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Abstract: Proton exchange membrane fuel cell (PEMFC) emulators are feasible solutions for conduct-
ing low-cost and safe developments. These types of systems have attracted the attention of global
PEMFC manufacturers and research groups over the last few years. Owing to these emulators, it has
been possible to develop and optimize PEMFC systems including power electronics and control with-
out the need to use or damage a real PEMFC. However, despite the importance of PEMFC emulators
in research, reported studies on this topic remain scarce. For this reason, this review describes the
main characteristics and different types of PEMFC emulators (i.e., pseudo and electronic emulators),
providing a basis for new emulator prototypes. Additionally, in this paper, the mathematical models
that complement PEMFC emulators are presented (i.e., these models and emulators generate reliable
measurements compared with real PEMFC systems). Examples of electronic circuit designs based on
mathematical models (electrical and heat) are also presented to give some insight into the construction
of new PEMFC emulators. Therefore, this paper proposes tools for the construction of new PEMFC
emulators to boost the development of this technology.

Keywords: circuit electronic modeling; current ripple; DC–DC converter; hardware in a loop; PEMFC;
PEMFC emulators

1. Introduction

Due to the high costs of fossil fuels and growing concerns about greenhouse gas emis-
sions, researchers are looking for renewable energy sources, with the aim of sustainability
with accessible cost, high efficiency, and low-environmental-impact power conversion.
Therefore, the interest in power-generating systems such as photovoltaics, wind turbines,
and fuel cells (FCs) has increased. However, the intermittency and instability of renewable
energies, such as solar and wind, have produced challenges for the stable operation of
electrical systems, creating temporal and spatial gaps between energy consumption by end
users and energy availability. Therefore, additional energy storage technology is needed as
an effective means to help achieve stable and efficient renewable energy operation [1]. FC
systems are not subject to intermittent restrictions, making them safer and more reliable.
Additionally, FC systems have been shown to be sources of clean energy, environmentally
friendly, and sustainable due to their higher energy efficiency, reduced emissions, and high
energy density [2,3].

The primary function of FCs is to convert chemical energy from gaseous fuel into
electricity. FCs can also serve as substitute stationary and mobile power sources [4].
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Today, different manufacturers offer many options and types of FCs. They can be classified
according to their specific characteristics, such as the type of fuel used, the reaction temper-
ature, and the electrochemical material used [5]. In addition, the main FCs reported in the
literature are proton exchange membrane (PEMFCs), direct methanol, solid oxide, molten
carbonate, phosphoric acid, alkaline, and microbial FCs [6,7]. In the field of both stationary
and mobile applications, PEMFCs are among the most widely used and promising. This
is due to their main features, which are quick and silent start-up operation, robustness,
and a relatively low operating temperature range, which is, in general, between 60 and
80 °C [8,9].

Despite the significant technological advancements in PEMFC in recent years, issues
such as their cost, size, weight, and complexity of peripheral devices are still of interest for
research because the PEMFC system is intricate, involving several physical phenomena,
including thermal, electrochemical, and electrical aspects. The PEMFC stack needs several
auxiliary components for its correct operation, such as a humidification system, a cooling
system, an air management system, and a hydrogen supply system. To enhance PEMFC
performance, it is necessary to study, develop, and optimize every auxiliary component.
This will allow the optimization of both the PEMFC stack and the powerful nonlinear
interactions that exist among its components [10]. However, the acquisition of PEMFC
system components and the considerable amount of labor required to assemble the usual
complex PEMFC systems result in very high costs [11]. Therefore, due to the high costs
involved, many researchers have performed studies based on numerical simulations using
computational fluid dynamics (CFD), which is a branch of fluid mechanics that uses
numerical analysis and data structures to analyze and solve problems involving fluid
flows in PEMFCs. However, the experimental hardware is ignored when using simulation
(software) only, but this hardware is important in studying the behavior of the PEMFC in a
complete system (microgrid). For this reason, hardware capable of accurately imitating the
behavior of a PEMFC can allow experimentation without the use of a real PEMFC, at least
for the first experimental stages. These hardware systems are called emulators or real-time
simulatosr [12].

