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Abstract 
Background: Mangrove plant species have distinctive anatomical and physiological responses to cope with a wide range of salinities and inun-
dations. These strategies pertain a safe and efficient water use and transport, essential for survival.
Questions: How are the anatomical and physiological attributes of the hydraulic architecture of seedlings and adults of Rhizophora mangle? 
what are the changes in hydraulic architecture of seedlings and adults of R. mangle in contrasting microenvironments?
Studied species: Rhizophora mangle L. (Rhizophoraceae).
Study site and dates: Scrub and fringe mangroves in Ria Celestún Biosphere Reserve, during the rainy season of 2013 (July to October).
Methods: Hydraulic conductivity and leaf water potential, as well as xylem vessel density, length, transversal and radial diameter, and area were 
measured for seedlings and adults from both sites. The prevailing environmental conditions (soil water potential, salinity, photon flux density, 
air temperature and relative humidity) were also characterized.
Results: A safer hydraulic conduction system, with narrow and more grouped vessels, was observed in seedlings than in adults of R. mangle 
in both sites. Adult individuals from the scrub mangrove, in the hyper saline microenvironment, had a safer hydraulic conduction system than 
adults in the fringe mangrove.
Conclusions: The seedling stage of R. mangle showed a safer hydraulic system than adults in both types of mangroves. However, over time this 
hydraulic conduction system could become more efficient or remain safe depending on the microenvironment in which individuals are growing.
Keywords: Hydraulic conductivity, mangrove type, salinity, water potentials, Yucatan.

Resumen
Antecedentes: Los manglares presentan respuestas anatómicas y fisiológicas distintivas para enfrentar una amplia variación de condiciones 
ambientales. Éstas están relacionadas con la seguridad y eficiencia en el uso y transporte del agua para su supervivencia.
Preguntas: ¿Cómo son los atributos anatómicos y fisiológicos de la arquitectura hidráulica de las plántulas y los adultos de R. mangle? ¿Cuáles 
son los cambios en la arquitectura hidráulica de plántulas y adultos de R. mangle, en microambientes contrastantes?
Especies de estudio: Rhizophora mangle L. (Rhizophoraceae).
Sitio y años de estudio: Manglares chaparros y de franja en la Reserva de la Biósfera Ria Celestún, durante la estación lluviosa de 2013.
Métodos: Se realizaron mediciones de la conductividad hidráulica y el potencial hídrico foliar, así como aspectos anatómicos de los vasos del 
xilema, en plántulas y los adultos de ambos sitios. También se caracterizaron las condiciones ambientales (potencial hídrico del suelo, salinidad, 
densidad de flujo de fotones, temperatura del aire y humedad relativa del aire).
Resultados: El sistema de conducción hidráulica de las plántulas de ambos sitios fue más seguro, con vasos estrechos y más agrupados, que en 
adultos. Los adultos del manglar chaparro tuvieron un sistema de conducción más seguro que en los adultos del manglar de franja.
Conclusiones: Las plántulas de R. mangle mostraron un sistema de conducción hidráulico más seguro que los adultos en ambos tipos de man-
glar. Sin embargo, con el tiempo, el sistema de conducción puede revertir en un sistema más eficiente o permanecer seguro, dependiendo del 
microambiente en el que se desarrollen los individuos.
Palabras clave: Conductividad hidráulica, potenciales hídricos, salinidad; tipo de manglar, Yucatán.
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Mangrove forests grow in the intertidal zone on tropical and subtropical coasts (Lugo & Snedaker 1974, 
Feller & Sitnik 1996). Consequently, mangrove species can tolerate a wide range of salinities and 
flooding that, together with other factors, such as topography, soil physiochemistry and mineral nu-
trients, result in diverse types of forests with different canopy height and species composition (Lugo 

