsiRNA 24 5´ el de sentido reverso, de nt, con secuencia UCCUUUUCUGGUUGGCCCGUAAGU 3', fue el más abundante, con 269 lecturas (Figura 3.6b).

Figura 3.5. Estructuras secundarias del RNA genómico del PMeV-Mx que pueden dar origen a los vsiRNA más predominantes en el 5'UTR y el ORF1. En círculos azules se resaltan las secuencias de los vsiRNA. a) Horquilla en posición 1-100 que incluye el VSiRNA con secuencia en sentido directo: 5' UUUCGAACAUUCCCGUGGGACGU 3'. b) Secuencia en sentido reverso: 5'GGAGUUCAGUGGGUUGAGAAA 3' en la horquilla con posición 201 a la 300. Se señala el sentido 5' con una flecha azul y el sentido 3' con una flecha roja.

Figura 3.6 Mapa de calor de los vsiRNA más abundantes en el sitio resbaladizo -1PRF de PMeV-Mx. Cantidad de lecturas en el sentido directo, a) y sentido reverso, b). En el eje de las X se indica la longitud en nt y en el eje Y la posición en el genoma.

Figura 3.7 Estructura secundaria de horquilla que engloba el sitio resbaladizo putativo -1PRF de PMeV-Mx. La estructura comienza en la posición 901 y la secuencia del vsiRNA más abundante, de 24 nt, en posición 952 resaltada en rojo) (Toriz-Bravo *et al.*, sometido).

3.8 RNA de interferencia virales en la región Intergénica y el ORF2 de PMeV-Mx

En la región intergénica de PMeV-Mx, entre el ORF1 y ORF2 (posición 974 a 1240), se encontraron 26,643 lecturas (**Tabla 3.7**)(**Anexo 5**). El vsiRNA de sentido reverso, de 21 nt, con secuencia 5' CUUGUAUAGAGUUCACGAUAA 3', fue el más abundante, con 6,057 lecturas. Se detectaron 107,671 lecturas correspondientes a vsiRNA distribuidos en la mayor parte del ORF2 (**Figura 3.8**), que codifica la RdRP y que abarca de la posición 1241 -2446 del genoma de PMeV Mx. Los vsiRNA más abundantes son de 21 nt, tanto en sentido directo como reverso (**Figura 3.9**). Al igual que para el ORF1, hay posiciones del ORF2 que no produjeron vsiRNA (**Figura 3.8**). El vsiRNA más abundante se ubicó en la posición 1462, con 3846 lecturas y secuencia 3'GAGAUGUGGGGACGCUUUAGAGACCC5'; seguido de otro con secuencia 3'CUCUCACUUAUGAAUUCUUGAGCCGU5' en la posición 1743, con 3030 lecturas. El tercer vsiRNA más abundante, con 4356 lecturas, se presentó en la

posición 2154, con la secuencia 3'UGCUGUAUGACUGUGGGCUGGUUAGG5' (Figura 3.10). En el sentido indirecto, en la posición 2,002 del ORF2, hay una acumulación importante de vsiRNA, con 6,346 lecturas correspondientes a la secuencia 5'UCUCACCUACAUUGGUCCGAA3', de 22 nt, como se indica con una flecha en la figura **3.8.** Sin embargo, existen otros vsiRNA en nucleótidos subsecuentes en sentido directo (Figura 3.8, en rojo), cuyas lecturas sumadas da un total de 9256 en la misma posición (Figura **3.10b**). Otro vsiRNA sobresaliente en el ORF2. secuencia con 3'GAUGUUGAAGUUUACUCAUCGGAUAU5' presenta 4229 lecturas en posición 1540 y el vsiRNA en posición 1661, con secuencia 3'GGUUCCUUUAAGUACACAGUCCGUGG5' presenta de 3408 lecturas. En las demás posiciones del ORF2 se identificaron RNA de interferencia virales con una abundancia inferior a las secuencias más significativa en el ORF2 (Anexo 4).

Figura 3.8 Distribución de las secuencias en la región ORF2. Sentido directo (azul) y sentido Reverso (rojo). La flecha indica la posición 2,002 donde inicia el vsiRNA más abundante en sentido reverso, con secuencia 5'UCUCACCUACAUUGGUCCGAA3'.

Figura 3.9 Distribución de la abundancia de los vsiRNA del ORF2 según su tamaño (nucleótidos). Sentido directo (+) barras grises oscuro y sentido reverso (-) barras grises claro.

Figura 3.10 Mapa de calor de los vsiRNA más abundantes en el ORF2 de PMeV-Mx. a) Lecturas en sentido directo y b) sentido reverso. En el eje de las x, la longitud en nucleótidos y en el eje de las y, la posiciones en el genoma de PMeV-Mx. El total de las lecturas sumadas corresponde a las abundancias por longitud en nucleótidos.

3.9 vsiRNA sobresalientes en horquillas putativas en el ORF2 de PMeV-Mx

Para determinar si los vsiRNA identificados en el ORF2, se generan por la formación de dsRNA generado por estructura secundaria del RNA de PMeV-Mx, se hicieron predicciones de estructura secundaria empleando el programa RNAfold (RNAfold web server). Se identificó un vsiRNA muy abundante en sentido directo con 3,865 lecturas y secuencia 5'UGAGAUGUGGGGACGCUUUAG 3' de 21 nt que corresponde a una horquilla en posición 1462-1482 (**Figura 3.11a**). En el sentido reverso, la estructura secundaria de horquilla más representativa abarca la posición 2002-2023 en la cual se ubicó el vsiRNA con secuencia 5' UCUCACCUACAUUGGUCCGAAA 3' de 22 nt (**Figura 3.11b**).

Figura 3.11 Estructuras secundarias de dsRNA con los vsiRNA más predominantes en el ORF2. a) Secuencia en sentido directo: 5'UGAGAUGUGGGGACGCUUUAG 3'. b) Secuencia en sentido reverso: 5' UCUCACCUACAUUGGUCCGAAA 3'. Se señala el inicio del vsiRNA en sentido directo (5') y reverso (3') con flechas azules y rojas, respectivamente.

3.10 RNA de interferencia virales en el RNA largo no codificante de PMeV-Mx

Se lograron identificar 368,263 lecturas alineadas al RNA largo no codificante (IncRNA) de PMeV-Mx, que abarca de la posición 2446 a 4346 (**Anexo 6**), 3.5 veces más que para la región codificante (ORF1 y ORF2), a pesar de que el IncRNA constituye el 43 % del genoma de PMeV-Mx. A partir de la posición 2448, es decir al inicio del IncRNA, se detectaron vsiRNA, aunque con una abundancia menor a 10 lecturas en cada posición. A pesar de que en la mayor parte del IncRNA se generaron vsiRNA, en las siguientes regiones no se detectaron: 2521 a 2599, 2615 a 2632, 2680 a 2702, 2722 a 2803, 2882 a 2902, 2905 a 2975, 3020 a 3123, 3262 a 3265, 3269 a 3373, 4216 a la 4286 y de la 4308 a la 4346.

En la región proximal del IncRNA se observan dos picos correspondientes a los vsiRNA de sentido directo, posiciones 2514 y 2662 (**Figura 3.12**), que corresponden a vsiRNAs de 21 nt, con secuencias 3'UAUUGAUCUGCUGUAUUCCUU 5' y 3'UUAACUGGCAGCUGUAAUGGC 5', respectivamente. La primera fue la más abundante, con 12,347 lecturas (**Figura 3.14a**). Los vsiRNA en sentido directo son en su mayoría de 21 nt y en sentido indirecto de 22 nt (**Figura 3.13**). Aunque la mayor parte de las lecturas encontradas en el IncRNA corresponden al sentido indirecto (**Figura 3.12 y 3.13**). En la **figura 3.12** se observan dos picos muy grandes en sentido reverso, uno en posición 3,539 y otro en posición 3663. El vsiRNA de 22 nt que se ubica en posición 3539,

con secuencia 5' GCACAUUAUUGAACAGACAUUG 3' es el más abundante en el sentido reverso, con un total de 88,875 lecturas. Sin embargo, la suma de todas las lecturas en sentido reverso en esa posición da un total de 183,464, ya que se encontraron secuencias similares que inician en esas posiciones, pero de 20 y 21 nt, que también están muy representadas (**Figura 3.14b**). Esto corresponde al 23% de las lecturas del IncRNA. El segundo vsiRNA más abundante en sentido reverso, con 47609 lecturas, inicia en posición 3663, con secuencia 3'GAUAAGCGUAUUUUCAGUCGUA 5'.

De manera interesante, a partir de la posición 4308 y hasta el extremo 3' terminal (posición 4346), no se encontraron vsiRNA, aunque previamente se identificó en PMeV-Mx una estructura secundaria formada por cuatro horquillas que inician en la posición 4,283 del IncRNA que esta conservada en *Carmovirus*, en los cuales participa como promotor de la replicación, para la formación de la cadena complementaria de ssRNA (Toriz-Bravo, 2021), (Toriz-Bravo, et al. Sometido) (**Anexo 3**).

Figura 3.12 Distribución de los vsiRNA en el IncRNA. Sentido directo (azul) y sentido Reverso (rojo).

Figura 3.14 Mapa de calor de los vsiRNA más representados en el IncRNA de PMeV-Mx. a) Sentido directo y b) Sentido reverso. En el eje de las X, la longitud de los vsiRNA en nucleótidos. Eje de las Y, posiciones en el genoma del PMeV-Mx.

Figura 3.15 Estructuras secundarias de horquilla con las secuencias más predominantes IncRNA. Secuencia directo: en el a) en sentido 5'UAUUGAUCUGCUGUAUUCCUUGGU 3´. Secuencia b) en sentido reverso: 5'GCACAUUAUUGAACAGACAUUG 3'. Se señala el sentido 5' con una flecha azul y el sentido 3' con una flecha roja.

3.11 RNA de interferencia endógenos en plantas sanas e infectadas de *C. papaya* var. Maradol

Para identificar los siRNAs se realizó un alineamiento de las lecturas de sRNA de plantas sanas e infectadas, previa eliminación de los vsiRNA identificados, con los transcriptomas de plantas sanas y de plantas infectadas de *C. papaya* (Chan-Leon *et al.,* datos sin publicar). De un total de 2,000,449 de lecturas de sRNA de plantas sanas, el 74%, es decir 1,283,801 lecturas se alinearon al transcriptoma de plantas sanas (**Tabla 3.8**). El 4.11% (82,300 lecturas) se alinearon exactamente una vez al transcriptoma y el 60.06% (1,201,501 lecturas) se alinearon múltiples veces (**Tabla 3.8**). En el caso de las plantas infectadas, de un total de 2,099,893 de lecturas de sRNA, el 62.1% se alineó al transcriptoma de plantas infectadas, el 2.98% (166,659 lecturas) se alineó solo una vez y el 59.43% (3,320,407 lecturas) lo hizo múltiples veces (**Tabla 3.9**). La alineación única sugiere la presencia de siRNAs únicos en la muestra. Por otro lado, la alineación múltiple puede atribuirse a las

isoformas generadas por el ensamblado *de novo* del transcriptoma de C. papaya var. Maradol, las cuales pueden compartir regiones de homología o ser parcialmente redundantes. Además, la alineación múltiple también puede indicar la presencia de secuencias repetidas o altamente conservadas en el genoma. Se observó una mayor abundancia de siRNA endógenos en plantas sanas e infectadas con lecturas de 21 nt y 23 nt de longitud por nucleótidos, respectivamente (**Figura 3.16**).

Tabla 3.9. Relación de lecturas de sRNA	alineadas a los transcriptomas de 0	C. papaya de
plantas sanas e infectadas	-	

Bibliotecas	Lecturas totales	Lecturas no	Lecturas	Lecturas alineadas
		alineadas	alineadas una vez	múltiples veces
Sanas	2,000,449	716,648 (35.82%)	82,300 (4.11%)	1,201,501 (60.06%)
Infectadas	5,586,959	2,099,893 (37.59%)	166,659 (2.98%)	3,320,407 (59.43%)

Figura 3.16 Abundancia de siRNA alineados al transcriptoma de C. papaya var. Maradol por tamaño (en nucleótidos). a) siRNA de plantas sanas b) siRNA de plantas infectadas.