A real PEMFC can be replaced with an emulator, allowing for the study and configura-
tion of the remaining PEMFC components (auxiliaries, power electronics interfaces, loads,
etc.) [13]. The final stage involves replacing the emulator with the real PEMFC once the
system has been thoroughly examined and confirmed. In this way, all risks of damage to
the system are reduced, and money, time, and space are saved [14].

Mathematical models are essential for the development of PEMFC emulators [15].
However, despite the wide variety of models developed for PEMFCs [16–25], those that are
most suited to the purpose of emulator development are the equivalent electronic circuit
models (ECMs) because these models are fit to describe the electrical behavior of a PEMFC
or how the PEMFC interacts with the associated electrical systems and power conditioning
circuits such as power electronics [26]. In addition, ECMs aid with electronic interface de-
sign and control and reliability test analysis [27,28]. Two types of ECMs have been reported:
dynamic and passive models [26]. Chemical and thermodynamic processes must both be
considered in a dynamic model. Consequently, it is possible to construct an optimal system
in terms of efficiency and cost by understanding the special properties of the PEMFC [29,30].
Furthermore, power converter performance, transient response, and efficiency can be im-
proved using a dynamic model, allowing for the creation of control systems that are
appropriate for the load demand [31]. Passive models can be used to predict the perfor-
mance and degradation of a PEMFC while it is in standby mode. This mode is appropriate
for uninterruptible power systems when dependability is crucial and the PEMFC is idle for
the majority of the time [26].

With the development of ECMs for PEMFCs, the construction of emulators has be-
come viable, because it depends on the construction and implementation of an electronic
circuit into the system. Although some authors have already developed and implemented
emulators, this field is still developing due to the few reported studies in the literature.
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The reported emulators can be classified as pseudo emulators [10,32] and electronic em-
ulators, the latter of which are divided into electrical [11,12,14,15,33–66] and heat emula-
tors [11,36,55,67].

Particularly for electrical emulators, different investigations have been carried out for
their design, construction, and validation. In [59–61,63,66], electrical emulators have been
developed for 10 W, 1.2 kW, 3 kW, and 5 kW PEMFC systems. Additionally, the reported
controllers for electric emulators have been realized on hardware platforms based on DC–DC
buck converters, the control strategies of which are mainly based on PI controllers [49] and
fuzzy control [54], among others. This kind of system is typically implemented on digital
platforms using digital signal processors (DSPs) or dSPACE control boards [10,14,57,62]
and field programmable gate arrays (FPGAs) systems [61]. For the validation of the emulators,
in addition to performing a comparison of data taken from a real PEMFC, the hardware-in-
a-loop (HIL) system has been successfully used [37,40–42,44,46–48,56]. As a result, due to
the few reported studies and the importance of PEMFC emulators for the investigation and
optimization of PEMFC systems, this review aims to provide a guide for the development of
future emulators for PEMFCs.

This paper is composed of six sections. After pointing out the motivations and current
state of the art regarding this review in the Introduction, in Section 2, a summary of the basic
PEMFC characteristics is presented. After that, the different types of emulators, controllers,
and validation methods are explained in Section 3. In Section 4, mathematical models of
PEMFC emulators are described. Because the design of electronic circuits is important for
the construction and implementation of an electronic emulator PEMFC, examples of these
designs are presented in Section 5. Finally, in Section 6, a discussion is given.

2. The Basic Operation of PEMFCs

A lot of research has been conducted to make PEMFCs that are highly reliable and
efficient for use in various applications such as portable power source devices and stationary
or mobile applications. Owiwng to the development of computational fluid mechanics
and working memory resources in computers capable of simultaneously solving many
equations, recent advances have been made, particularly in materials and current density,
which will eventually increase power density, device efficiency, and reliability [68]. In
addition, compared with heat engines and when used in modular power generation,
PEMFCs are more efficient [69].