& Snedaker 1974, López-Portillo & Ezcurra 2002). For instance, in the Yucatan Peninsula, which host 54.5 % of 
the total area occupied by mangroves in Mexico (Rodríguez-Zúñiga et al. 2013), there are different mangrove types, 
such as fringe, basin, scrub, and peten (Zaldívar-Jiménez et al. 2010). In all types of mangrove forests, Rhizophora 
mangle L. can occur with a contrasting structure: tall trees in the less saline fringe mangrove and shorter trees in the 
hypersaline scrub mangrove (Zaldívar-Jiménez et al. 2004). Scrub mangrove plants are supposedly short because of 
several complex abiotic factors such as salinity, flooding, redox potentials, and mineral nutrient availability (Lugo & 
Snedaker 1974, Feller et al. 2003, Lovelock et al. 2006), but data of salinity and phosphorous in sediments presented 
in several tall and scrub mangrove forests are contradictory (Cisneros-de la Cruz et al. 2018).

The different types of mangroves show specific adaptive strategies, according to the environmental conditions in 
which they grow (Feller 1996, Robert et al. 2009, Yáñez-Espinosa & Flores 2011). For example, some studies have 
shown that scrub mangrove have less photosynthetic efficiency, gas exchange and hydraulic conductivity than fringe 
mangroves (Lin & Sternberg 1992, Lovelock et al. 2006, Naidoo 2010). This occurs because, in the hypersaline en-
vironment, plants experience long periods of physiological drought (Yáñez-Espinosa et al. 2001, López-Portillo et 
al. 2005, Schmitz et al. 2006a). In any case, one of the most critical tradeoffs is to reconcile efficient water transport 
with security against cavitation, which means the obstruction of the conducts because of the formation of air bubbles 
(Schmitz et al. 2006b, Xiao et al. 2009). Then, study of the hydraulic architecture of this mangrove species would 
improve the understanding on the mechanisms of water movement, under extreme saline environments, and its re-
sponses to environmental changes (Tyree & Ewers 1991, Cruiziat et al. 2002, McCulloh & Sperry 2005).

Adaptations in hydraulic architecture in mangrove trees can be key in regulating their distribution, survival, and 
growth (Tyree & Ewers 1991, Valladares et al. 2004); and are especially relevant at the seedling stage when individu-
als are more vulnerable to environmental variability (Cornelissen et al. 1996, Ishida et al. 2005, Marks 2007, Krauss 
et al. 2008). However, only one study has focused on the physiological and anatomical strategies during different life 
stages (Farnsworth & Ellison 1996). 

Since mangroves are constantly exposed to anthropic and natural impacts that rapidly diminish their natural dis-
tribution (Alongi 2002), the characterization of hydraulic architecture strategies from seedlings to adults under con-
trasting environments could strengthen management actions toward their restoration and conservation. It is expected 
that scrub mangroves growing under a more saline environment will exhibit more secure hydraulic strategies than 
fringe mangroves at both life stages, seedling, and adult. The objective of this study was to compare the anatomical 
and physiological attributes of stem hydraulic architecture of seedlings and adults of Rhizophora mangle L. in the 
contrasting environments of a scrub and fringe mangrove forests in Celestún, Yucatan, Mexico.