3.12 Abundancia y blancos putativos de los siRNA en el transcriptoma de *C. papaya* var. Maradol

Después de alinear los reads al transcriptoma ensamblado de novo de papaya maradol, se identificaron los posibles transcritos blancos. Se seleccionaron los top nueve transcritos que tuvieron mayor cantidad de reads alineados, es decir, mayor cantidad de siRNA para su análisis con BLAST. En plantas sanas, el contig TRINITY DN5449 c0 g1 i10 len=6958 tuvo un total de 90.585 lecturas, que codifica para una proteína hipotética Lal.00045043. Seguido de los contigs con mayor abundancia TRINITY DN461 c0 g1 i4 len=5473, TRINITY DN2267 c0 g1 i1 len=1034, TRINITY DN5573 c0 g1 i5 len=3919, TRINITY_DN5573_c0_g1_i1_len=3238, TRINITY_DN5573_c0_g1_i4_len=3775, TRINITY_DN2267_c0_g1_i2_len=2225, con una abundancia de 89551, 76517, 68599, 32692, 20481, 20239, 19810, 14747, respectivamente. Entre los resultados obtenidos del alineamiento con Blastn para estos contigs, se encontró que, en plantas sanas, los siRNA se alineaban a proteínas hipotéticas y a proteínas conocidas como la subunidad 2 de la NADH deshidrogenasa, la subunidad 2 de la NADH-plastoquinona oxidorreductasa y factores de elongación de la transcripción. Estas proteínas están conservadas en especies como Lupinus albus, Arabidopsis lyrata subsp. lyrata, Aristolochia fimbriata, Carica papaya, Plukenetia volubilis, y Carya illinoinensis. (**Tabla 3.10**)

En contraste, en plantas infectadas, el contig TRINITY_DN760_c0_g1_i17_len=5941, con un total de 642,105 lecturas, que codifica para una proteína hipotética H6P81_0000002. Los restantes ocho contigs Más abundantes TRINITY DN760 c0 g1 i15 len=7136, TRINITY_DN5292_c0_g1_i11_len=6474,TRINITY_DN5292_c0_g1_i9_len=6482,TRINITY _DN5292_c0_g1_i3_len=5840, TRINITY_DN5292_c0_g1_i2_len=5446, TRINITY_DN760_c0_g1_i7_len=1308, TRINITY_DN2393_c0_g2_i8_len=5900. Estos contigs se alineaban a genes con proteínas hipotéticas en diferentes especies vegetales, como Aristolochia fimbriata, Lupinus albus, Cichorium intybus, Prunus armeniaca, Solanum Plukenetia volubilis, commersonii, V а excepción del contig TRINITY_DN2393_c0_g2_i8_len=5900 que tuvo como proteína a la subunidad 2 de la NADH-plastoquinona deshidrogenasa. (**Tabla 3.11**)

Contig plantas Sanas	Abundancia	Blanco putativo
TRINITY_DN5449_c0_g1_i10_len=6958_	90585	hypothetical protein Lal_00045043 [Lupinus albus]
TRINITY_DN5449_c0_g1_i6_len=7014_	89551	NADH dehydrogenase subunit 2 [Arabidopsis lyrata subsp. lyrata]
TRINITY_DN461_c0_g1_i9_len=7612_	76517	hypothetical protein H6P81_000002 [Aristolochia fimbriata]
TRINITY_DN461_c0_g1_i4_len=5473_	68599	hypothetical protein H6P81_000002 [Aristolochia fimbriata]
TRINITY_DN2267_c0_g1_i1_len=1034_	32692	transcription elongation factor TFIIS-like [Carica papaya]
TRINITY_DN5573_c0_g1_i5_len=3919_	20481	NADH-plastoquinone oxidoreductase subunit 2 [Plukenetia volubilis]
TRINITY_DN5573_c0_g1_i1_len=3238_	20239	NADH dehydrogenase subunit 2 [Arabidopsis lyrata subsp. lyrata]
TRINITY_DN5573_c0_g1_i4_len=3775_	19810	hypothetical protein CIPAW_15G095900 [Carya illinoinensis]
TRINITY_DN2267_c0_g1_i2_len=2225_	14747	transcription elongation factor TFIIS-like [Carica papaya]

 Tabla 3.10 Relación de la abundancia de los contig en plantas sanas y sus blancos putativos.

Tabla 3.11 Relación de la abundancia de los contig en plantas infec y sus blancos putativos.

Contig plantas infectadas	Abundancia	Blanco putativo
TRINITY_DN760_c0_g1_i17_len=5941	642105	hypothetical protein H6P81_000002
		[Aristolochia fimbriata]
TRINITY_DN760_c0_g1_i15_len=7136	612696	hypothetical protein H6P81_000002
		[Aristolochia fimbriata]
TRINITY_DN5292_c0_g1_i1_len=6474	257055	hypothetical protein Lal_00045043
		[Lupinus albus]
TRINITY_DN5292_c0_g1_i11_len=6474	254717	hypothetical protein Lal_00045043
		[Lupinus albus]
TRINITY_DN5292_c0_g1_i9_len=6482	247606	hypothetical protein Lal_00045043
		[Lupinus albus]
TRINITY_DN5292_c0_g1_i3_len=5840	170841	hypothetical protein Lal_00045043
		[Lupinus albus]
TRINITY_DN5292_c0_g1_i2_len=5446	170687	hypothetical protein L2E82_52114
		[Cichorium intybus]
TRINITY_DN760_c0_g1_i7_len=1308	113179	hypothetical protein GBA52_010152
		[Prunus armeniaca]
TRINITY_DN2393_c0_g2_i8_len=5900	62038	NADH-plastoquinone oxidoreductase
		subunit 2 [Plukenetia volubilis]

CAPITULO IV

DISCUSIÓN

En las plantas, los sRNA están presentes son los microRNA y los RNA de interferencia (iRNA) de aproximadamente de 20 a 24 nucleótidos de longitud que actúan como reguladores en los procesos biológicos y de defensa en la planta. Los iRNA pueden ser endógenos, es decir generados a partir de mRNA de a la planta o bien exógenos, generados a partir de patógenos que invaden a la planta (Deng *et al.,* 2022).

Los resultados presentados en esta tesis comprenden la identificación y categorización de los sRNA presentes durante la interacción de PMeV-Mx con plantas de papaya variedad Maradol en etapa de prefloración, mediante secuenciación masiva y análisis bioinformático. En este trabajo se inocularon plantas de papaya a los 60 días después de la germinación, mantenidas en bolsas de tierra en el invernadero de bioseguridad, que posteriormente fueron trasplantadas a suelo en una casa sombra rodeada de malla antiáfidos, para imitar las condiciones naturales de cultivo. El RNA para la secuenciación de los sRNA se obtuvo de hojas de tres plantas a los 90 días después de la inoculación, que fueron previamente confirmadas para la presencia del PMeV-Mx y hojas de tres plantas inoculadas con el amortiguador, denominadas plantas sanas.

En las plantas infectadas se detectaron 30 miRNA y 29 en plantas sanas. El miR398a presentó la mayor expresión tanto en plantas sanas como infectadas, este miRNA esta conservado en plantas y controla el crecimiento, así como la respuesta a estrés biótico y abiótico (Li *et al.*, 2022). El miR398b incrementó su expresión en plantas de papaya infectadas con el complejo PMeV/PMeV2 que causan la meleira de la papaya (Abreu *et al.*, 2014). Este miRNA también exhibe acumulación elevada en diversas plantas infectadas por otros virus, como el Virus del mosaico del tabaco (TMV), el virus del rizado de la hoja del tomate (TolCNV) y por el virus X (PVX) de la papa. Dados los altos niveles de acumulación de este miRNA en plantas sanas de papaya de este trabajo, es posible que las plantas estuvieran sometidas estrés por temperatura y por luz ultravioleta (Li *et al.*, 2022), lo que ya no permitió incrementar aún más los niveles del mi398 en plantas infectadas. Esto se sugiere ya que otros miRNAs que no responden a estrés abiótico, si incrementaron su expresión en respuesta a PMeV-Mx, pero no en plantas sanas, tales como el miRNA162a,

el cual también se indujo en respuesta a la meleira de la papaya en Brasil (Abreu et al., 2014); el miR166d, y miR167d. El miR162a regula la expresión del mRNA que codifica para la enzima DCL1, de esta manera controla el mecanismo de silenciamiento génico en la planta y por ende la respuesta a patógenos mediada por sRNA (Liang, et al., 2013). cpa-MIR166b y cpa-MIR167a aumentan su expresión en hojas de papaya infectadas por PRSV (Aryat et al., 2012), estas respuestas son similares a las observadas en este trabajo. El miR167 se ha involucrado en la respuesta a auxinas (Wang et al., 2005) mientras que el miR167d, la variante encontrada en este trabajo, en la respuesta de las plantas de arroz al patógeno Magnaporthe oryzae (Zhao et al., 2020). MIR166d se dirige los ARNm que codifican los factores de transcripción HD-Zip, incluidos Phabulosa (PHB) y Phavoluta (PHV), que regulan la iniciación del meristemo axilar y el desarrollo de las hojas (Rhoades et al., 2002). Recientemente se reportó que este miRNA está involucrado en la tolerancia a la deficiencia a Potasio en plantas de trigo (Lei et al., 2023), por lo que puede tener varias funciones. La expresión del Cpa-miR160d también aumentó en plantas infectadas con PMeV-Mx. aunque con abundancia menor; este miRNA también incrementó su expresión durante la infección de plantas de papaya infectadas con PRSV (Aryat et al., 2012). Este miR160 controla la formación de células de la cofia radicular en Arabidopsis thaliana, mediante la regulación de la expresión de dos factores transcripcionales de respuesta auxinas ARF10 v ARF16 (Wang et al., 2016); algunos patógenos de plantas, incluyendo a los virus, también afectan la respuesta a auxinas, será interesante averiguar si PMeV-Mx está involucrado en el control de la respuesta auxinas en las plantas.

Aparte del miR162, es interesante que ningún otro de los 11 miRNA caracterizados previamente por qRT-PCR durante la interacción papaya var. Golden/virus que causan la meleira de la papaya en Brasil, haya tenido un comportamiento similar en este trabajo. Una posible explicación son las diferencias de edad de las plantas y las condiciones de cultivo en ambos trabajos. En las plantas de Brasil (Abreu *et al.*, 2014) no se indica la edad de las plantas, pero se infiere que debieron ser plantas adultas con producción de frutos, pues se menciona si se trataba de plantas sintomáticas (con alta carga viral) o asintomáticas (con baja carga viral), y los síntomas se observan preferentemente en frutos (Revisado por Sa-Antunes *et al.*, 2016). En ese trabajo tampoco se indica el tiempo transcurrido después de la infección, ni se describe el método usado para la infección, por lo que es posible que se tratara de plantas infectadas naturalmente, puesto que estaban en el campo. El tiempo transcurrido después de la inoculación y la edad de la planta al momento de la inoculación

son determinantes para el grado de severidad en el caso de la infección por PRSV (Hernández-Castro *et al.*, 2003) y por PMeV-Mx (Chi Herrera, 2021), en el último caso la carga viral aumenta con el tiempo de infección. Las diferencias observadas en ambos trabajos también pueden deberse al genotipo viral o al genotipo de la planta (Ramphan, *et al.*, 2023).

En este trabajo también se identificaron por primera vez vsiRNAs en respuesta a la meleira de la papaya. Los vsiRNA generados abarcan la mayor parte del genoma de PMeV-Mx. Esto ocurre para muchos virus de plantas, tanto de genoma de ssRNA de sentido positivo como para virus de genoma de ssDNA (Donaire, et al., 2009). Se observó una acumulación preferente de vsiRNA de polaridad en sentido positivo, especialmente en el ORF1 y ORF2. El caso especial es para la región del RNA largo no codificante (IncRNA) donde los vsRNA en sentido negativo superan en número a las secuencias en sentido positivo. Esto contraste con lo observado para otros virus. Donaire y colaboradores, estudiaron los vsiRNA producidos por nueve virus en distintos hospederos; donde cinco virus generaron igual proporción de vsiRNA en sentido directo e indirecto, y cuatro virus tuvieron mayor proporción de sviRNA en sentido directo, entre ellos el TMV y el virus de mosaico del pepino (Donaire et al., 2009). Los vsiRNA de PMeV-Mx variaron en abundancia, desde 10 a 183,464 lecturas. Esto significa que algunas regiones del genoma fueron procesadas por la maquinaria de silenciamiento génico de la planta por la degradación directa del RNA viral y otros sviRNA son producto de amplificación por replicasas de la planta tipo RDR, para la producción de vsiRNA secundarios, como se ha observado en otros virus (Llave 2010; Donaire et al., 2009). El 70% de los vsiRNA se generaron en IncRNA, lo que sugiere que la traducción protege al genoma viral de la degradación por silenciamiento génico de la planta (Dickson y Wilusz, 2011). Una mayor abundancia de vsiRNA en la región no traducida 3' (3'UTR) se ha visto en virus que producen RNA subgenómicos (sgRNA) (Llave, 2010). Los umbravirus y otros miembros de la familia Tombusviridae producen sgRNA (Jiwan y White, 2011), sin embargo, aún no se ha determinado si PMeV-Mx y otros los virus similares a umbravirus los generan. La mayoría de los vsiRNA más abundantes se asociaron a regiones formadoras de horquillas. Esto se ha visto para múltiples virus vegetales (Shimura et al., 2015) Molnar et al., 2005). Interesantemente, no se encontraron vsiRNA en el extremo 3 UTR del virus, a pesar de que previamente se identificó una estructura secundaria localizada al extremo 3' terminal del IncRNA de PMeV-Mx (Toriz Bravo et al., 2021), que funge como promotor de la replicación
en Carmovirus y otros miembros de la familia Tombusviridae (Liu et al., 2021). Si esta estructura participa en la replicación de PMeV-Mx, puede estar en estrecha asociación con la RdRp, lo que la protegería al RNA genómico de la degradación. Una estructura secundaria localizada en el extremo 5´ UTR del Tombusvirus, Virus de la mancha anular del clavel italiano (CIRV) lo protege de la degradación (Gunawardene, et al., 2021).