A PEMFC is formed by a proton exchange membrane sandwiched between two elec-
trodes (anode and cathode). Due to its unique characteristic, the membrane only permits
protons to travel through while blocking electrons, especially perfluoro sulfonic acid mem-
brane materials represented by Nafion and other sulfonated polymers [70]. In particular,
Nafion contains a hydrophobic polytetrafluoroethylene (PTFE) backbone and a hydrophilic
sulfonic acid group as the end group of the side chain. The membrane phase separates
only after hydration, forming channels for proton conduction [71]. As hydrogen gas travels
over the anode, it splits into hydrogen protons and electrons with the aid of a catalyst.
Electricity is produced by the flow of protons via the proton exchange membrane to the
cathode and the flow of electrons through an external circuit. Water is created when oxy-
gen and hydrogen protons and electrons pass through the cathode, as shown in Figure 1.
The reactions in a PEMFC are given by [72]:

2H2 → 4H+ + 4e− (anode reaction)
O2 + 4H+ + 4e− → 2H2O (cathode reaction)
2H2 + O2 → 2H2O (overall reaction)

(1)

The typical characteristics of PEMFCs are usually described by the polarization curve,
which is a function depending on the voltage and current of the cell. Due to PEMFC
electrical impedance, ineffective transport of the reactant gas, and slow reaction rate,
the voltage decreases as more current is extracted from it. Low-load operation is desirable
because a lower voltage indicates a lower-efficiency PEMFC. However, FC size and weight
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are increased as a result. Furthermore, mobile applications that require frequent load
changes cannot operate at low loads all the time. The polarization curve varies with
the operating conditions, including pressure, temperature, partial pressure of reactants,
and membrane humidity [69].

H2 out O2 out

H2 in O2 inMembrane electrode assembly

Gasket Gasket

Gas diffusion layer

Bipolar plate

Current collector

Figure 1. Scheme of a basic PEMFC.

As shown in Figure 1, to form a complete FC system, the PEMFC stack needs several
ancillary parts in addition to the four main flow subsystems: an anode hydrogen supply
system, a cathode air supply system, a humidifier, and a cooler that maintains the tempera-
ture and humidity level of the PEMFC. To avoid constant heating and ensure fast system
transient response, safe shutdown, system robustness, and the ability to adapt to power
changes, the main parameters that need to be regulated are reagent flow rate, total pressure,
partial pressure of the reagent, membrane, temperature, and humidity. The key control
mechanisms are the water pump for temperature regulation, the humidifier for humidity
management, the hydrogen flow and pressure-regulating valve, and the compressor motor
for pressure regulation and airflow. It is worth mentioning that changes in one parameter
influence the others. For instance, an increase in airflow velocity can raise the air pressure,
but it can also change the amount of heat and steam that enters and leaves the stack,
influencing the temperature and humidity of the stack and the membrane [57,69]. Thus,
this is why PEMFC systems are complex.

3. Types of PEMFC Emulators

Emulators are frequently employed in renewable energy systems because these
electrical-power-generating systems are expensive, typically have security requirements,
use chemical reagents, and exhibit unpredictable behavior [38]. Emulators for different
types of fuel cells have already been reported in the literature [73–75]. However, as men-
tioned in the Introduction, this review is focused on PEMFC emulators.

PEMFC emulators are designed to reproduce certain characteristics of this type of FC.
Thus, experiments and studies of these characteristics have been carried out mimicking
real performance without the need for a PEMFC [5,10]. Currently, an efficiency of 97% has
been achieved for PEMFC emulators [5]. The initial step in simulating PEMFC systems is
establishing the emulator’s implementation characteristics while taking into account the
PEMFC application and objective. It is recommended to use digital processing systems as
they allow quick and easy modifications of the algorithm because the emulation system
must be frequently modified [38]. Additionally, for emulator lifetime purposes, several
factors must be taken into account, such as the build quality, the type of components,
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the way it is used and maintained, the deployment environment, and the frequency of use.
Additionally, PEMFC emulators are subject to wear and tear and possible failure due to
continued use or the passage of time. In this section, different types of PEMFC emulators
are briefly described.

3.1. Pseudo Emulators

PEMFC pseudo emulators are designed to replace computer models of PEMFCs with
a real small PEMFC. With the use of scaling rules, the emulator is capable of imitating the
behavior of a full-size PEMFC using this method. Pseudo emulators have the benefit of
scaling currents and voltages in response to the emulator’s actual load, which enables the
testing of systems of any size [32]. However, this type of emulator requires suitable PEMFC
auxiliary components [10].