Materials and methods

Study area and microenvironment. The study was performed in the Ria Celestún Biosphere Reserve located at the north-
west of the Yucatan Peninsula (Figure 1). The climate is warm semi-arid with a mean annual temperature of 28.5 °C, annual 
mean precipitation of 760 mm, and characterized by three seasons: dry (March-May), rainy (June-October) and early dry 
(locally named “nortes”; showing dispersed rain events, November-February) (Zaldívar-Jiménez et al. 2010). The tidal 
regime characteristic is a mixed semidiurnal tide of 0.6 m (Herrera-Silveira 1994). Two sampling points were chosen and 
correspond to two types of mangroves with contrasting morphology and environmental conditions; their location was 
based on the study area of Zaldívar-Jiménez et al. (2004) and on sites included in the Mexico Mangrove Monitoring Sys-
tem (Herrera-Silveira et al. 2014). The fringe mangrove (Figure 1A: 20° 51’ 22.7’’ N; 90° 22’ 37.7’’ W) was located at the 
edge of the lagoon, where trees were 16.3 ± 4.8 m tall, and had a diameter at breast height (dbh) of 22.9 ± 7.2 cm, and a 
density of 1,583 trees ha-1. The scrub mangrove (Figure 1B: 20° 51’ 04.9’’ N; 90° 22’ 22.9’’ W) was located 0.72 km inland 
from the lagoon, where trees were 2.8 ± 1 m tall, had a dbh of 3.4 ± 1.5 cm, and a density of 15,600 trees ha-1.
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Rhizophora mangle L. is a viviparous angiosperm, with high ecological importance, which shows great plastic phe-
notype and can grow in a range of salinity of from 0 to 90 ‰ (Tomlinson 2016). For the two-mangrove type selected, 
two plant stages of R. mangle were considered: seedlings, individuals with visible propagule of < 50 cm height and 
diameter < 1 cm, with 10 - 20 leaf scars to ensure similar ages (Duke & Pinzon 1992); and adults, individuals from 2 
to 4 m height and from 2.5 to 3.5 cm dbh. Sampling was achieved within a three-month period during the rainy season.

Microenvironment was simultaneously characterized in the understory at both sites and on one reference point 
above the canopy during a week in July, August, and October 2013. Air temperature and relative humidity were re-
corded with a Temp Smart Sensor (S-TMB-M003, Onset Computer Corporation, Bourne, MA), and photosynthetic 
photon flux (PPF) with a quantum sensor (Photosynthetic Light Smart Sensor, S-LIA-M003, Onset, Bourne, MA). 
Variables were recorded simultaneously every 10 s and 10-min averages were stored with a data acquisition system 
(HOBO U30-NRC Weather Station Starter Kit, Onset, Bourne, MA), such interval allows to save representative 
information of the microenvironmental changes without saturating the datalogger memory. Vapor pressure deficit 
(VPD) was estimated after Jones (2013). During each microenvironment measurements, interstitial water was sam-
pled with an acrylic tube connected with a syringe to measure interstitial salinity (~ 30 cm depth) using a portable 
conductivity meter (Model 30, YSI, Yellow Springs, OH) at three random points per site. At each point, one soil 
sample were collected at equal depths with a PVC tube and a plunger, stored on ice within plastic bags and carried 
to the laboratory where soil water potential (Ψsoil) was measured with a dew point potentiometer (WP4, Decagon 
Devices Inc., Pullman, WA).

Physiological measurements. For all plant measurements, five individuals of R. mangle, per life stage and site, 
were considered. Three fully developed leaves were collected from every individual to measure water potential at 
pre-dawn (maximum water potential; Ψpredawn) and noon (minimum water potential; Ψmidday), with a dewpoint poten-
tiometer (WP4, Decagon Devices Inc., Pullman, WA). To measure the hydraulic conductivity (kh; kg m-1 MPa-1), 
individuals were removed, covered with wet towels and plastic. Segments 20 cm long were measured with a hydrau-
lic conductance and flow meter in the transient mode (HCFM, Dynamax, Houston, TX), according to Sperry et al. 
(1988). The specific hydraulic conductivity (ks; kg m-1 s-1 MPa-1) was obtained as the ratio between kh and xylem area 
(Melcher et al. 2001).