En este trabajo también se estudiaron los siRNA producidos en plantas de papaya durante la infección por PMeV-Mx, para ello se tomó ventaja de un transcriptoma que se generó de las mismas plantas utilizadas identificar los sRNA. 166,659 lecturas se alinearon una sola vez, lo que sugiere que sus blancos moleculares son transcritos únicos; mientras que la mayoría de las lecturas (3,320,407) se alienó múltiples veces, loque sugiere que estos siRNAs tienen múltiples blancos moleculares. El proceso de identificación de los blancos moleculares es un trabajo muy exhaustivo que requiere mucho tiempo, y ya no pudo concluirse, por lo cual la caracterización de los siRNAs quedará como perspectiva.

no se logró recuperar las secuencias específicas de los siRNA endógenos. Este primer acercamiento a la identificación de los sRNA en plantas de papaya infectadas con PMeV-Mx podría contribuir a entender como los sRNA regulan su expresión para mantener una interacción equilibrada durante el desarrollo de la infección entre la planta y el virus, que en un futuro se puedan caracterizar para contribuir a comprender mejor los requerimientos genéticos y estructurales de la población de sRNA durante la infección.

CAPITULO V CONCLUSIÓN GENERALES Y PERSPECTIVAS CONCLUSIÓN

En plantas infectadas se identificaron 97 miRNA conocidos previamente, miR166d y miR167d fueron los más abundantes y presentaron mayor expresión en plantas infectadas con respecto a las sanas, estos regulan la expresión de factores de transcripción en otras especies vegetales. Los miRNA de la familia 398, cpa_miR398_isomir a y cpa_miR398_isomir b, fueron los más abundantes en plantas sanas, con más de 3 millones de lecturas entre ambos.

El miRNA162a, cuyo blanco es la enzima DCL1, es el único de los 11 identificados previamente en plantas de papaya var. Golden infectada por el complejo PMeV/PMeV2 en Brasil con expresión similar en plantas de papaya infectadas con PMeV-Mx, un aumento en respuesta a la infección. El miR156a, involucrado en el control del proteasoma, también tuvo mayor expresión en plantas infectadas, así como los miRNA 166a y 390a, involucrados en la respuesta a estrés.

Se identificaron vsiRNAs en la mayor parte del genoma de PMeV-Mx, que variaron en abundancia, desde 10 a 183,464 lecturas. El 70% de los vsiRNA se generaron en IncRNA, lo que indica que la traducción protege al genoma viral de la degradación por silenciamiento génico de la planta. La mayoría de los vsiRNA más abundantes se asociaron a regiones formadoras de horquillas, sin embargo, la estructura secundaria localizada al extremo 3´ terminal del IncRNA, conservada en Carmovirus y otros Tombusvirus, en los cuales la función es de servir como promotor de la replicación de sentido negativo, no generó vsiRNA.

Los alineamientos con el transcriptoma de plantas sanas e infectadas para identificar siRNA endógenos, produjeron 1,283,801 de lecturas alineadas en plantas sanas y 3,487,066 en plantas infectadas. Por lo que se concluye que los siRNA se expresan mayormente en plantas infectadas, con respecto a las sanas.

PERSPECTIVA

Según los resultados y conclusiones de este trabajo, se plantean las siguientes perspectivas para futuras investigaciones sobre la caracterización de las poblaciones de los RNA pequeños presentes en la interacción de PMeV-Mx con *C. papaya*:

Caracterizar los miRNA expresados con mayor abundancia en plantas sanas e infectadas por medio de qRT-PCR para cuantificar su expresión. Posteriormente, realizar un Northern Blot para confirmar la presencia y tamaño de los miRNA específicos en las plantas sanas e infectadas.

Realizar una validación experimental de los vsiRNA identificados con mayor abundancia mediante qRT-PCR y Northern blot.

Realizar la identificación de secuencias únicas y su longitud en nucleótidos de los siRNA endógenos con mayor abundancia que se alinearon a las regiones del transcriptoma. Posteriormente, llevar a cabo un segundo alineamiento con el transcriptoma de *C. papaya* var. Maradol después de eliminar las regiones con isoformas. Esto se debe hacer para asegurar que los siRNA identificados correspondan a secuencias únicas y no se vean afectados por la presencia de isoformas en el transcriptoma de *C. papaya*. Al eliminar las isoformas, se obtendrá una representación más precisa de las secuencias de siRNA presentes en el transcriptoma de *C. papaya* var. Maradol.

Generar plantas transgénicas de papaya en las cuales se altere la expresión de algunos de los miRNA identificados en este trabajo para retarlas con PMeV-Mx.

BIBLIOGRAFÍA

- Abreu PM, Gaspar CG, Buss DS, Ventura JA, Ferreira PC, Fernandes PM. Carica papaya microRNAs are responsive to Papaya meleira virus infection. PLoS One. 2014 Jul 29;9(7).
- Abreu EF, Daltro CB, Nogueira EO, Andrade EC, Aragao FJ. Sequence and genome organization of papaya meleira virus infecting papaya in Brazil. *Archives of Virology*. 2015;(160):3143–7.
- Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Eberhard, C., Grüning, B., Guerler, A., Hillman-Jackson, J., Von Kuster, G., Rasche, E., Soranzo, N., Turaga, N., Taylor, J., Nekrutenko, A., & Goecks, J. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nucleic acids research*, *44*(W1), W3–W10.
- 4. Andrews, S. (2010). *FastQC A Quality Control tool for High Throughput Sequence Data*. <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>
- 5. Akbar, S., Wei, Y., & Zhang, M. Q. (2022). RNA Interference: Promising Approach to Combat Plant Viruses. *International journal of molecular sciences*, *23*(10), 5312
- Aryal, R., Yang, X., Yu, Q., Sunkar, R., Li, L., & Ming, R. (2012). Asymmetric purinepyrimidine distribution in cellular small RNA population of papaya. *BMC Genomics*, 13(1), 1-14.
- 7. Bartel, D. P. (2018). Metazoan miRNAs. Cell, 173(1), 20-51
- Blankenberg D, Gordon A, Von Kuster G, Nathan Coraor, Taylor J, Anton Nekrutenko (2010) A, the Galaxy Team, Manipulation of FASTQ data with Galaxy, *Bioinformatics*, Volume 26, Issue 14, Pages 1783–1785

- Cai, J.; Wu, Z.; Hao, Y.; Liu, Y.; Song, Z.; Chen, W.; Li, X.; Zhu, X. (2021) Small RNAs, Degradome, and Transcriptome Sequencing Provide Insights into Papaya Fruit Ripening Regulated by 1-MCP. Foods 2021, 10, 1643.
- Chi Herrera Liuvitza. Tesis de Licenciatura. (2021). Evaluación de la respuesta de dos variedades comerciales de papaya (*Carica papaya*) frente al virus de la meleira y colección de accesiones criollas de payaya". Instituto tecnológico regional de México. Instituto tenológico de Calkini
- Cornejo-Franco, J. F., Flores, F., Mollov, D., & Quito-Avila, D. F. (2021). An umbrarelated virus found in babaco (*Vasconcelleax heilbornii*). Archives of virology, 166(8), 2321-2324.
- 1. Dexheimer, P. J., & Cochella, L. (2020). MicroRNAs: from mechanism to organism. *Frontiers in cell and developmental biology*, *8*, 409.
- 2. Deng, Z., Ma, L., Zhang, P., & Zhu, H. (2022). Small RNAs participate in plant–virus interaction and their application in plant viral defense. *International journal of molecular sciences*, *23*(2), 696
- Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet. 2011 Jul;27(7):286-93.
- Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (Eds.). (2005). Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Academic Press.
- 5. Krueger, F. (2021). Trim Galore. In GitHub repository. GitHub. https://github.com/FelixKrueger/TrimGalore
- Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., & Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. *Nucleic acids research*, 40(1), 37–52.

- García-Cámara I, Tapia-Tussell R, Magaña-Álvarez A, Cortés Velázquez A, Rodolfo Martín-Mex, Moreno-Valenzuela O and Pérez-Brito D. (2019). *Empoasca papayae* (Hemiptera: Cicadellidae)-Mediated Transmission of Papaya Meleira Virus-Mexican Variant in Mexico. Plant Disease 103:8, 2015-2023
- Garcia-Ruiz, H., Takeda, A., Chapman, E.J., Sullivan, C.M., Fahlgren, N., Brempelis, K.J. and Carrington, J.C. (2010). Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22, 481-496.
- 9. Girón-Ramírez, A. (2023). Domesticación de papaya: implicaciones en la tolerancia al cambio climático [Imagen de un árbol de Carica papaya].
- 10. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., & Eddy, S. R. (2003). Rfam: an RNA family database. *Nucleic acids research*, *31*(1), 439–441.
- 11. Gunawardene CD, Im JSH, White KA.(2021). RNA Structure Protects the 5' End of an Uncapped Tombusvirus RNA Genome from Xrn Digestion. J Virol. Sep 27;95(20)
- 12. Hernández-Castro, E.; D. Riestra-Díaz; J. A. Villanueva-Jiménez; R. Mosqueda-Vázquez: (2003) «Análisis epidemiológico del Virus de la mancha anular del papayo bajo diferentes densidades, aplicación de extractos acuosos de semillas de nim (Azadirachta indica A. Juss.) y eliminación de plantas enfermas del cv. Maradol roja», Revista Chapingo Serie Horticultura 9: 55-68, México,
- Hu, G., Hao, M., Wang, L., Liu, J., Zhang, Z., Tang, Y., Peng, Q., Yang, Z., & Wu, J. (2020). The Cotton miR477-*CBP60A* Module Participates in Plant Defense Against Verticillium dahlia. Molecular plant-microbe interactions : MPMI, 33(4), 624– 636.

- 14. Incarbone, M., & Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends in Plant Science, 18, 382–392.
- Ivanova, Z, Minkov G., Gisel, A., Yahubyan, G., Minkov, I., Toneva, V., Baev, V. (2022). The Multiverse of Plant Small RNAs: How Can We Explore It? Int. J. Mol. Sci., 23, 3979.
- Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka,
 A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. *International Journal of Molecular Sciences, 21*, 966.
- 17. Jiwan S and White A (2011) Subgenomic mRNA transcription in Tombusviridae, RNA Biology, 8:2, 287-294,
- Seguin, J., Otten, P., Baerlocher, L., Farinelli, L., & Pooggin, M. M. (2016). MISIS 2: A bioinformatics tool for in-depth analysis of small RNAs and representation of consensus master genome in viral quasispecies. Journal of Virological Methods, 233, 37-40
- 19. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. *Nature Methods*, *12*(4), 357–360
- Kwon, S.-J., Bodaghi, S., Dang, T., Gadhave, K. R., Ho, T., Osman, F., Al Rwahnih, M., Tzanetakis, I. E., Simon, A. E., & Vidalakis, G. (2021). Complete Nucleotide Sequence, Genome Organization, and Comparative Genomic Analyses of Citrus Yellow-Vein Associated Virus (CYVaV). Frontiers in Microbiology, 12, 683130.
- 21. Langmead, B., Trapnell, C., Pop, M. *et al.* (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* **10**, R25.
- 22. Lee Geum Ju, Chung Hwan Wook, Lee Ki Heon and Ahn Hong Seok. (2005) Antioxidant vitamins and lipid peroxidation in patients with cervical intraepithelial neoplasia. Journal of Korean Medica/ Science. 20:267-72.

- 23. Li Z, Zhang T, Huang X, Zhou G. Impact of Two Reoviruses and Their Coinfection on the Rice RNAi System and vsiRNA Production. *Viruses*. 2018; 10(11):594.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & and, R. D. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, *25*(16), 2078–2079
- 25. Li J, Song Q, Zuo ZF, Liu L. MicroRNA398: A Master Regulator of Plant Development and Stress Responses. Int J Mol Sci. 2022
- 26. Liang, G., Li, Y., He, H., Wang, F., & Yu, D. (2013). Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. *Planta*, *238*, 739-752.
- 27. Liu, J., Carino, E., Bera, S., Gao, F., May, J. P., & Simon, A. E. (2021). Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. *Viruses*, *13*(4), 646.
- 28. Liu, W., & Ding, C. (2017). Roles of LncRNAs in viral infections. *Frontiers in cellular and infection microbiology*, *7*, 205.
- 29. Llave C. (2010), Virus-derived small interfering RNAs at the core of plant–virus interactions. Trends in Plant Science, Volume 15
- 30. Lu, Y. D., Gan, Q. H., Chi, X. Y., & Qin, S. (2008). Roles of microRNA in plant defense and virus offense interaction. *Plant cell reports*, *27*, 1571-1579.
- Maciel-Zambolim, E., Kunieda-Alonso, S., Matsuoka, K., De Carvalho, M. G., & Zerbini, F. M. (2003). Purification and some properties of Papaya meleira virus, a novel virus infecting papayas in Brazil. Plant Pathology, 52(3), 389-394.
- Maiden, M. C., Van Rensburg, M. J. J., Bray, J. E., Earle, S. G., Ford, S. A., Jolley,
 K. A., & McCarthy, N. D. (2013). MLST revisited: the gene-by-gene approach to bacterial genomics. *Nature Reviews Microbiology*, *11*(10), 728-736

- 33. Madrigal, F., & Boza, M. (2013). La competitividad en las exportaciones de papaya de México: un análisis cuantitativo. Revista de Análisis de Economía, Comercio y Negocios Internacionales, 2, 27-54.
- 34. Maurastoni, M., Sá Antunes, T. F., Abreu, E. F. M., et al. (2023). A Capsid Protein Fragment of a Fusagra-like Virus Found in Carica papaya Latex Interacts with the 50S Ribosomal Protein L17. Viruses, 15(2), 541.
- 35. Mackowiak S. D. (2011). Identification of novel and known miRNAs in deepsequencing data with miRDeep2. *Current protocols in bioinformatics*, *Chapter 12*, 12.10.1–12.10.15.
- McCormack, J. C., Yuan, X., Yingling, Y. G., Kasprzak, W., Zamora, R. E., Shapiro,
 B. A., & Simon, A. E. (2008). Structural Domains within the 3' Untranslated Region of Turnip Crinkle Virus. *Journal of Virology*, *82*(17), 8706-8720.
- Mitter, N.; Koundal, V.; Williams, S.; Pappu, H. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. *PLoS ONE* 2013, *8*, e76276.
- 38. Molnár A., T. Csorba, L. Lakatos, E. Várallyay, C. Lacomme and J. Burgyán (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. *Journal of Virology* 79:7812-7818.
- Naveed, K.; Mitter, N.; Harper, A.; Dhingra, A.; Pappu, H.R. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank. *Virus Res.* 2014, *191*, 153–160.
- 40. Panaviene, Z., Panavas, T., & Nagy, P. D. (2005). Role of an Internal and Two 3'-Terminal RNA Elements in Assembly of Tombusvirus Replicase. *J. VIROL.*, *79*, 11.