3.2. Electrical Emulators

By programming a DC power source, a PEMFC electrical emulator can be quickly
and easily created. Nevertheless, these DC power sources frequently have current and
voltage ranges that are not the same as those needed to replicate a particular PEMFC
model [63]. Therefore, a DC transformer based on a noninverting DC–DC buck-boost
converter (generally buck converter) is necessary between the load and the DC power
source to modify the voltage or current of the emulated PEMFC [34,63].

Considering this electronic emulator development, the use of control strategies and
implementation methods is necessary for the reliable validation of PEMFC electrical emu-
lators. For this reason, this subsection also presents some control techniques reported in
the literature.

Control Strategies and Implementation Methods for Electric Emulators

Proportional-integral (PI) controllers. PI controllers have been applied to control
electric emulators based on buck converters. This controller creates a control signal for a
pulse width modulator (PWM), which provides the gate signal pulses of a MOSFET switch
by comparing the output voltage to the PEMFC’s reference voltage [49].

Fuzzy controller. These models have been proven to be suitable for the implemen-
tation of PEMFC emulators and the development of the simulation of control strategies
due to their simplicity, short processing time, and extensive knowledge of implementation
techniques [54]. The fuzzy relational model, neural-network-based fuzzy model, T-S fuzzy
model, and fuzzy basis function-based model are a few modeling methods based on fuzzy
reasoning that have been presented in recent years [76]. In particular, for PEM emulators,
given their computing limitations, a low-cost digital processing device is created to apply a
fuzzy-based model in the emulator and meet the needs of real-time processing [54].

Digital signal orocessor (DSP) and dSPACE. In the application of PEMFC emulators,
a linear power amplifier linked to a DC–DC converter or directly to a load uses the output
voltage from dSPACE as a reference control. The dSPACE protoboard has a digital-to-
analog converter to connect the reference cell voltage from the PEMFC model to the power
amplifier, an integrated DSP where the PWM controller is loaded, an analog-to-digital
converter to read the measurement inputs from the sensors, and a digital input/output
port for sending and receiving PWM signals [10,14,57,62].

Field-programmable gate array (FPGA). After production, an FPGA-integrated cir-
cuit can be configured by a customer or designer. In PEM emulator applications, the digital
controller that simulates the PEMFC stack being tested is part of the FPGA system. The con-
troller receives the digitized output voltage from the digitized current stream. The power
stage provides the interface between the charging device and the emulator system. The con-
troller samples the FC current while simulating the voltage across the PEMFC. Additionally,
using the controller, it is possible to establish the initial temperature of the PEMFC stack
being tested as well as the ambient temperature and determine the temperature of the stack
using current samples [61].
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3.3. Heat Emulators

Studies on heat emulators based on electronic circuits are very scarce [11,36,67]. Elec-
tric plate heaters were used to generate the necessary amount of heat, emulating this
parameter from the PEMFC stack. In addition, a collection of copper blocks was used to
imitate a PEMFC stack’s internal heat capacity. To do this, the right number of blocks was
selected to correspond to the comparable heat capacity of an actual PEMFC [11]. In the
studies reported so far, the PEMFC heat emulators have been controlled by a microcon-
troller [11,36,67].

3.4. HIL Method

A PEMFC emulator can be used for HIL applications to test and validate the design of
PEMFC systems [44]. The HIL method is a simulation/emulation process that connects
software models of other system components with the hardware being tested or a reduced
version of it [32]. Thus, using the HIL method, PEMFC auxiliaries can be tested and
improved in real time with a PEMFC emulator without the risk of the PEMFC stack being
damaged and at a low operating cost [44].

Figure 2 presents a diagram that summarizes the different types of reported emulators
and the main characteristics of their design and construction.

PEMFC
emulators

Pseudo emulators Electronic
emulators

Scaling to a small
PEMFC and its

auxiliaries

Electrical emulators Heat emulators

• DC power supply

• Buck-boost converter

• Electric plate heaters
• Copper blocks

• Controllers
• Validation methods

Voltage data Heat data

• Small PEMFC data
• Validation methods

Voltage and heat data

Figure 2. Diagram of the different types of emulators and the main characteristics of their design
and construction.

4. Mathematical Model

The mathematical models used for the development of simulations, electronic circuits,
and emulators are presented in this section.