Figure 1. Location of the study site and mangrove forests in the Ria Celestún Biosphere Reserve, Yucatan, Mexico.
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Anatomical characterization. After measuring the hydraulic conductivity, samples for each stage and site 
were fixed in FAA (formaldehyde, ethanol 96 °, glacial acetic acid, water 10: 35: 5: 50) (Ruzin 1999); and, af-
ter two days, washed with tap water and stored in GAA (glycerin, 96 ° ethanol, water 1: 1: 1) until section-
ing. Subsequently, smaller segments were extracted from the center of the samples and using a sliding micro-
tome (GSL1, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland), 50 µm thick transverse sections 
were obtained. Tissue sections were stained with safranin-fast green (Ruzin 1999) and mounted in permanent 
slides with synthetic resin. Sections were analyzed with a light microscope (DM2000, Leica, Wetzlar, Germa-
ny) and digital images of tree fields for each slide were taken with an integrated camera Olympus U-CMAD3, 
equipped with the program Infinity Analyze (release 5.0.2; Lumenera Corp., Canada). The measurements were 
carried out with the ImageJ (v1.49c; National Institutes of Health, USA) in three visual fields of each image cap-
tured. The tangential and radial diameter of the vessel lumen, the thickness of the vessel wall and vessel den-
sity were measured. The area of the vessel lumen (VLA) was calculated using the equation for an oval area as  
VLA =                 , where td = vessel tangential diameter and rd = vessel radial diameter. The percentage of solitary 
vessels and vessels arranged in radial multiples and clusters, were also obtained. The length of the vessel elements 
was measured in wood macerated using Jeffrey’s solution (Ruzin 1999).

Data analysis. Nested analyses of variance were performed to compare the means of the anatomical and physi-
ological variables between life stages and sites; stage was considered nested within mangrove type. Duncan post-hoc 
tests were done to identify significant differences among means (P < 0.05). Shapiro-Wilk’s tests were used to assess 
whether data distribution was normal, and Levene’s tests were used to test for homoscedasticity. Data without normal 
distribution or homoscedasticity were transformed with natural logarithm or reciprocal transformations. When nor-
mal distribution for the data was not achieved (grouping vessels) a Kruskal-Wallis test was performed. All analyzes 
were performed in STATISTICA 7 (StatSoft, Tulsa, USA). To distinguish the variables that contribute the most to the 
variance of groups, a canonical discriminant analysis (CDA) was performed using the physiological and anatomi-
cal variables that did not present multicollinearity (vessel density, lumen area and length of the vessel, % of solitary 
vessels, specific hydraulic conductivity, and maximum and minimum leaf water potential). Also, a canonical correla-
tion analysis (CCA) was performed with the most relevant discriminant variables; the physiological and anatomical 
variables as dependent variables (vessel density, specific hydraulic conductivity, vessel area, and maximum and 
minimum leaf water potential), and the microenvironmental variables (salinity and maximum VPD) as independent 
variables. The multivariate analyzes were performed with XLSTAT v7.5.2. (Addinsoft, France).

Results

Microenvironment. Fringe and scrub sites showed contrasting microenvironments during the study period. The fringe 
mangrove site had lower average salinity (25.84 ± 2.75 ‰) and higher soil water potential (Ψsoil; -0.30 ± 0.2 MPa) 
than the scrub mangrove site (51.42 ± 2.28 ‰ and -1.91 ± 0.94 MPa, respectively) (P < 0.05). Maximum vapor 
pressure deficit (VPD) in the understory was lower in the fringe mangrove site (1.38 ± 0.12 kPa) than in the scrub 
mangrove site (1.83 ± 0.12 kPa; P < 0.05). Also, the understory of the fringe site received less daily photosynthetic 
photon flux density (PPFD; 2.28 ± 0.2 mol m-2 d-1) than that of the scrub site (5.85 ± 0.54 mol m-2 d-1). The reference 
point above the canopy received up to ten times more PPFD than the understory of both sites (45.2 ± 2.46 mol m-2 
d-1). However, VPD values in the scrub site were like those registered above the canopy (Table 1).

Physiological responses. Hydraulic conductivity (kh) was higher for adults in the fringe forest (1.06 ± 0.3 kg m s-1 MPa-1) 
than that for adults in the scrub mangrove (0.32 ± 0.07 kg m s-1 MPa-1) (F1, 2 = 6.93, 14.13; P < 0.05; Figure 2). Differences 
in kh were also found between life stages in the fringe forest (P < 0.05). Specific hydraulic conductivity (ks) of plants was 
not different between life stages within each forest nor between forest types (F1, 2 = 1.7, 0.87; P > 0.05), but fringe adults, 
and fringe and scrub seedlings, had a tendency of higher ks values than shrub adults (Figure 3). Although the Ψpredawn was 
not different for plants at any site or stage, the Ψmidday of scrub adults was the lowest (Duncan test, P < 0.05; Figure 4).
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Mangrove type Temperature 
(°C)