- 41. Pantaleo, V, Masuta C, Shimura H (2021), Plant antiviral defense: Gene silencing Pathways, in Encycopedia of virology, 4th edition Volume 3
- 42. Pathania, N., Justo, V., Magdalita, P., de la Cueva, F., Herradura, L., Waje, A., Lobres, A., Cueto, A., Dillon, N., Vawdrey, L., Hucks, L., Chambers, D., Sun, G., and Cheesman, J. 2019. Integrated disease management strategies for the productive, profitable and sustainable production of high-quality papaya fruit in the southern Philippines and Australia (FR2019-89). Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia.https://www.aciar.gov.au/sites/default/files/projectpagedocs/final_report_h ort.2012.113.pdf
- 43. Payet, R., & Billmeier, M. (2023). Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. In *MicroRNA Detection and Target Identification: Methods and Protocols* (pp. 103-115). New York, NY: Springer US.
- Perez-Brito, D., Tapia-Tussell, R., Cortes-Velazquez, A., Quijano-Ramayo, A., Nexticapan-Garcez, A., & Martín-Mex, R. (2012). First report of Papaya meleira virus (PMeV) in Mexico. African Journal of Biotechnology, 11(71), 13564-13570.
- 45. Porter, B. W., Aizawa, K. S., Zhu, Y. J., & Christopher, D. A. (2008). Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. *Plant Science*, *174*(1), 38-50
- 46. Quito-Avila, D. F., Reyes-Proaño, E., Cañada, G., Cornejo-Franco, J. F., Alvarez-Quinto, R., Moreira, L., & Karasev, A. V. (2023). Papaya Sticky Disease Caused by Virus "Couples": A Challenge for Disease Detection and Management. *Plant disease*, *107*(6), 1649-1663.
- 47. Ramphan S, Chumchanchira C, Sornjai W, Chailangkarn T, Jongkaewwattana A, Assavalapsakul W, Smith DR (2023). Strain Variation Can Significantly Modulate the miRNA Response to Zika Virus Infection. Int J Mol Sci. Nov 11;24(22):16216.

- 48. Rosa, C., Kuo, Y. W., Wuriyanghan, H., & Falk, B. W. (2018). RNA interference mechanisms and applications in plant pathology. *Annual review of phytopathology*, *56*, 581-610.
- 49. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Cell 110:513-520
- 50. Ryabov and Taliansky, 2021. Umbravirus (Tombusviridae) in Encycopedia of virology, 4th edition Volume 3
- 51. Sá Antunes TF, Amaral RJV, Ventura JA, Godinho MT, Amaral JG, Souza FO, et al. (2016) The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease. PLoS ONE 11(5): e0155240.
- 52. Sá Antunes, T. F., Maurastoni, M., Madroñero, L. J., et al. (2020). Battle of Three: The Curious Case of Papaya Sticky Disease. Plant Disease, 104(11), 2754–2763.
- 53. SADER (2021) México, principal exportador de papaya en el mundo; crece producción 3.2 por ciento en 2020. Secretaria de Agricultura y Desarrollo Rural en México.
- 54. Shi, J., Jiang, Q., Zhang, S., Dai, X., Wang, F., & Ma, Y. (2022). MIR390 Is Involved in Regulating Anthracnose Resistance in Apple. *Plants, 11*(3), 3299.
- 55. Shimura H, Masuta C. [RNA silencing and viral disease induction in plants]. Uirusu. 2012 Jun;62(1):19-26.
- 56. Shrestha, N., & Bujarski, J. J. (2020). Long noncoding RNAs in plant viroids and viruses: a review. *Pathogens*, *9* (9), 765.
- 57. Tapia-Tussell, R., Magaña-Alvarez, A., Cortes-Velazquez, A., Itza-Kuk, G., Nexticapan-Garcez, A., Quijano-Ramayo, A., ... & Perez-Brito, D. (2015). Seed transmission of Papaya meleira virus in papaya (Carica papaya) cv. Maradol. Plant pathology, 64(2), 272-275

- 58. Toriz-Bravo A, Lopez-Ochoa L, Ramirez-Prado J, Serra-Hernandez W, Zamudio-Moreno E, MacFarlane S and Taliansky M. Analysis of genomic and structural features of Papaya meleira virus Mexican variant (PMeV-Mx). Plant Pathol. J Sometido.
- 59. Toriz Bravo Alethia Fernanda (2022). Tesis de Maestría. Caracterización molecular del RNA largo no codificante del Virus PMeV-Mx mediante el desarrollo de una clona infectiva. Centro de Investigación Científica de Yucatán, A.C. Repositorio Institucional de CICY.
- Walsh, E., Elmore, J. M., & Taylor, C. G. (2017). Root-knot nematode parasitism suppresses host RNA silencing. *Molecular Plant-Microbe Interactions*, 30(4), 295-300
- 61. Wang J, Wang L, Mao Y, Cai W, Xue H (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216
- 62. Yue, J., VanBuren, R., Liu, J., Fang, J., Zhang, X., Liao, Z., ... & Ming, R. (2022). SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. *Nature Genetics*, 54(5), 715-724.
- 63. Zamudio-Moreno, E., Ramirez-Prado, J. H., Moreno-Valenzuela, O. A., & Lopez-Ochoa, L. A. (2015). Early diagnosis of a Mexican variant of Papaya meleira virus (PMeV-Mx) by RT-PCR. Genetics and Molecular Research, 14(1), 1145-1154

ANEXOS

Anexo 1. Abundancia de los miRNA conocidos

Plantas sanas	Secuencia	Total	Total
		abundancia	abundancia
		sanas	infectadas
Cpa-miR156a	UGACAGAAGAGAGUGAGCAC	49	82
Cpa-miR156a_isomir a	UGACAGAAGAUAGAGAGCAC	12	32
Cpa-miR156e	UUGACAGAAGAUAGAGAGCAC	16	68
Cpa-miR156f	UUGACAGAAGAUAGAGAGCAC	16	68
Cpa-miR159b	CUUGGAUUGAAGGGAGCUCC	2122	1743
Cpa-miR159*	GAGCUCCUUGAAGUCCAAUAG	39	121
Cpa-miR160a_isomir	UGCCUGGCUCCCUGUAUGCU	9	7
Cpa-miR160d	UGCCUGGCUCCCUGAAUGCCA	397	1223
Cpa-miR160d_isomir a	UGCCUGGCUCCCUGAAUGCC	121	287
Cpa-miR162a_isomir a	UCGAUAAACCUCUGCAUCCAGU	129	527
Cpa-miR162_isomir b	UCGAUAAACCUCUGCAUCCCG	201	7
Cpa-miR162a_isomir c	UCGAUAAACCUCUGCAUCCAA	19	46
Cpa-miR162a_isomir d	UCGAUAAACCUCUGCAUCCAGC	40	146
Cpa-miR162a_isomir e	UCGAUAAACCUCUGCAUUCAG	22	26
Cpa-miR164a	UGGAGAAGCAGGGCACGUGCA	3	1
Cpa-miR164a_isomir	UGGAGAAGCAGGGCACGUGU	1	4
Cpa-miR166a_isomir a	UCGGACCAGGCUUCAUUCCCA	338	411
Cpa-miR166a isomir b	UCGGACCAGGCUUCAUUCCU	74	173
Cpa-miR166a isomir c	UCGGACCAGACUUCAUUCCCC	153	105
Cpa-miR166a isomir d	UUGGACCAGGCUUCAUUCCCC	168	118
Cpa-miR166a isomir e	UCGGACCAGGCUUCAUUCCCU	121	151
Cpa-miR166d isomir a	UCGGACCAGGCUUCAUUCCC	18	49
Cpa miR166d isomir b	CUCGGACCAGGCUUCAUUCCCG	213	169
Cpa miR166d isomir c	UCUCGGACCAGGCUUCAUUCC	4457	7517
Cpa-miR167a isomir a	UGAAGCUGCCAGCAUGAUCUGG	597	1056
Cpa-miR167c isomir a	UGAAGCUGCCAGCAUGAUCUU	481	2117
Cpa-miR167d isomir b	UGAAGCUGCCAGCAUGAUCUGA	255	703
Cpa-miR167d isomir c	UGAAGCUGCCAGCAUGAUCUAGC	75	116
Cpa-miR167c b	AGAUCAUAUGGCAGUUUCACC	142	351
Cpa miR167c isomir c	GAUCAUAUGGCAGUUUCACC	316	330
Cpa-miR167c isomir d	UGAAGCUGCCAGCAUGAUCUUU	165	642
Cpa-miR169	CAGCCAAGAAUGACUUGCCGA	3	1
Cpa miR171d	UGAUUGAGCCGUGCCAAUAUC	581	1889
Cpa-miR172	GGGAAUCUUGAUGAUGCUGCA	6	5
Cpa-miR319	AUUGGACUGAAGGGAGCUCC	0	10
Cpa-miR390a	AAGCUCAGGAGGGAUAGCGCC	252	1150
Cpa-miR390 isomir a	AGCUCAGGAGGGAUAGCGCC	36	65
Cpa-miR390 isomir b	aagcucaggagggauagcgc	6	11
Cpa-miR390-5p	CGCUĂUCUĂŬČČŬGAĞŬŬUCA	120	810
Cpa-miR390-5p isomir a	CGCUAUCUAUCCUGAGUUUU	9	45
Cpa-miR390 isomir b	AAGCUCAGGAGGGAUAGCGC	6	11
Cpa-miR393	UCCAAAGGGAUCGCAUUGAUC	5	2
Cpa-miR394	Guggcauucuguccaccucc	0	11
Cpa-miR395	UGAAGUGUUUGGGGGAACUC	22	13
Cpa-miR395_isomir a	CUGAAGUGUUUGGGGGAACUC	102	68

Cpa-miR396-5p	GUUCAAUAAAGCUGUGGGAAG	1698	4015
Cpa-mir396	UUCAAUAAAGCUGUGGGAAG	558	396
Cpa-miR396_isomir	uuccacagcCuucuugaacug	14	16
Cpa-miR398b	UGUGUUCUCAGGUCGCCCCU	488	234
Cpa-miR398b_isomir a	UCGUGUGUUCUCAGGUCGCCC	5182	873
Cpa-miR398b_isomir b	GUGUGUUCUCAGGUCGCCCCUG	1791	718
Cpa-miR398b_isomir c	CUGUGUUCUCAGGUCGCCCCUG	876	112
Cpa-miR398b_isomir d	UGAGUUCUCAGGUCGCCCCUG	373	93
Cpa-miR398b_isomir e	CGUGUGUUCUCAGGUCGCCCC	974	126
Cpa-miR398b_isomir f	UGUGUACUCAGGUCGCCCCUG	575	85
Cpa-miR398b_isomir g	UGUGUUCUCAGUUCGCCCCUG	229	78
Cpa-miR398b_isomir h	UGUGUUCUCAGGCCGCCCCUG	538	59
Cpa-miR398b_isomir i	UGUGUUCUCAGGGCGCCCCAG	2755	210
Cpa-miR408_isomir a	UGCACUGCCUCUUCCCUGGU	63	5
Cpa-miR408_isomir b	UGCACUGCCUCUUCCCUGAC	44	4
Cpa-miR408_isomir c	CUGCACUGCCUCUUCCCUGAC	246	17
Cpa-miR477_isomir a	AUUGGAGGAUUUUGGGGGGAGC	3	62
Cpa-miR477_isomir b	AUUGGAGGAAUUUGGGCGAGC	1	75
Cpa-miR535	UGACAACGAGAGAGAGCACGC	693	1017
Cpa-miR535_5p	GUGCUCUAUGUCGUUGUCAUA	231	279
Cpa-mir8135	AGGAUUUUGCAGGGUUGAU	2	2
Cpa-miR8137	UUCGCCAGCCAUUCACAAAAU	429	1231
Cpa-miR8137_isomir a	UUCGCCAGCCAUUCACAAAAUU	31	195
Cpa-miR8137-5p	UUGUGUGAAUGGCUUGCGAAA	43	115
Cpa-miR8137-5p_isomir a	UGUGUGAAUGGCUUGCGAAAG	354	688
Cpa-miR8140	CUUUUCAAGACUUCAGCUUCA	410	596
Cpa-miR8135	AGGAUUUUGCAGGGUUGAU	7	18
Cpa-miR8148_isomir a	GCUGACUGGAUCUGCUGACGUGGC	27	115
Cpa-miR8150	AAAACCUGAGUCAGAUGAUGAGCG	4	14

Anexo 2. Total de lecturas en las posiciones del ORF 1.