4.1. Voltage–Current Models

Generally, the polarization curve of a PEMFC is non-inear and expressed in terms of
PEMFC power Pf c:

Pf c = Vf c · I f c (2)
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where Vf c is the voltage (V), and I f c is the electrical current (A) of the PEMFC. The voltage
Vf c is usually expressed in terms of Nernst’s voltage Eth and the voltage drops: activation
Vact, ohmic Vohm, and concentration Vcon [14,77]:

Vf c = Eth −Vohm −Vact −Vcon, (3)

Nernst’s voltage Eth. The difference between the reactant products and the Gibbs
free energy yields Nernst’s voltage, also known as the open-circuit voltage, which is the
highest power obtained by one cell and corresponds to the exchanged Gibbs free energy.
The following equation can be used to describe it [78,79]:

Eth = E0 + B1 · (T0 − T) + B2 · T · ln
[

PH2 · P
1/2
O2

PH2O

]
, (4)

where T0 and T are initial and cell temperatures (K), respectively; PH2 , PO2 , and PH2O are
hydrogen, oxygen, and water pressures (atm), respectively; E0 is the reference voltage (V);
B1 and B2 are positive constants [77]. It should be noted that the initial pressure values in a
PEMFC can be measured using differential pressure sensors, which are usually placed in
the inlet and outlet flow channels of the gases. Thus, the pressure difference can provide
information about the flow and resistance in a cell.

Ohmic voltage drop Vohm. The ohmic voltage drop results from the resistances of the
polymer membrane to proton transfer and of the electrode and collector plate to electron
transfer [77–79].

Vohm = I f c · Rohm, (5)

where Rohm is the internal electrical resistance (Ω). The membrane conductivity σm can be
used to express the ohmic resistance (cm·Ω−1).

Rohm =
tm

σm
, (6)

where tm is the membrane thickness (cm). σm can be expressed as a function of membrane
water content λm and T.

σm = (b1 · λm − b2) · exp
[

b3 ·
(

1
T0
− 1

T

)]
, (7)

where b1, b2, and b3 are constants and are usually assessed empirically.
Activation voltage drop Vact. The requirement to transfer electrons, and break and cre-

ate chemical bonds in the anode and cathode causes the drop in activation voltage. Driving
the chemical reaction that moves the electrons to and from the electrodes uses up some
of the available energy. Both the anode and cathode of a PEMFC electrode experience
activation voltage. Yet, compared with the reaction of oxygen at the anode, the hydrogen
oxidation process occurs quickly [77]. Vact can be expressed as (8) [57,72].

Vact =

(
R · T

α · z · F

)
· In
( I f c

I0

)
= b4 + T · [b5 + b6 · In(I f c)], (8)

where R is the universal gas constant (J ·mol−1 ·K−1), α is the electron transfer coefficient,
z is the number of participating electrons, F is Faraday’s constant (C ·mol−1), and I0 is the
exchange current (A). b4, b5, and b6 are the constants in the Tafel equation.

Concentration voltage drop Vcon. The concentration gradients created by mass dif-
fusions from the flow channels to the reaction sites are represented by the concentration
voltage drop (catalyst area). High current densities, lethargic transport of reactants and
products to and from the reaction sites, and a water film coating the catalyst surfaces on
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the anode and cathode are the causes of this voltage drop [77]. Vcon can be expressed
by (9) [11,72].

Vcon =

(
R · T
z · F

)
· In
(

1−
I f c

Imax

)
, (9)

where Imax is the maximum operating current of a PEMFC (A) with a restriction established
by concentration losses.

4.2. Voltage–Current ECMs

Researchers conducted an electrochemical analysis to develop an ECM for a PEMFC,
which is applicable for modeling power generation and its converters. Model parameters
were determined using experimental polarization curves and electrochemical impedance
spectroscopy, and simulation results were validated using these methods [28].

Nernst’s voltage. This voltage can be emulated by a DC voltage source Vini [80]. Thus,
it is possible to establish the following equation:

Eth = Vini. (10)

Ohmic voltage drop. An equivalent resistance connected in series to the model
PEMFC terminal can simulate this voltage. FC manufacturers provide the corresponding
internal resistance value. However, it must be remembered that variations in operating
temperature can cause changes in the resistance of the PEMFC [14]. Notice that Vohm can
be represented by (5) as well.