Relative Hu-
midity (%)

Photosynthetic 
photon flux 

density (PPFD)
(mol m-2 d-1)

Mean vapor pressure 
deficit (VPD) (kPa)

Soil water 
potential (Ψsoil) 

(MPa)

Interstitial salinity 
(‰)

Scrub 27.7 ± 3.2 76.8 ± 9.5 5.8 ± 0.54 0.94 ± 0.57 -1.91 ± 0.94 51.42 ± 2.28
Fringe 27.0 ± 2.5 79.5 ± 7.5 2.28 ± 0.2 0.78 ± 0.41 -0.30 ± 0.2 25.84 ± 2.75
Above the canopy 27.5 ± 3.4 76.9 ± 10.5 45.2 ± 2.46 0.94 ± 0.61 - -

Table 1. Microenvironment of scrub and fringe mangrove understory and above the canopy in Celestún, Yucatan, Mexico. Data are 
means ± standard errors.

Figure 2. Hydraulic conductivity (kh) of seedlings and adults of Rhi-
zophora mangle in scrub and fringe mangrove. Different letters indi-
cate significate differences between sites and stage (P > 0.05). Data are 
means ± standard errors (bars indicate standard errors).

Figure 3. Specific hydraulic conductivity (ks) of seedlings and adults of 
Rhizophora mangle in scrub and fringe mangrove (P < 0.05). Data are 
means ± standard errors (bars indicate standard errors).

Figure 4. Predawn and midday values of foliar water potential of seed-
lings and adults of Rhizophora mangle from fringe and scrub mangrove. 
Different letters indicate significant differences in midday leaf water po-
tentials between stages and sites (P < 0.05). Data are means ± standard 
errors (bars indicate standard errors).
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Anatomical traits. Adults and seedlings of R. mangle had different anatomical stem structures. At seedling stage, stems 
showed secondary growth without significant differences in vessels characteristics between scrub and fringe mangrove 
forest (Figure 5; Table 2). Seedlings had an average vessel density of 103 ± 35 v/mm2, with a tangential and radial diam-
eter of 37.75 ± 6.53 µm and 41.83 ± 7.55 µm, respectively; vessels were mostly solitary (65.43 %) and vessel clusters 
less frequent (12.35 %). Compared to adults, seedlings had differences in anatomical characteristics related to the al-
lometric relationship of their respective growth stages (Figure 5), smaller vessels, but in a greater density than in adults 
(Table 2). Adults in fringe mangrove had lower vessels density (94 ± 6 v/mm2) than adults in scrub forest (111 ± 7 v/
mm2) (P > 0.01). Also, the vessel grouping pattern observed was different between forest types, with a higher percentage 
of solitary vessels in the fringe, and higher radial multiple vessels in the scrub (Table 2). Furthermore, vessel lumen area 
and radial diameter were higher for adults in the fringe than in the scrub mangrove (F1 = 16.5, 6.4, P < 0.05).