Posición ORF1	Total de lecturas
6	9
7	18
8	16
9	148
10	7
11	10
12	71
13	273
14	88
15	128
16	291
17	34
18	3634
19	3904
20	1536

21	25
22	0
23	328
24	11
25	12
26	19
27	478
28	10
29	2
30	1
31	0
32	0
33	0
34	0
35	1
36	36
37	6
38	11
39	0
40	166
41	18
42	14
43	34
44	1
45	6
46	0
47	3
48	0
49	0
50	43
51	25
52	6
53	0
54	0
55	0
56	0
57	0
58	3
59	1
60	0
61	1
62	4
63	9

64	3
65	4
66	0
67	0
68	0
69	1
70	1
71	0
72	5
73	25
74	4
75	4
76	59
77	16
78	8
79	11
80	7
81	2
82	3
83	1
84	12
85	1
86	0
87	0
88	2
89	1
90	182
91	132
92	18
93	8
94	32
95	47
96	18
97	41
98	13
99	34
100	803
101	1
102	3
103	53
104	2
105	13
106	8

107	49
108	133
109	7
110	1
111	3
112	1
113	11
114	3
115	13
116	19
117	2
118	2
119	4
120	2
121	209
122	11
123	33
124	7
125	18
126	10
127	17
128	1
129	12
130	4
131	26
132	32
133	31
134	16
135	6
136	6
137	8
138	1
139	0
140	0
141	0
142	151
143	14
144	18
145	5
146	8
147	0
148	0
149	0

150	4
151	3
152	0
153	0
154	0
155	34
156	67
157	12
158	12
159	1
160	0
161	2
162	10
163	68
164	119
165	16
166	6
167	6
168	25
169	44
170	35
171	48
172	106
173	97
174	676
175	36
176	17
177	4
178	13
179	14
180	0
181	4
182	1
183	0
184	0
185	6
186	24
187	63
188	10
189	12
190	6
191	11
192	0

193	1
194	1
195	49
196	18
197	16
198	6
199	0
200	0
201	1
202	6
203	0
204	0
205	5
206	8
207	16
208	31
209	5
210	3
211	2
212	13
213	29
214	60
215	5
216	11
217	7
218	4
219	0
220	0
221	0
222	5
223	3
224	41
225	12
226	18
227	1849
228	143
229	23
230	9
231	26
232	99
233	36
234	9
235	11

236	17
237	6
238	6
239	4
240	12
241	11
242	111
243	28
244	6
245	5
246	13
247	20
248	2
249	0
250	0
251	0
252	0
253	0
254	1
255	14
256	91
257	115
258	0
259	84
260	4
261	102
262	9
263	0
264	13
265	16
266	2
267	12
268	0
269	0
270	0
271	0
272	0
273	0
274	0
275	0
276	0
277	0
278	0

279	0
280	0
281	0
282	0
283	0
284	0
285	0
286	0
287	0
288	0
289	0
290	0
291	0
292	0
293	3
294	4
295	10
296	4
297	0
298	0
299	0
300	0
301	0
302	1
303	13
304	5
305	0
306	2
307	0
308	0
309	0
310	0
311	0
312	0
313	0
314	1
315	2
316	1
317	110
318	31
319	34
320	1
321	1

323	3
324	0
325	0
326	0
327	0
328	0
329	3
330	1
331	1
332	2
333	1
334	0
335	2
336	0
337	0
338	0
339	0
340	3
341	1
342	0
343	6
344	2
345	1
346	6
347	17
348	1
349	0
350	4
351	13
352	14
353	14
354	11
355	14
356	2
357	6
358	10
359	22
360	75
361	9
362	2
363	0
364	0

365	4
366	15
367	1
368	4
369	15
370	18
371	0
372	0
373	11
374	9
375	29
376	161
377	22
378	8
379	5
380	40
381	13
382	39
383	40
384	7
385	7
386	60
387	11
388	87
389	53
390	7
391	84
392	9
393	59
394	49
395	31
396	36
397	104
398	5
399	56
400	4
401	7
402	6
403	0
404	0
405	0
406	0
407	0

408	0
409	0
410	0
411	0
412	0
413	0
414	0
415	0
416	0
417	0
418	0
419	0
420	0
421	0
422	0
423	0
424	0
425	0
426	0
427	1
428	1
429	0
430	0
431	0
432	0
433	0
434	0
435	0
436	0
437	0
438	0
439	0
440	0
441	0
442	0
443	0
444	0
445	0
446	0
447	0
448	1
449	0
450	23

451	263
452	10
453	19
454	17
455	1
456	11
457	0
458	1
459	2
460	0
461	0
462	1
463	1
464	1
465	5
466	4
467	105
468	15
469	15
470	4
471	8
472	18
473	6
474	6
475	9
476	6
477	23
478	6
479	3
480	14
481	8
482	26
483	25
484	45
485	93
486	36
487	93
488	47
489	216
490	35
491	4
492	3
493	2

494	2
495	7
496	0
497	0
498	0
499	9
500	0
501	0
502	6
503	2
504	13
505	6
506	2
507	0
508	20
509	1
510	76
511	1
512	51
513	41
514	44
515	50
516	10
517	7
518	15
519	6
520	25
521	18
522	17
523	4
524	1
525	9
526	0
527	2
528	0
529	43
530	95
531	22
532	5
533	13
534	46
535	37
536	2418

537	315
538	2
539	1
540	0
541	2
542	4
543	0
544	11
545	0
546	59
547	35
548	0
549	4
550	3
551	6
552	3
553	16
554	83
555	2
556	0
557	3
558	1
559	5
560	8
561	3
562	0
563	0
564	0
565	3
566	0
567	1
568	0
569	7
570	3
571	13
572	7
573	16
574	14
575	7
576	2
577	14
578	0
579	1

580	2
581	62
582	4
583	8
584	3
585	10
586	1
587	0
588	4
589	110
590	1
591	25
592	42
593	86
594	126
595	53
596	0
597	14
598	0
599	6
600	2
601	16
602	4
603	1
604	0
605	14
606	0
607	20
608	1
609	2
610	8
611	13
612	9
613	1
614	8
615	6
616	2
617	0
618	0
619	0
620	1
621	0
622	2

623	5
624	12
625	6
626	1
627	2
628	0
629	395
630	58
631	6
632	0
633	0
634	1
635	0
636	0
637	2
638	7
639	18
640	8
641	7
642	5
643	7
644	5
645	4
646	15
647	2
648	2
649	0
650	0
651	3
652	2
653	14
654	7
655	31
656	19
657	72
658	26
659	112
660	6
661	584
662	75
663	11
664	23
665	3

666	1
667	0
668	0
669	5
670	6
671	100
672	5
673	3
674	5
675	11
676	66
677	5
678	26
679	8
680	23
681	15
682	92
683	57
684	13
685	12
686	2
687	8
688	1
689	1
690	158
691	39
692	8
693	50
694	210
695	9
696	11
697	8
698	0
699	0
700	7
701	5
702	4
703	9
704	3
705	0
706	3
707	1
708	2

709	2
710	0
711	10
712	2
713	0
714	4
715	0
716	2
717	0
718	0
719	1
720	0
721	0
722	4
723	2
724	0
725	2
726	8
727	9
728	2
729	76
730	20
731	25
732	43
733	45
734	71
735	16
736	21
737	478
738	7
739	8
740	2
741	7
742	41
743	0
744	154
745	24
746	23
747	48
748	134
749	82
750	239
751	38

753 5 754 0 755 0 756 1 757 0 758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
754 0 755 0 756 1 757 0 758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0
755 0 756 1 757 0 758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
756 1 757 0 758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
757 0 758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
758 21 759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
759 53 760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
760 51 761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
761 63 762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
762 2 763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
763 18 764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
764 2 765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
765 9 766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0 778 0 779 0 771 0 773 0 774 0 775 0 776 0 777 0
766 46 767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
767 59 768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
768 3 769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
769 7 770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0 778 0 779 0 775 0 776 0 777 0
770 16 771 34 772 0 773 1 774 0 775 0 776 0 777 0
771 34 772 0 773 1 774 0 775 0 776 0 777 0
772 0 773 1 774 0 775 0 776 0 777 0
773 1 774 0 775 0 776 0 777 0
774 0 775 0 776 0 777 0
775 0 776 0 777 0
776 0 777 0
777 0
778 0
779 0
780 0
781 0
782 0
783 2
784 0
785 0
786 0
787 1
788 0
789 14
790 13
791 597
792 150
793 136
794 17

795	22
796	2
797	2
798	0
799	1
800	0
801	0
802	0
803	0
804	0
805	3
806	0
807	0
808	1
809	1
810	0
811	0
812	0
813	0
814	0
815	0
816	0
817	0
818	0
819	0
820	0
821	0
822	0
823	0
824	4
825	24
826	4
827	1
828	0
829	0
830	0
831	0
832	0
833	0
834	1
835	0
836	2
837	1

838	0
839	0
840	0
841	21
842	6
843	0
844	0
845	0
846	0
847	0
848	0
849	0
850	2
851	0
852	3
853	4
854	0
855	0
856	0
857	0
858	0
859	0
860	0
861	0
862	0
863	0
864	0
865	0
866	0
867	0
868	0
869	0
870	0
871	0
872	0
873	0
874	0
875	3
876	31
877	15
878	11
879	0
880	8

881	40
882	91
883	4
884	23
885	33
886	83
887	115
888	182
889	130
890	106
891	39
892	162
893	123
894	242
895	63
896	42
897	296
898	16
899	10
900	6
901	1
902	0
903	4
904	23
905	4
906	10
907	20
908	5
909	23
910	586
911	168
912	35
913	2
914	0
915	0
916	0
917	13
918	349
919	8
920	4
921	10
922	15
923	10

924	94
925	4
926	9
927	9
928	1
929	2
930	2
931	20
932	4
933	8
934	8
935	13
936	46
937	17
938	27
939	78
940	25
941	28
942	13
943	5
944	44
945	249
946	8
947	70
948	53
949	36
950	59
951	1
952	121
953	29
954	51
955	104
956	43
957	59
958	391
959	5
960	51
961	10
962	4
963	295
964	11
965	84
966	16
967	13
-----	-----
968	11
969	18
970	11
971	283
972	0
973	1

Anexo 3. Posición de la región del IncRNA de la estructura secundaria descrita por Toriz-Bravo et al, 2022 datos sin publicar.

Posiciones	Total de lecturas
4308	0
4309	0
4310	0
4311	0
4312	0
4313	0
4314	0
4315	0
4316	0
4317	0
4318	0
4319	0
4320	0
4321	0
4322	0

4323	0
4324	0
4325	0
4326	0
4327	0
4328	0
4329	0
4330	0
4331	0
4332	0
4333	0
4334	0
4335	0
4336	0
4337	0
4338	0
4339	0
4340	0
4341	0
4342	0
4343	0
4344	0
4345	0
4346	0

*Posición de inicio de la estructura secundaria

Posición ORF2	Total de lecturas
1241	3
1242	1
1243	1
1244	4
1245	226
1246	501
1247	98
1248	5
1249	4
1250	2
1251	2
1252	1
1253	6
1254	10
1255	8
1256	0
1257	0
1258	5
1259	13
1260	18
1261	28
1263	33
1264	66
1265	34
1266	21
1267	36
1268	12
1269	11
1270	4
1271	36
1272	18
1273	16
1274	193
1275	0
1276	59
1277	62
1278	34
1279	81
1280	8

Anexo 4. Total de lecturas en las posiciones del ORF2.