Activation and concentration voltage drops. These voltages are responsible for the
complex dynamics of the circuit. The double-layer charge effect serves as the primary
regulator of PEMFC dynamics. A capacitor can be used to represent the charge layer
that corresponds to the electrolyte/electrode contact because it functions as storage for
electrical charges. Each change in voltage necessitates a charging time (in the event of an
increase in voltage) or a leakage period (in the event of a voltage decrease). The ohmic
drop, whose change can be thought of as instantaneous, is unaffected by this time delay
but the activation and concentration voltages are affected. Thus, modeling of the activation
and concentration voltage drops as first-order delay dynamics is possible.

d(Vact + Vcon)

dt
=

1
C
· I f c −

1
τ
· (Vact + Vcon), (11)

with a time constant τ = C · Ra. Given that the equivalent resistance Ra depends on
the activation and concentration voltages as well as the load current, the time constant τ
controls the dynamics changes depending on the load conditions:

τ = C · Ra = C ·
(

Vact + Vcon

I f c

)
. (12)

So, by using (5), (10) and (11), PEMFC voltage can be expressed as:

Vf c = Vini − I f c · Rohm − (Vact + Vcon). (13)

4.3. Heat and Temperature Models

The thermal dynamic response of a FC Q f c is due to each cell layer’s capacity
to conduct heat. The following description fits this dynamic for each thermal control
volume [57]:

dQ f c

dt
=

dQc

dt
− dQe

dt
− dQloss

dt
. (14)
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where the chemical reaction Qc, the electrical output power Qe, and the heat loss Qloss
are responsible for releasing the available power and can be estimated by (15) to (17),
respectively [57].

dQc

dt
= nH2 ·

(
∆G0 − R · T · In

(
PH2 ·

√
PO2

))
, (15)

dQe

dt
= Vf c · I f c, (16)

dQloss
dt

= h · N · Acell · (T − Tr), (17)

where nH2 is the number of moles of hydrogen (mol), ∆G0 is the Gibbs free energy (J·mol−1),
h is the coefficient of convective heat transfer (W· cm−2·K−1), N is the number of cells in
the stack, and Acell is the cell area (cm2).

Finally, a PEMFC works at a constant temperature when Q f c = 0; however, the
temperature may increase or decrease during transitions according to (18) [81].

M · Cs ·
dT
dt

=
dQ f c

dt
, (18)

where M is PEMFC mass (kg), and Cs is the equivalent average specific heat coefficient
(J·kg−1·K−1).

4.4. Heat and Temperature ECMs

The heat emulator circuit is based on a controllable voltage source VH and a resistive
heater RH . The heat generated is a direct function of VH [11].

Q f c =
V2

H
RH

. (19)

In other words, VH directly controls the magnitude of the emulated waste heat.

4.5. Electrochemical Models

In this subsection, the equations that complement the emulation of a PEMFC system
are presented. The electric power of the stack PS (W) is obtained via:

PS = N · Pf c. (20)

The equations for calculating mass fractions are provided in this subsection due to
their importance in PEMFC simulations. The equations used to calculate the mass fractions
provided in this review are ordinary differential equations or 0D, which are validated by
measuring the inputs and outputs of the masses in a PEMFC.

The hydrogen mass flow rate of oxygen mH2 (kg·s−1) can be obtained using (21) [81].

mH2 =

(
MH2

2 · F

)
·
(

PS
Vf c

)
, (21)

where MH2 is the molar mass of hydrogen (Kg·mol−1). Additionally, the hydrogen excess
ratio µH2 is calculated as a function of the hydrogen mass flow rate entering anodes mH2,in
and mH2 [57].

µH2 =
mH2,in

mH2

, (22)
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The mass flow rate entering the anode channel mH2,in is calculated using the hydro-
gen mass flow rate reacting in the PEMFC stack and the purge mass flow rate mH2,purge.
Therefore, mH2,in can be defined by [57]:

mH2,in = mH2 −mH2,purge. (23)

Moreover, the air mass flow rate mO2 (kg·s−1) is obtained using (24) [81].

mO2 =

(
MO2

4 · F

)
·
(

PS
Vf c

)
. (24)

where MO2 is the molar mass of oxygen (Kg·mol−1). Additionally, the oxygen excess ratio
µO2 is calculated as a function of the oxygen mass flow rate entering cathodes mO2,in and
mO2 [57].