Variables Scrub Fringe

Adult Seedling Adult Seedling

Vessel density (v/mm2) 32 ± 1 a 934 ± 6 b 19 ± 1 a 111 ± 7 b

Tangential diameter (µm) 72.1 ± 2.3 a 37.8 ± 1.0 b 84.0 ± 2.2 a 37.7 ± 1.3 b

Radial diameter (µm) 70.4 ± 3.8 b 41.1 ± 1.4 c 89.7 ± 3.8 a 42.5 ± 1.4 c

Wall thickness (µm) 6.0 ± 0.2 a 3.8 ± 0.1 b 5.3 ± 0.2 a 3.7 ± 0.1 ab

Lumen area (µm2) 3807 ± 178 b 1122 ± 60 c 5609 ± 284 a 1136 ± 68 c

Length (µm) 905.5 ± 26.0 a 611.0 ± 16.1 b 926.1 ± 21.2 a 622.6 ± 17.9 b

% Solitary vessels 54.5 ± 3.7 a 70.7 ± 4.8 ab 72.2 ± 5.1 b 58.8 ± 4.7 ab

% Cluster’s vessels 14.7 ± 3.1 a 10.7 ± 3.6 a 11.9 ± 3.8 a 14.0 ± 3.5 a

% Radial multiples vessels 31.6 ± 4.2 a 18.5 ± 4.5 ab 15.9 ± 4.3 b 30.0 ± 4.5 ab

Table 2. Anatomical vessel variables for seedlings and adults of Rhizophora mangle from the scrub and fringe mangrove. Data are 
means ± standard errors. Different letters indicate significant differences within rows (Duncan test, P < 0.05). 

Figure 5. Transversal sections of stems of seedlings and adults of Rhizophora mangle in fringe and scrub mangrove: A) adult scrub; B) adult fringe; C) 
seedling scrub; and D) seedling fringe (V, vessels; X, xylem; P, phloem; Fi, fibers; Gf, Gelatinous fibers; SV, solitary vessels; RV, vessel radial multiples; 
CV, vessel clusters).
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Multivariate analysis. According to the CDA, the first discriminant function explained 80 % of the total variance 
and the second 16 % of the remaining variation. The first function explained the differences in adult and seedling 
stages defined by the vessel density, vessel lumen area, and ks; while the second explained the differences between 
fringe and scrub mangrove forest through the Ψpredawn and Ψmidday (Figure 6) (Wilk’s λ = 0.003, n = 120, P < 0.005). 
The correlation of environmental, physiological, and anatomical variables in the CCA was explained with 62 % in 
the first canonic correlation (0.94, P < 0.001). The canonical correlation analysis also showed a negative relationship 
between hydraulic conductivity and vessel lumen area with salinity (Table 3); also, it showed that Ψmidday and vessel 
density were negatively related to VPD.

Figure 6. Canonical Discriminant Analysis for anatomical and physiological variables of seedlings and adults of Rhizophora mangle in fringe and scrub 
mangrove forests. Wilk’s λ = 0.003, P > 0.005. FA: fringe adults; SA: scrub adults; FS: fringe seedlings; SS: Scrub seedlings.

Variables Correlation of original and ca-
nonical variables

Standardized 
canonical  

coefficients

Anatomical

Vessel density 0.63 0.11

Lumen vessel area -0.82 -0.88 a

Physiological

Specific hydraulic conductivity (ks) -0.82 -0.19

Predawn leaf water potential (Ψpredawn) 0.03 -0.34

Midday leaf water potential (Ψmidday) -0.10 -0.49

Environmental

Maximum vapor pressure deficit (VPDmax) -0.33 -0.97

Salinity 0.59 1.13 a

Table 3. Anatomical and physiological variables used in the canonical discriminant analysis and their partial contribution expressed by 
the standardized coefficients of the canonical functions. Letters represent the variables with more contribution in centroids separation.
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Discussion

Seedlings and adults of Rhizophora mangle showed physiological and anatomical strategies in the hydraulic conduc-
tion system that allowed them to respond to the contrasting environments in which they developed. While the fringe 
mangrove is in continuous contact with the water body, under salinity values close to those of the lagoon; the scrub 
mangrove, in the inland zone, has higher and variable salinity values, which are regulated by the sporadic high tide 
and rain events (Lugo et al. 2007, Herrera-Silveira 1994). This explained the differences in salinity and Ψsoil of both 
sites (Table 1). The higher daily photosynthetic photon flux density (PPFD) in the understory of the scrub mangrove, 
compared to the fringe mangrove, also caused higher temperature and vapor pressure deficit (VPD) values, which 
were closer to the reference value above the canopy (Table 1).