1281	48
1282	13
1283	117
1284	3
1285	61
1286	60
1287	59
1288	34
1289	66
1290	95
1291	65
1292	17
1293	335
1294	17
1295	9
1296	7
1297	3
1298	267
1299	7
1300	65
1301	0
1302	0
1303	0
1304	1
1305	6
1306	150
1307	50
1308	145
1309	217
1310	18
1311	231
1312	68
1313	48
1314	16
1315	75
1316	8
1317	13
1318	16
1319	2
1320	2
1321	274
1322	11

1323	1
1324	17
1325	27
1326	8
1327	10
1328	2
1329	21
1330	7
1331	12
1332	21
1333	113
1334	21
1335	154
1336	20
1337	5
1338	23
1339	20
1340	5
1341	9
1342	9
1343	14
1344	23
1345	16
1346	20
1347	16
1348	40
1349	7
1350	8
1351	25
1352	23
1353	19
1354	66
1355	10
1356	35
1357	0
1358	41
1359	8
1360	25
1361	6
1362	11
1363	9
1364	14

1365	34
1366	15
1367	4
1368	21
1369	18
1370	11
1371	178
1372	16
1373	32
1374	13
1375	93
1376	28
1377	91
1378	51
1379	102
1381	
1382	76
1383	151
1384	3
1385	9
1386	
1387	0
1388	0
1389	0
1390	0
1391	0
1392	2
1393	4
1394	14
1395	12
1396	
1397	111
1398	249
1399	118
1400	120
1401	141
1403	52
1404	41
1405	23
1406	6
1407	4
1408	5

1409	75
1410	164
1411	104
1412	7
1413	10
1414	16
1415	0
1416	0
1417	0
1418	0
1419	0
1420	2
1421	1
1422	1
1423	2
1424	13
1425	25
1426	0
1427	0
1428	0
1429	38
1430	98
1431	210
1432	416
1433	751
1434	69
1435	131
1436	8
1437	15
1438	51
1439	63
1440	3
1441	10
1442	27
1444	24
1445	55
1446	8
1447	4
1448	12
1449	10
1450	0
1451	0

1452	4
1453	4
1454	16
1455	13
1456	45
1457	205
1458	60
1459	14
1460	54
1461	8
1463	9
1464	96
1465	36
1466	28
1467	130
1468	0
1469	0
1470	0
1471	1
1472	5
1473	57
1474	3
1475	15
1476	0
1477	8
1478	59
1479	56
1480	53
1481	5
1482	0
1483	7
1484	3
1485	3
1486	29
1487	18
1488	225
1489	2
1490	1
1491	0
1492	3
1493	6
1494	0

1495	28
1496	2
1497	29
1498	7
1499	11
1500	11
1501	5
1502	71
1503	26
1504	35
1505	83
1506	5
1507	13
1508	42
1509	69
1510	54
1511	26
1512	15
1513	53
1514	27
1515	6
1516	28
1517	9
1518	3
1519	10
1520	2
1521	9
1522	38
1523	841
1524	239
1525	53
1526	594
1527	140
1528	240
1529	13
1530	54
1531	1
1532	206
1533	9
1535	0
1535	8
1536	11

1537	2
1538	34
1539	8
1541	23
1542	266
1543	216
1544	17
1545	2
1546	23
1547	0
1548	0
1549	0
1550	0
1551	2
1552	6
1553	121
1554	189
1555	30
1556	37
1557	4
1558	90
1559	52
1560	161
1561	1
1562	0
1563	0
1564	0
1565	0
1566	3
1567	3
1568	5
1569	0
1570	7
1571	4
1572	4
1573	19
1574	9
1575	27
1576	13
1577	95
1578	60
1579	73

1580	135
1581	73
1582	60
1583	48
1584	23
1585	13
1586	41
1587	383
1588	62
1589	399
1590	14
1591	29
1592	4
1593	5
1594	17
1595	7
1596	4
1597	438
1598	162
1599	12
1600	11
1601	0
1602	0
1603	10
1604	0
1605	23
1606	70
1607	15
1608	76
1609	17
1610	16
1611	26
1612	18
1613	19
1614	104
1615	98
1616	220
1617	248
1618	32
1619	0
1620	11
1621	21

1622	73
1623	54
1624	43
1625	15
1626	11
1627	78
1628	290
1629	48
1630	7
1631	0
1632	79
1633	3
1634	2
1635	11
1636	41
1637	3
1638	16
1639	10
1640	45
1641	17
1642	149
1643	13
1644	9
1645	5
1646	4
1647	59
1648	33
1649	2
1650	0
1651	0
1652	0
1653	0
1654	2
1655	0
1656	0
1657	4
1658	10
1659	8
1660	26
1662	80
1663	69
1664	110

1665	31
1666	16
1667	23
1668	24
1669	36
1670	114
1671	22
1672	2
1673	48
1674	127
1675	44
1676	1
1677	2
1678	28
1679	19
1681	224
1682	44
1683	0
1684	24
1685	12
1686	5
1687	56
1688	34
1689	34
1690	62
1691	33
1692	21
1693	10
1694	13
1695	22
1696	5
1697	1
1698	4
1699	50
1700	2
1701	3
1702	47
1703	17
1704	13
1705	45
1706	6
1707	11

1708	8
1709	15
1710	385
1711	38
1712	10
1713	42
1714	14
1715	23
1716	103
1717	64
1719	154
1720	5
1721	7
1722	4
1723	374
1724	33
1725	59
1725	433
1720	306
1727	20
1720	546
1730	54
1731	4
1732	33
1733	200
1735	18
1736	58
1730	159
1738	133
1739	298
1735	
1741	136
1742	46
1744	103
1744	90
1750	9
1750	553
1751	333
1752	269
1753	205
1754	50
1755	17
1750	1/

1757	417
1758	149
1759	54
1760	187
1761	522
1762	4
1763	238
1764	1
1765	14
1766	4
1767	0
1768	0
1769	0
1770	1
1771	0
1772	234
1774	40
1775	1
1776	160
1777	124
1778	100
1779	39
1780	30
1781	13
1782	27
1784	57
1785	5
1786	36
1787	1
1788	17
1789	0
1790	5
1791	2
1792	0
1793	0
1794	6
1795	38
1796	41
1797	41
1798	34
1799	81
1800	22
1000	

1801	286
1802	53
1803	202
1804	7
1805	42
1806	21
1807	1
1808	2
1809	0
1810	0
1811	0
1812	0
1813	0
1814	0
1815	0
1816	0
1817	0
1818	53
1819	36
1820	2
1821	1
1822	45
1823	20
1824	19
1825	2
1826	51
1827	138
1828	24
1829	6
1830	17
1831	21
1832	97
1833	8
1834	47
1835	8
1836	43
1837	30
1838	78
1839	52
1840	57
1841	595
1842	42

1843	9
1844	16
1845	164
1846	48
1847	15
1848	9
1849	7
1850	0
1851	0
1852	0
1853	1
1854	0
1855	0
1856	0
1857	0
1858	0
1859	0
1860	0
1861	0
1862	16
1863	0
1864	5
1865	95
1866	6
1867	91
1868	2
1869	2
1870	0
1871	0
1872	0
1873	3
1874	0
1875	5
1876	4
1877	8
1878	3
1879	14
1880	28
1881	9
1882	20
1883	6
1884	0

1885	3
1886	0
1887	4
1888	8
1889	1
1890	8
1891	2
1892	0
1893	3
1894	12
1895	1
1896	12
1897	44
1898	6
1899	348
1900	1
1901	16
1902	2
1903	1
1904	3
1905	104
1906	28
1907	0
1908	7
1909	5
1910	0
1911	0
1912	5
1913	1
1914	11
1915	27
1916	10
1917	141
1918	35
1919	29
1920	40
1921	27
1922	3
1923	44
1924	3
1925	46
1926	13

1927	3
1928	403
1929	221
1930	11
1931	3
1932	0
1933	0
1934	0
1935	0
1936	0
1937	0
1938	0
1939	0
1940	0
1941	0
1942	0
1943	0
1944	0
1945	0
1946	0
1947	0
1948	0
1949	1
1950	0
1951	19
1952	0
1953	8
1954	0
1955	8
1956	5
1957	2
1958	2
1959	2
1960	0
1961	0
1962	0
1963	5
1964	36
1965	1
1966	3
1967	0
1968	0

1969	1
1970	1
1971	4
1972	0
1973	0
1974	0
1975	0
1976	0
1977	0
1978	0
1979	0
1980	0
1981	0
1982	0
1983	0
1984	0
1985	0
1986	4
1987	0
1988	0
1989	5
1990	23
1991	24
1992	50
1993	96
1994	29
1995	731
1996	318
1997	99
1998	4
1999	24
2000	79
2001	538
2005	81
2006	5
2007	13
2008	1
2009	7
2010	0
2011	0
2012	0
2013	0

2014	0
2015	0
2016	0
2017	0
2018	0
2019	0
2020	0
2021	0
2022	0
2023	0
2024	0
2025	0
2026	0
2027	0
2028	0
2029	0
2030	0
2031	0
2032	0
2033	0
2034	0
2035	0
2036	0
2037	0
2038	0
2039	0
2040	0
2041	0
2042	0
2043	0
2044	0
2045	0
2046	0
2047	0
2048	0
2049	0
2050	4
2051	7
2052	42
2053	61
2054	0
2055	0

2056	0
2057	160
2058	20
2059	55
2060	67
2061	2
2062	171
2063	10
2064	3
2065	187
2066	39
2067	58
2068	146
2069	3
2070	114
2071	7
2072	210
2073	27
2074	5
2076	6
2077	242
2078	46
2079	5
2080	96
2081	1
2082	24
2083	307
2084	80
2085	365
2086	62
2087	76
2088	19
2089	26
2090	12
2091	6
2092	6
2093	1
2094	11
2095	11
2096	55
2097	79
2098	47

2099	7
2100	5
2101	5
2102	2
2103	11
2104	10
2105	7
2107	108
2108	6
2109	94
2110	6
2111	28
2112	2
2113	88
2114	139
2115	67
2116	13
2117	129
2118	6
2119	168
2120	17
2121	21
2122	2
2123	7
2124	15
2125	8
2126	3
2127	51
2128	149
2129	11
2130	13
2131	8
2132	77
2133	17
2134	8
2135	5
2136	1
2137	17
2138	9
2139	7
2140	9
2141	1

2142	25
2143	31
2144	121
2145	158
2146	164
2148	466
2150	479
2151	138
2152	173
2153	353
2155	28
2156	188
2157	81
2158	17
2159	311
2160	131
2161	159
2162	8
2163	24
2164	45
2165	56
2166	15
2167	75
2168	8
2169	3
2170	1
2171	22
2172	3
2173	3
2174	3
2175	305
2176	36
2177	6
2178	23
2179	87
2180	15
2181	17
2182	4
2183	11
2184	6
2185	23
2186	1

2187	5
2188	0
2189	0
2190	12
2191	86
2192	318
2193	159
2194	21
2195	0
2196	25
2197	3
2198	1
2199	0
2200	0
2201	0
2202	0
2203	0
2204	0
2205	0
2206	0
2207	0
2208	0
2209	0
2210	0
2211	0
2212	1
2213	7
2214	51
2215	147
2216	40
2217	71
2218	25
2219	31
2220	223
2221	3
2222	133
2223	58
2224	1
2225	0
2226	0
2227	24
2228	171

2229	1
2230	53
2231	49
2232	180
2233	2
2234	35
2235	11
2236	81
2237	50
2238	49
2239	23
2240	4
2241	4
2242	2
2243	35
2244	31
2245	37
2246	8
2247	10
2248	12
2249	29
2250	9
2251	0
2252	74
2253	1
2254	41
2255	34
2256	970
2257	188
2258	194
2259	45
2260	5
2261	7
2262	2
2263	0
2264	1
2265	1
2266	0
2267	0
2268	0
2269	0
2270	0

2271	0
2272	0
2273	0
2274	0
2275	9
2276	1
2277	27
2278	8
2279	5
2280	49
2281	144
2282	44
2283	0
2284	12
2285	1
2286	17
2287	83
2288	4
2289	0
2290	1
2291	0
2292	0
2293	2
2294	3
2295	49
2296	0
2297	2
2298	0
2299	0
2300	0
2301	2
2302	0
2303	0
2304	0
2305	0
2306	1
2307	0
2308	0
2309	0
2310	0
2311	0
2312	0

2313	0
2314	0
2315	0
2316	0
2317	0
2318	0
2319	0
2320	2
2321	92
2322	33
2323	221
2324	45
2325	53
2326	3
2327	0
2328	0
2329	0
2330	0
2331	0
2332	0
2333	52
2334	29
2335	0
2336	1
2337	2
2338	12
2339	2
2340	11
2341	2
2342	33
2343	3
2344	0
2345	0
2346	0
2347	0
2348	2
2349	4
2350	65
2351	58
2352	114
2353	4
2354	0

2355	1
2356	7
2357	12
2358	207
2359	72
2360	2
2361	0
2362	0
2363	0
2364	0
2365	0
2366	0
2367	0
2368	0
2369	0
2370	0
2371	0
2372	0
2373	2
2374	0
2375	0
2376	0
2377	0
2378	0
2379	0
2380	0
2381	0
2382	0
2383	1
2384	0
2385	0
2386	0
2387	0
2388	0
2389	0
2390	0
2391	0
2392	0
2393	0
2394	7
2395	4
2396	5

	~
2398	0
2399	0
2400	0
2401	0
2402	0
2403	0
2404	0
2405	0
2406	0
2407	0
2408	0
2409	0
2410	0
2411	0
2412	0
2413	0
2414	0
2415	0
2416	0
2417	0
2418	0
2419	0
2420	0
2421	0
2422	0
2423	0
2424	0
2425	0
2426	0
2427	0
2428	0
2429	0
2430	0
2431	0
2432	0
2433	0
2434	0
2435	3
2436	8
2437	4
2438	5

2439	2
2440	6
2441	29
2442	17
2443	61
2444	157
2445	6
2446	1

POSICIÓN REGIÓN INTERGENICA	TOTAL DE LECTURAS
974	1
975	156
976	7
977	11
978	0
979	59
980	4
981	29
982	14
983	7
984	5
985	2
986	2
987	39
988	0
989	6
990	8
991	44
992	241
993	14
994	21
995	3
996	62
997	0
998	5
999	56
1000	35
1001	0
1002	0
1003	4
1004	11
1005	0
1006	5
1007	8
1008	5
1009	12
1010	5
1011	5
1012	0

Anexo 5. Total de lecturas en la región intergénica.