µO2 =
mO2,in

mO2

, (25)

mO2,in is calculated using the mass flow rate of dry air ma,in in the cathode inlet and oxygen
mass fraction mO2, f ra,

mO2,in = ma,in ·mO2, f ra. (26)

Additionally, during the operation of the stack, the rate of water production mH2O
(kg·s−1) is calculated using (27) [81]

mH2O =

(
MH2O

2 · F

)
·
(

PS
Vf c

)
. (27)

where MH2O is the water molar mass (Kg·mol−1).
Finally, the system PEMFC efficiency is obtained by (28) [81]

η =
PS

mH2O · LHVH2

, (28)

where LHVH2 is the lower heating power for hydrogen (120 J·kg−1). This parameter is a
measure of the available thermal energy produced by the combustion of hydrogen in a
PEMFC. This parameter is calculated as the subtraction of the heat of the vaporization of
water from the higher calorific value.

5. Electronic Circuit Designs for Electronic Emulators

Because the design of electronic circuits is important for the construction and im-
plementation of electronic emulators, some electronic circuit designs are presented in
this section.

The first ECM for PEMFC was proposed by Larminie et al. [82]. In this model, each
electrode is represented by a parallel-connected capacitor, resistance, and voltage. The cir-
cuits reported in the literature are mainly focused on describing the voltage behavior of
PEMFCs. For the design of electronic circuits, some authors have employed mathematical
models [4,26–28,30,72,83–100], while others have chosen to describe the polarization curve
taking into account the behavior of the electronic components [29,31,101].

5.1. Design of Electronic Circuits for Electrical Emulators

Examples of electronic circuit designs for electrical emulators are presented in this
subsection for both equation-based designs and electronic components.
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5.1.1. Design of Electronic Circuit Equation Based Electronic Circuits

To design an electronic circuit based on voltage–current equations, Nernst’s voltage
Vini and the voltage drops must be considered (see (3) and (13)), as depicted in Figure 3.

−+Vini

+ Vohm – + Vact – + Vcon –
I f c

+

−

Vf c

Figure 3. Schematic design of an electronic circuit using voltage–current equations.

An example of an electronic circuit is presented in Figure 4. In this case, the authors
considered the nonlinear behavior of voltage drops Vact and Vcon, which were modeled by a
capacitor C (double-layer capacitance) and two resistances R1 and R2. One resistance Rohm
was used to model the voltage drop Vohm. Additionally, in this example, the relationship of
the PEMFC voltage with temperature and current is considered [35].

−+Vini

Rohm

Vohm

R1 R2

C

Vact + Vcon

I f c

+

−

Vf c

Figure 4. Example 1 of electronic circuit design for an electrical emulator [35].

Another design example of an electronic circuit is illustrated in Figure 5. This circuit
consists of a PEMFC membrane resistance Rohm, a parallel combination in series of one
capacitor, and an impedance of a Faradic reaction formed of a charge transfer resistance Rct
and a specific electrochemical element of diffusion, which is also called a Warburg element
(this element is estimated using a series combination of two parallel RCs) [83].

−+Vini

Rohm

Rct

R1

C1

R2

C2

C

Warburg element

I f c

+

−

Vf c

Figure 5. Example 2 of electronic circuit design for an electrical emulator [83].
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One more example of electronic circuit design based on voltage–current equations is
presented in [84]. The design includes the effects in both the anode (one capacitance Ca and
two resistances Ract,a and Rcon,a) and cathode (one capacitance Cc and two resistances Ract,c
and Rcon,c) sides, as shown in Figure 6.

−+Vini

Ract,a Rcon,a

Ca

Rmem

Ract,c Rcon,c

Cc

Anode Cathode

I f c

+

−

Vf c

Figure 6. Example 3 of electronic circuit design for an electrical emulator [84].

However, as discussed in [84], compared with the cathode side, the anode side is barely
affected by the activation and concentration voltage drops. To imitate this, a simplified
ECM can be used, as shown in Figure 7.

−+Vini

Ract Rcon

C

Rmem
I f c

+

−

Vf c

Figure 7. Example 4 of electronic circuit design for an electrical emulator [84].