In these contrasting environments, salinity explained most of the variance in hydraulic architecture of both, seed-
ling, and adult stages, within the canonical correlation analysis (CCA). This agrees with previous studies showing 
that salinity is one of the most important factors influencing the health, distribution, growth, and productivity of 
mangroves (Ball 2002, Krauss et al. 2008). In scrub mangroves, the high salinity, lower soil water potential, and high 
vapor pressure deficit exert negative pressures on the hydraulic systems that guarantee the water flow from roots to 
leaves (Jones 2013, Reef & Lovelock 2015), which is reflected in the inverse relation of VPD and the Ψmidday in the 
CCA (Table 3). However, although this increase in pressure within the vessel could form air bubbles that lead to the 
cavitation vessel in the water column and the consequent reduction of hydraulic conductivity (Sobrado 2007), the 
narrower vessels and thicker walls, observed in scrub mangroves (Figure 5), would offer greater mechanical strength 
to resist strong negative pressures (Baas et al. 1983, Guet et al. 2015). In fact, salt exclusion mangroves, as R. mangle 
have the highest cavitation resistance reported for angiosperm trees (Jiang et al. 2017). 

The maintenance of the water column continuity is crucial to ensure water supply to leaves and allowing carbon 
gain for plant growth and survival (Tyree 2003). It has been observed that larger stems are related to wider vessels 
that ensure hydraulic efficiency through the water column (Rosell et al. 2017). This relation was also observed in 
this study: wider vessels in fringe adults, with larger stems and water columns, than in shorter stems of individuals of 
the scrub mangrove. Despite vessel length did not have significant differences between mangrove types (Table 2), a 
tendency was observed with shorter vessels in scrub mangrove that allow a safer water transport system, and larger 
vessels in fringe mangrove that resulted in a more efficient water transport (Cruiziat et al. 2002, Gil-Pelegrín et al. 
2005). Moreover, the higher vessel density and grouping observed in scrub adults and seedlings of both mangrove 
types, showed in Figure 5, would allow greater redundancy and, therefore, greater safety against embolisms (Cruiziat 
et al. 2002, Ewers et al. 2007). These characteristics provide safer hydraulic conductivity but imply a tradeoff with 
an efficient water flow capacity of each vessel according to the Hagen-Poiseuille law (Tyree & Zimmermann 2002). 
This inverse relation of hydraulic conductivity with vessel lumen area and salinity was sustained by the CCA (Table 
3). Conversely, the low density, wide vessels, and thin vessel walls of fringe mangroves, would allow a more ef-
ficient water transport, but high vulnerability to vessel cavitation. These results agree with Lin & Sternberg (1992), 
who recorded lower CO2 assimilation and higher water use efficiency on scrub mangroves than fringe mangroves. 
Yet, seedlings of both types of mangroves had similar hydraulic architecture, with high density, smaller and more 
clustered vessels that confer a safer, but a less efficient system, with hydraulic conductivity (kh) values well below 
those of adults (Figures 2, 5). 

The lower hydraulic conductivity in seedlings compared to adults highlight the relevance of a safe conducting 
system at this life stage, even if seedling establishment is generally favored by a greater growth and biomass produc-
tion (Donovan & Ehleringer 1991). However, a safer conducting system requires higher carbon investment, which 
implies an additional cost, diminishing growth rates (Ball et al. 1997, Sobrado & Ewe 2006, Jiang et al. 2017). Low 
hydraulic conductivity is associated to low photosynthetic rates, concordant with the low stomatal conductance ob-
served in scrub mangroves (Ball & Farquhar 1984, Shiau et al. 2017). Moreover, this safer hydraulic system could 
provide seedlings a greater chance of survival in a variable saline environment until the reproductive stage (Donovan 
& Ehleringer 1991). Although it has been suggested that seedlings show high plasticity (Farnsworth & Ellison 1996, 
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Biber 2006), in this study no differences were observed in the hydraulic architecture at this stage despite signifi-
cant microenvironmental differences in the sites they grew. This could be explained by the viviparity of R. mangle 
(Tomlinson 2016): the propagule is an important carbohydrate reservoir, which the seedlings can use differentially 
during the first stage of growth according to the specific conditions in which they develop (Smith & Snedaker 2000). 
Consequently, storage reserves are temporarily available for propagules to buffer from either flooding, salinity and/
or variability in resource availability that may otherwise affect photosynthesis and growth (Smith & Snedaker 2000, 
Dissanayake et al. 2014, Lechthaler et al. 2016).