1013	4
1014	4
1015	20
1016	0
1017	3
1018	1
1019	3
1020	22
1021	6
1022	5
1023	70
1024	11
1025	41
1026	5
1027	3
1028	5
1029	8
1030	7
1031	18
1032	0
1033	6
1034	37
1035	10
1036	10
1037	1
1038	1
1039	8
1040	3
1041	4
1042	1
1043	4
1044	0
1045	14
1046	1
1047	11
1048	13
1049	50
1050	18
1051	162
1052	55
1053	1487
1054	45

1055	17
1056	91
1057	17
1058	15
1059	33
1060	6
1061	48
1062	75
1063	5
1064	1
1065	41
1066	6
1067	30
1068	5
1069	20
1070	8
1071	188
1072	46
1073	35
1074	0
1075	1
1076	0
1077	0
1078	5
1079	7
1080	1
1081	70
1082	2
1083	5
1084	44
1085	25
1086	46
1087	9
1088	17
1089	9
1090	0
1091	19
1092	2
1093	8
1094	306
1095	89
1096	109

1097	374
1098	340
1099	310
1100	433
1102	10
1103	45
1104	17
1105	61
1106	59
1107	76
1108	44
1109	11
1110	0
1111	0
1112	5
1113	91
1114	489
1115	8
1116	28
1117	22
1118	27
1119	114
1120	265
1121	101
1122	76
1123	38
1124	63
1125	4
1126	79
1127	44
1128	0
1129	12
1130	8
1131	9
1132	5
1133	7
1134	25
1135	23
1136	709
1137	696
1138	1548
1139	113

1140	2
1141	11
1142	0
1143	134
1144	5
1145	91
1146	9
1147	121
1148	10
1149	2
1150	2
1151	4
1152	8
1153	4
1154	7
1155	3
1156	9
1157	57
1158	12
1159	15
1160	133
1161	6
1162	7
1163	9
1164	0
1165	3
1166	0
1167	1
1168	2
1169	0
1170	7
1171	2
1172	6
1173	2
1174	2
1175	3
1176	1
1177	8
1178	20
1179	36
1180	17
1181	3
1182	2
------	------
1183	5
1184	46
1185	84
1186	18
1187	54
1188	15
1189	70
1190	30
1191	52
1192	103
1193	327
1194	343
1195	24
1196	20
1197	32
1198	98
1199	181
1200	6
1201	32
1202	22
1203	36
1204	163
1205	52
1206	77
1207	310
1208	1255
1209	104
1210	58
1211	218
1212	4
1213	4
1214	0
1215	10
1216	112
1217	16
1218	113
1219	9
1220	146
1221	39
1222	25
1223	1

1224	26
1225	0
1226	0
1227	1
1228	0
1229	0
1230	0
1231	0
1232	0
1233	0
1234	0
1235	0
1236	18
1237	4
1238	3
1239	11
1240	12

Posiciones IncRNA	Total de abundancia
2448	2
2449	9
2450	5
2451	3
2452	7
2453	0
2454	2
2455	19
2456	0
2457	0
2458	4
2459	1
2460	2
2461	5
2462	3
2463	2
2464	9
2465	73
2466	17
2467	16
2468	75
2469	13
2470	4
2471	0
2472	9
2473	1
2474	0
2475	0
2476	0
2477	0
2478	0
2479	0
2480	0
2481	0
2482	0
2483	0
2484	0
2485	0
2486	0
2487	0
2488	0

Anexo 6. Total de lecturas en la posición IncRNA.

2489	0
2490	0
2491	0
2492	0
2493	36
2494	16
2495	26
2496	41
2497	143
2498	277
2499	57
2500	31
2501	26
2502	53
2503	50
2504	27
2505	27
2506	223
2507	46
2508	444
2509	331
2511	122
2513	382
2518	86
2519	14
2520	1
2521	0
2522	0
2523	1
2524	0
2525	1
2526	0
2527	0
2528	0
2529	0
2530	0
2531	0
2532	0
2533	0
2534	0
2535	0
2536	0

2538 0 2539 0 2540 0 2541 0 2542 0 2543 0 2544 0 2545 0 2546 0 2547 0 2548 0 2544 0
2539 0 2540 0 2541 0 2542 0 2543 0 2544 0
2540 0 2541 0 2542 0 2543 0 2544 0
2541 0 2542 0 2543 0 2544 0
2542 0 2543 0 2544 0
2543 0 2544 0
2544 0
2545 0
2546 0
2547 0
2548 0
2549 0
2550 0
2551 0
2552 0
2553 0
2554 0
2555 0
2556 0
2557 0
2558 0
2559 0
2560 0
2561 0
2562 0
2563 0
2564 0
2565 0
2566 0
2567 0
2568 0
2569 0
2570 0
2571 0
2572 0
2573 0
2574 0
2575 0
2576 0
2577 0
2578 0

2579	0
2580	0
2581	0
2582	0
2583	0
2584	0
2585	0
2586	0
2587	0
2588	0
2589	0
2590	0
2591	0
2592	0
2593	0
2594	0
2595	0
2596	0
2597	0
2598	0
2599	0
2600	2
2601	5
2602	4
2603	12
2604	10
2605	48
2606	8
2607	19
2608	17
2609	103
2610	18
2611	14
2612	3
2613	107
2614	1
2615	0
2616	0
2617	0
2618	0
2619	0
2620	0

2621	0
2622	0
2623	0
2624	0
2625	0
2626	0
2627	0
2628	0
2629	0
2630	0
2631	0
2632	0
2633	0
2634	0
2635	0
2636	4
2637	1
2638	3
2639	23
2640	18
2641	7
2642	25
2643	3
2644	173
2645	1
2646	37
2647	3
2648	205
2649	6
2650	6
2651	1
2652	605
2653	0
2654	78
2655	0
2656	0
2657	9
2658	2
2659	1
2660	14
2661	311
2663	139

2664	4
2665	53
2666	3
2667	4
2668	5
2669	223
2670	159
2671	6
2672	390
2673	300
2675	71
2676	547
2677	251
2678	82
2679	95
2680	0
2681	0
2682	1
2683	0
2684	0
2685	0
2686	0
2687	0
2688	0
2689	0
2690	0
2691	0
2692	0
2693	0
2694	0
2695	0
2696	0
2697	0
2698	0
2699	0
2700	0
2701	0
2702	0
2703	3
2704	30
2705	16
2706	292

2707	56
2709	539
2710	50
2711	9
2712	11
2713	76
2714	7
2715	1
2716	21
2717	22
2718	79
2719	264
2720	55
2721	12
2722	0
2723	0
2724	0
2725	0
2726	0
2727	0
2728	0
2729	0
2730	0
2731	0
2732	0
2733	0
2734	0
2735	0
2736	0
2737	0
2738	0
2739	0
2740	0
2741	0
2742	0
2743	0
2744	0
2745	0
2746	0
2747	0
2748	0
2749	0

2750	0
2751	0
2752	0
2753	0
2754	0
2755	0
2756	0
2757	0
2758	0
2759	0
2760	0
2761	0
2762	0
2763	0
2764	0
2765	0
2766	0
2767	0
2768	0
2769	0
2770	0
2771	0
2772	0
2773	0
2774	0
2775	0
2776	0
2777	0
2778	0
2779	0
2780	0
2781	0
2782	0
2783	0
2784	0
2785	0
2786	0
2787	0
2788	0
2789	0
2790	0
2791	0

2792	0
2793	0
2794	0
2795	0
2796	0
2797	0
2798	0
2799	0
2800	0
2801	0
2802	0
2803	0
2804	1
2805	89
2806	85
2807	30
2808	17
2809	2
2810	10
2811	40
2812	60
2813	40
2814	116
2815	8
2816	23
2817	27
2818	6
2819	3
2820	0
2821	0
2822	1
2823	16
2824	3
2825	9
2826	14
2827	8
2828	21
2829	8
2830	94
2831	50
2832	208
2833	193

2834	5
2835	233
2836	20
2837	83
2838	261
2839	10
2840	0
2841	0
2842	0
2843	1
2844	1
2845	1
2846	13
2847	14
2848	6
2849	50
2850	67
2851	131
2852	19
2853	430
2854	12
2855	0
2856	183
2857	7
2858	1
2859	0
2860	6
2861	25
2862	56
2863	15
2864	35
2865	10
2866	55
2867	9
2868	91
2869	100
2870	63
2871	85
2872	71
2873	20
2874	19
2875	62

2876	74
2877	398
2878	20
2879	68
2880	291
2881	16
2882	0
2883	0
2884	0
2885	0
2886	0
2887	0
2888	0
2889	0
2890	0
2891	0
2892	0
2893	0
2894	0
2895	0
2896	0
2897	0
2898	0
2899	0
2900	0
2901	0
2902	0
2903	12
2904	14
2905	0
2906	0
2907	0
2908	0
2909	0
2910	1
2911	0
2912	0
2913	0
2914	0
2915	0
2916	0
2917	0

2918	0
2919	0
2920	0
2921	0
2922	0
2923	0
2924	0
2925	0
2926	0
2927	0
2928	0
2929	0
2930	0
2931	0
2932	0
2933	0
2934	0
2935	0
2936	0
2937	0
2938	0
2939	0
2940	0
2941	0
2942	0
2943	0
2944	0
2945	0
2946	0
2947	0
2948	0
2949	0
2950	0
2951	0
2952	0
2953	0
2954	0
2955	0
2956	0
2550	0
2958	0
2959	0
2333	6

2961	0
2002	
2962	0
2963	0
2964	0
2965	0
2966	0
2967	0
2968	0
2969	0
2970	0
2971	0
2972	0
2973	0
2974	0
2975	0
2976 1	.6
2977 12	27
2978 7	6
2979 1	.5
2980	9
2981 7	'5
2982 3	2
2983	6
2984	5
2985	2
2986 1	.7
2987 1	.9
2988 1	.6
2989 34	8
2990	5
2991 1	.2
2992 33	4
2993 2	0
2994 6	60
2995 21	.7
2996 1	.7
2997 2	6
2998	3
2999	7
3000 3	31
3001	q

3002	6
3003	2
3004	5
3005	9
3006	29
3007	4
3008	3
3009	1
3010	1
3011	3
3012	0
3013	4
3014	1
3015	0
3016	6
3017	81
3018	17
3019	6
3020	0
3021	0
3022	0
3023	0
3024	0
3025	0
3026	0
3027	0
3028	0
3029	0
3030	0
3031	0
3032	0
3033	0
3034	0
3035	0
3036	0
3037	0
3038	0
3039	0
3040	0
3041	0
3042	0
3043	0

3044	0
3045	0
3046	0
3047	0
3048	0
3049	0
3050	0
3051	0
3052	0
3053	0
3054	0
3055	0
3056	0
3057	0
3058	0
3059	0
3060	0
3061	0
3062	0
3063	0
3064	0
3065	0
3066	0
3067	0
3068	0
3069	0
3070	0
3071	0
3072	0
3073	0
3074	0
3075	0
3076	0
3077	0
3078	0
3079	0
3080	0
3081	0
3081	0
3002	0
3083	0
2005	0
5065	0

3086	0
3087	0
3088	0
3089	0
3090	0
3091	0
3092	0
3093	0
3094	0
3095	0
3096	0
3097	0
3098	0
3099	0
3100	0
3101	0
3102	0
3103	0
3104	0
3105	0
3106	0
3107	0
3108	0
3109	0
3110	0
3111	0
3112	0
3113	0
3114	0
3115	0
3116	0
3117	0
3118	0
3119	0
3120	0
3121	0
3122	0
3123	0
3124	9
3125	43
3126	0
3127	116

3128	1
3129	0
3130	3
3131	8
3132	0
3133	0
3134	0
3135	0
3136	0
3137	0
3138	0
3139	0
3140	0
3141	0
3142	0
3143	0
3144	0
3145	0
3146	0
3147	0
3148	0
3149	0
3150	0
3151	0
3152	0
3153	0
3154	0
3155	0
3156	0
3157	0
3158	0
3159	0
3160	0
3161	0
3162	0
3163	0
3164	0
3165	0
3166	0
3167	0
3168	0
3169	0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3212	0
3213	0
3214	0
3215	0
3216	0
3217	0
3218	0
3219	0
3220	0
3221	0
3222	0
3223	0
3224	0
3225	0
3226	0
3227	0
3228	0
3229	0
3230	0
3231	0
3232	0
3233	0
3234	0
3235	0
3236	0
3237	0
3238	0
3239	0
3240	0
3241	0
3242	0
3243	0
3244	0
3245	0
3246	0
3247	0
3248	0
3249	0
3250	0
3251	0
3252	0
3253	0