5.1.2. Design of a Components-Based Electronic Circuit

In this example of electronic circuit design, the authors in [29,31] analyzed the behavior
of the PEMFC polarization curve. Thus, they proposed a simplified electrical equivalent
circuit built by a resistance R f c in series with a DC voltage source, as shown in Figure 8.

−+Vini

R f c
I f c

+

−

Vf c

Figure 8. Example 5 of electronic circuit design for an electrical emulator [29,31].

5.2. Design of Electronic Circuits for Heat Emulators

In the studies reported so far, a controllable voltage source VH and a resistive heater
RH form the heat electronic circuit. Additionally, the heat produced using this circuit is
due to VH (see (19)). the block of materials RtBody that must take into account the internal
thermodynamic characteristics is positioned between RH and the active cooling system,
as shown in Figure 9. The internal heat capacitances and thermal conductivity of stack
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membranes, gas diffusion layers, bipolar plates, and any other heat transfer physics that
exist between the principal stack materials and the flowing coolant are some examples of
these internal thermodynamic properties [11].

−+VH RH

RtBody

Controller

Cooling system

Figure 9. Example of electronic circuit design for a heat emulator [11].

6. Discussion

Figure 10 shows a comparison of the number of studies reported for models and
designs of electronic circuits and the number of studies for validated PEMFC emulators per
year. Before 2010, there was the highest number of papers on the development of electronic
circuits that imitate the behavior of a PEMFC, while for emulators validated for PEMFC
systems, the highest number of reported studies was between the years 2008 and 2020. This
demonstrates the maturity that this technology has achieved in recent years.
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Figure 10. Evolution of the number of studies on electronic circuit designs and validated emulators
per year.

Figure 11 illustrates a summary of this work. For electronic emulators (electrical and
heat), controllers and mathematical models (simulation) need to be connected to them to
obtain reliable measurements of a PEMFC system. For pseudo emulators, adequate scaling
is needed for a small PEMFC to collect data from a reduced PEMFC system; later, these
data are scaled to a real PEMFC system. However, in addition to the different parameters
proposed in this review, it is necessary to take into consideration the different cooling
methods used for the development of emulators and complex simulations [102,103], which
are usually air cooling for PEMFCs less than 5 kW and coolant cooling for PEMFCs with
power greater than 5 kW. Therefore, the temperature parameter of the PEMFC and the
end purpose of the emulator are important factors to consider when developing one.
Figure 11 shows the methods used to validate PEMFC emulators in general (i.e., through a
comparison with data from a real PEMFC system and the HIL method).
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Simulation

Voltage-current
model

Electrochemical
model

Temperature and
heat model

Controller and
implementation

method

• PI
• Fuzzy
• DSP and DSpace
• FPGA

Microcontroller

Emulation

Pseudo-emulator

Electrical emulator

Heat emulator

Validation

Comparison with
PEMFC real data

HIL
implementation

Scaling rules

Small PEMFC:
• Load
• Components
• Auxiliaries

Figure 11. Diagram of the interactions of the different types of emulators with their components for
proper operation.

7. Conclusions

PEMFC emulators are a valuable tool for developing PEMFC systems. This is because
emulators reduce experimental cost, labor time, and installation space in the early stages
of research, plus there is no risk of damaging the PEMFC system. Additionally, the
PEMFC emulators presented in this paper can be widely used in various microgrid and
hybrid energy storage simulators, where a fuel cell is an object (black box) in which input
and output current parameters are read without considering the internal processes of
the PEMFC.

This review presented a study of the different types of emulators for PEMFC (pseudo
and electronic emulators). Electronic emulators have been developed in previous studies
(development of ECMs); for their proper functioning, different types of controllers have
been used. For pseudo emulators, an adequate reduction of the PEMFC system is necessary,
which can be expensive. For the validation of PEMFC emulators, the data comparison
method and the HIL method are generally used.

Different mathematical models were also presented for PEMFC systems. These models
represent the simulated part of the system and, together with a PEMFC emulator, it is
possible to obtain complete and reliable measurements of the entire system. Additionally,
electrical circuit designs were presented to show the electrical components needed to build
an electrical emulator (resistors, capacitors, and voltage sources). Therefore, this review
supports the development of new PEMFC emulators.
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