One of the changes in water transport strategies related to the growth stage of R. mangle is the differences in 
leaf minimum water potential, as the canonical discriminant analysis (CDA) showed (Figures 4, 6). The leaf wa-
ter potential of adults at both sites was contrasting, with lower values in scrub compared to fringe adults, which 
ensures a pressure gradient for water transport in the more saline environment of the scrub mangrove (Melcher et 
al. 2001, Naidoo 2010, Reef & Lovelock 2015). In contrast, in seedlings, no differences among scrub and fringe 
were observed, but seedling leaf water potential was higher than that for adults. The higher water potential in 
seedlings could mean that at this stage, both propagule and leaves are important water reservoirs (Lechthaler et 
al. 2016). The access to water reserves could also explain the similarity in the xylem structure and hydraulic con-
ductivity at both sites for the seedling stage (Ball 1988, Melcher et al. 2001, Hao et al. 2009). However, the water 
transport strategies could change for seedlings as they grow, as it has been observed by Kodikara et al. (2017) in 
seedlings of six mangrove species, implying that adaptation to salt and physiological needs of mangrove seed-
lings vary with age.

Differences in the hydraulic architecture of the two studied stages of scrub R. mangle highlight the relevance of 
the propagule itself and the growing season in which it is established. It has been reported that the balance of reserves 
and photosynthetic function of the propagule can change depending on the environment in which seedlings develops 
(Smith & Snedaker 2000). Thus, seedlings that grow in lower salinity conditions, such as those of the fringe forest, 
can waive the propagule reserves and obtain carbon from photosynthesis (both from the propagule green tissue and 
from its developing leaves). In contrast, in places where environmental conditions limit photosynthesis and hydraulic 
conductivity (Naidoo 2006, 2010), such as the scrub mangrove, seedlings can use these reserves for their growth. 
Furthermore, strategies regarding hydraulic architecture in seedlings could depend on the specific season in which 
they were established (Dissanayake et al. 2014, Schreel et al. 2019, Guillén-Rivera et al. 2021). These results also 
highlight the importance of a correct choice or season for reforestation on restoration projects and the importance of 
seasonal influx of water for successful seedling establishment.

It is possible that at the seedling stage, specific hormonal signals are generated according to the microenviron-
ment and, consequently, these signals can be critical for the formation of a conduction system that guarantees 
an efficient or safe water flow once the seedling has matured, and the hypocotyl reserves have been exhausted 
(Farnsworth & Ellison 1996, Farnsworth 2004). Developing an adequate hydraulic architecture according to the 
microenvironment is essential to survive in fluctuating environmental conditions such as those found in man-
grove forests (Ball 1988, 2002, Yan et al. 2007, Wang et al. 2011). Thus, fringe seedlings ultimately develop an 
efficient conduction system that allows larger trees to grow larger vessels and greater hydraulic conductivity, 
while scrub seedlings maintain a safe conduction system throughout their lifetime, even at the cost of limiting 
their growth.

Although salinity was the most important factor in this study for the differences in hydraulic architecture for plants 
in the two sites, other factors such as hydroperiod or nutrient availability, which play a significant role in the develop-
ment of functional strategies of mangrove species (Feller et al. 2010) were not considered and should be explored in 
further studies. A greater understanding of the hydraulic architecture at different life stages allows the development 
of more exact models on the structure and dynamics of mangrove forests (Ellison & Farnsworth 1997, Vargas-Cruz et 
al. 2019, Peters et al. 2020), which can be beneficial for diagnosing their health and for management actions relevant 
to their restoration and conservation.
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