3254	0
3255	0
3256	0
3257	0
3258	0
3259	0
3260	0
3261	0
3262	0
3263	57
3264	0
3265	6
3266	659
3267	33
3268	3
3269	0
3270	0
3271	0
3272	0
3273	0
3274	0
3275	0
3276	0
3277	0
3278	0
3279	0
3280	0
3281	0
3282	0
3283	0
3284	0
3285	0
3286	0
3287	0
3288	0
3289	0
3290	0
3291	0
3292	0
3293	0
3294	0
3295	0

3296	0
3297	0
3298	0
3299	0
3300	0
3301	0
3302	0
3303	0
3304	0
3305	0
3306	0
3307	0
3308	0
3309	0
3310	0
3311	0
3312	0
3313	0
3314	0
3315	0
3316	0
3317	0
3318	0
3319	0
3320	0
3321	0
3322	0
3323	0
3324	0
3325	0
3326	0
3327	0
3328	0
3329	0
3330	0
3331	0
3332	0
3333	0
3334	0
3335	0
3336	0
3337	0
5557	5

3338	0
3339	0
3340	0
3341	0
3342	0
3343	0
3344	0
3345	0
3346	0
3347	0
3348	0
3349	0
3350	0
3351	1
3352	6
3353	6
3354	0
3355	0
3356	0
3357	0
3358	0
3359	0
3360	0
3361	0
3362	0
3363	0
3364	0
3365	0
3366	0
3367	0
3368	0
3369	0
3370	0
3371	0
3372	0
3373	0
3374	1
3375	24
3376	5
3377	20
3378	49
3379	25

3380	18
3381	6
3382	32
3383	76
3384	229
3385	35
3386	309
3387	682
3390	282
3391	261
3392	289
3393	331
3394	42
3395	11
3396	8
3397	14
3398	1
3399	20
3400	26
3401	1
3402	0
3403	0
3404	0
3405	5
3406	0
3407	3
3408	0
3409	0
3410	0
3411	0
3412	0
3413	0
3414	0
3415	1
3416	0
3417	0
3418	0
3419	19
3420	58
3421	31
3422	89
3423	90

3424	34
3425	467
3427	46
3428	23
3429	0
3430	0
3431	28
3432	46
3433	54
3434	58
3435	119
3436	11
3437	0
3438	0
3439	0
3440	0
3441	0
3442	0
3443	0
3444	0
3445	0
3446	9
3447	4
3448	4
3449	0
3450	0
3451	0
3452	0
3453	0
3454	0
3455	0
3456	0
3457	0
3458	1
3459	1
3460	11
3461	2
3462	3
3463	2
3464	0
3465	6
3466	0

3467	1
3468	0
3469	120
3470	32
3471	20
3472	24
3473	32
3474	3
3475	54
3476	4
3477	14
3478	28
3479	28
3480	49
3481	36
3482	5
3483	59
3484	3
3485	150
3486	146
3487	23
3488	31
3489	11
3490	5
3491	577
3492	31
3493	241
3494	67
3495	39
3496	8
3497	1
3498	105
3499	10
3500	6
3501	7
3502	0
3503	15
3504	4
3506	980
3507	208
3508	19
3509	18

3510	0
3511	0
3512	0
3513	2
3514	2
3515	4
3516	1
3517	101
3518	24
3519	171
3520	55
3521	129
3522	16
3523	5
3524	13
3525	3
3526	1
3527	0
3528	0
3529	0
3530	9
3531	11
3532	64
3533	13
3534	12
3535	50
3536	25
3537	167
3538	589
3541	170
3542	82
3543	14
3544	423
3545	142
3546	75
3547	574
3548	660
3549	55
3550	42
3552	53
3553	31
3554	14

3555	14
3556	13
3557	6
3558	218
3559	31
3560	39
3561	18
3562	8
3563	52
3564	31
3565	41
3566	323
3567	86
3568	884
3569	13
3570	37
3571	663
3572	261
3573	1
3574	0
3575	0
3576	0
3577	0
3578	0
3579	0
3580	0
3581	0
3582	0
3583	0
3584	0
3585	0
3586	0
3587	1
3588	0
3589	0
3590	0
3591	0
3592	0
3593	0
3594	0
3595	0
3596	0

3597	0
3598	0
3599	0
3600	0
3601	0
3602	0
3603	0
3604	0
3605	0
3606	0
3607	0
3608	0
3609	0
3610	0
3611	0
3612	1
3613	17
3614	26
3615	9
3616	11
3617	1
3618	1
3619	2
3620	4
3621	52
3622	4
3623	259
3624	57
3625	110
3626	317
3627	65
3628	86
3629	51
3632	191
3633	109
3634	360
3635	526
3637	223
3638	13
3639	11
3640	9
3641	2
3639 3640 3641	11 9 2

3642	1
3643	91
3644	13
3645	8
3646	3
3647	24
3648	18
3649	44
3650	7
3651	1
3652	5
3653	2
3654	1
3655	4
3656	1
3657	12
3658	2
3659	21
3660	25
3661	63
3662	519
3664	153
3666	159
3667	23
3669	238
3670	9
3671	81
3672	30
3673	450
3674	64
3675	128
3676	194
3677	162
3678	4
3679	2
3680	19
3681	3
3682	0
3683	5
3684	0
3685	4
3686	0

3687	0
3688	0
3689	2
3690	0
3691	0
3692	0
3693	0
3694	0
3695	0
3696	0
3697	0
3698	0
3699	0
3700	0
3701	0
3702	0
3703	0
3704	69
3705	18
3706	5
3707	343
3708	23
3709	0
3710	2
3711	0
3712	0
3713	0
3714	4
3715	15
3716	10
3717	73
3718	722
3719	36
3720	104
3721	12
3722	448
3723	99
3724	21
3725	8
3726	127
3727	547
2720	232

3729	93
3730	9
3731	4
3732	27
3733	0
3734	0
3735	0
3736	0
3737	0
3738	28
3739	197
3740	8
3741	30
3742	11
3743	13
3744	11
3745	8
3746	8
3747	8
3748	2
3749	3
3750	3
3751	20
3752	6
3753	17
3754	10
3755	3
3756	1
3757	12
3758	1
3759	5
3760	2
3761	2
3762	0
3763	0
3764	0
3765	0
3766	0
3767	0
3768	0
3769	0
3770	0

3771	0
3772	0
3773	0
3774	0
3775	0
3776	0
3777	0
3778	1
3779	8
3780	218
3781	54
3782	159
3783	27
3784	114
3785	160
3786	297
3787	33
3788	28
3789	1
3790	4
3791	3
3792	0
3793	0
3794	0
3795	0
3796	0
3797	0
3798	0
3799	0
3800	0
3801	0
3802	0
3803	1
3804	0
3805	0
3806	0
3807	0
3808	57
3809	46
3810	18
3811	91
3812	78

3813	63
3814	23
3815	16
3816	9
3817	2
3818	0
3819	0
3820	0
3821	0
3822	0
3823	0
3824	2
3825	0
3826	2
3827	5
3828	12
3829	2
3830	3
3831	1
3832	2
3833	5
3834	0
3835	1
3836	0
3837	0
3838	0
3839	0
3840	0
3841	0
3842	0
3843	0
3844	0
3845	0
3846	0
3847	0
3848	0
3849	0
3850	0
3851	54
3852	87
3853	26
3854	422

3855	20
3856	12
3857	9
3858	1
3859	17
3860	4
3861	639
3862	375
3863	305
3864	34
3865	4
3866	1
3867	1
3868	31
3869	18
3870	12
3871	5
3872	6
3873	1
3874	2
3875	1
3876	18
3877	11
3878	4
3879	1
3880	1
3881	32
3882	0
3883	36
3884	55
3885	20
3886	36
3887	4
3888	1
3889	0
3890	2
3891	1
3892	10
3893	7
3894	13
3895	261
3896	672
3897	1
------	-----
3898	265
3899	859
3900	903
3901	4
3902	9
3903	12
3904	5
3905	0
3906	0
3907	0
3908	0
3909	0
3910	0
3911	0
3912	0
3913	0
3914	0
3915	0
3916	0
3917	0
3918	0
3919	0
3920	0
3921	0
3922	0
3923	0
3924	0
3925	0
3926	0
3927	0
3928	0
3929	0
3930	0
3931	0
3932	0
3933	0
3934	0
3935	0
3936	0
3937	0
3938	0

3939	0
3940	0
3941	0
3942	0
3943	0
3944	0
3945	0
3946	0
3947	0
3948	0
3949	0
3950	0
3951	0
3952	0
3953	0
3954	2
3955	0
3956	0
3957	15
3958	27
3959	6
3960	0
3961	3
3962	5
3963	16
3964	19
3965	33
3966	379
3967	188
3968	354
3969	244
3970	6
3971	422
3972	6
3974	3
3975	4
3976	0
3977	0
3978	0
3979	0
3980	0
3981	0

3982	0
3983	0
3984	0
3985	0
3986	0
3987	0
3988	0
3989	0
3990	0
3991	0
3992	0
3993	0
3994	0
3995	0
3996	0
3997	0
3998	0
3999	0
4000	0
4001	0
4002	0
4003	1
4004	1
4005	1
4006	13
4007	46
4008	505
4009	240
4010	3
4011	2
4012	1
4013	2
4014	0
4015	2
4016	0
4017	0
4018	0
4019	0
4020	0
4021	0
4022	1
4023	1

4024	0
4025	0
4026	0
4027	0
4028	0
4029	0
4030	0
4031	0
4032	164
4033	43
4034	49
4035	1
4036	85
4037	0
4038	0
4039	5
4040	55
4041	32
4042	0
4043	0
4044	0
4045	215
4046	20
4047	297
4049	8
4050	61
4051	11
4052	33
4053	0
4054	0
4055	0
4056	0
4057	0
4058	0
4059	0
4060	0
4061	0
4062	0
4063	0
4064	0
4064 4065	0

4067	0
4068	0
4069	0
4070	0
4071	0
4072	0
4073	0
4074	0
4075	7
4076	0
4077	105
4078	1
4079	0
4080	0
4081	2
4082	4
4083	5
4084	4
4085	6
4086	39
4087	35
4088	117
4089	3
4090	1
4091	1
4092	0
4093	1
4094	1
4095	3
4096	0
4097	2
4098	6
4099	4
4100	11
4101	0
4102	0
4103	0
4104	0
4105	0
4106	0
4107	0
4108	0

4109	0
4110	0
4111	1
4112	1
4113	2
4114	0
4115	0
4116	0
4117	0
4118	2
4119	0
4120	0
4121	693
4122	13
4123	10
4124	33
4125	54
4126	138
4127	295
4128	699
4130	118
4131	5
4132	20
4133	64
4134	10
4135	9
4136	110
4137	53
4138	1
4139	7
4140	23
4141	3
4142	203
4143	6
4144	38
4145	1
4146	5
4147	8
4148	10
4149	8
4150	7
4151	14

4152	3
4153	19
4154	4
4156	8
4157	5
4158	6
4159	13
4160	0
4161	10
4162	0
4163	0
4164	0
4165	0
4166	0
4167	0
4168	0
4169	0
4170	7
4171	28
4172	2
4173	1
4174	0
4175	0
4176	0
4177	0
4178	0
4179	0
4180	0
4181	1
4182	0
4183	1
4184	62
4185	135
4186	3
4187	5
4188	2
4189	25
4190	12
4191	53
4192	95
4193	44
4194	38

4195	80
4196	91
4197	85
4198	83
4199	82
4200	111
4201	42
4202	70
4203	19
4204	0
4205	265
4206	3
4207	0
4208	11
4209	5
4210	50
4211	8
4212	46
4213	3
4214	18
4215	104
4216	0
4217	0
4218	0
4219	0
4220	0
4221	0
4222	0
4223	0
4224	0
4225	0
4226	0
4227	0
4228	0
4229	0
4230	0
4231	0
4232	0
4233	0
4234	0
4235	0
4236	0

4237	0
4238	0
4239	0
4240	0
4241	0
4242	0
4243	0
4244	0
4245	0
4246	0
4247	0
4248	0
4249	0
4250	0
4251	0
4252	0
4253	0
4254	0
4255	0
4256	0
4257	0
4258	0
4259	0
4260	0
4261	0
4262	0
4263	0
4264	0
4265	0
4266	0
4267	0
4268	0
4269	16
4270	0
4271	4
4272	5
4273	2
4274	4
4275	0
4276	0
4277	5
4278	9

4279	3
4280	3
4281	19
4282	0
4283	0
4284	0
4285	1
4286	0
4287	0
4288	4
4289	7
4290	106
4291	107
4292	90
4294	23
4295	40
4296	63
4297	53
4298	104
4299	87
4300	506
4301	122
4302	324
4303	222
4304	532
4305	44
4306	47
4307	2
4308	0
4309	0
4310	0
4311	0
4312	0
4313	0
4314	0
4315	0
4316	0
4317	0
4318	0
4319	0
4320	0
4321	0

4322	0
4323	0
4324	0
4325	0
4326	0
4327	0
4328	0
4329	0
4330	0
4331	0
4332	0
4333	0
4334	0
4335	0
4336	0
4337	0
4338	0
4339	0
4340	0
4341	0
4342	0
4343	0
4344	0
4345	0
4346	0