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Abstract
1.	 Ectomycorrhizal (ECM) symbioses support forest functioning globally, yet both 

the structure and function of ECM fungal communities in seasonally dry neotrop-
ical forests (SDTFs), known for extreme heterogeneity in vegetation and edaphic 
properties, remain under characterized.

2.	 Here, we evaluated the relative influences of seasonal versus spatial variation in 
ECM fungal community structure in soils from four environmentally divergent 
SDTFs. We also assessed the importance of biotic and abiotic drivers of SDTF 
ECM fungal community structure at regional scales, as well as ECM impacts on 
soil carbon (C) and nitrogen (N) cycling.

3.	 ECM fungal frequency, relative abundance and richness all increased in the wet 
season, but spatial rather than seasonal effects explained more variation in com-
munity composition. Across the four SDTFs investigated, differences in tree com-
munities drove ECM fungal community turnover more than geographic distances, 
site abiotic conditions or soil chemistry. Although soil moisture and ECM tree 
basal area were stronger predictors of soil biogeochemistry, incorporating ECM 
fungal community composition and relative abundance added explanatory power 
to models of soil C and N cycling in the wet season.

4.	 Synthesis: Our results highlight the importance of seasonality and plant commu-
nity composition in shaping different aspects of SDTF ECM fungal community 
structure and diversity as well as the potential for both the plant and fungal com-
ponents of ECM symbioses to impact soil functioning across heterogenous SDTFs. 
Furthermore, our findings suggest that alterations in SDTF plant community 
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1  |  INTRODUC TION

Ectomycorrhizal (ECM) fungi play a key regulatory role in host plant 
productivity and soil biogeochemistry, contributing substantially to 
the diversity and functioning of microbial communities in many forest 
ecosystems (Averill et al., 2014; Bahram et al., 2020; Van Der Heijden 
et al., 2006). Although previously thought to be largely absent in trop-
ical settings, there is growing evidence that ECM symbioses are reg-
ularly present in low-elevation tropical forests (Corrales et al., 2018, 
2022). The most well-known ECM forests in tropical regions are the 
monodominant rainforests of Africa (Newberry et al., 1988; Tedersoo 
et al.,  2012), Asia (Peay, Bidartondo, et al.,  2010, Peay, Kennedy, 
et al., 2010) and the Americas (Smith et al., 2011, 2013). An increasing 
number of studies have also documented that ECM fungi are pres-
ent in non-monodominant tropical rain forests (Alvarez-Manjarrez 
et al.,  2018; Hayward & Horton,  2012; Tedersoo & Põlme,  2012; 
Tedersoo et al.,  2010; Vasco-Palacios et al.,  2020). In these hyper-
diverse and more widespread tropical forests, ECM symbioses are 
characterized by hosts occurring in relatively low and patchy abun-
dance and ECM fungi localized to areas surrounding individual host 
trees (Alexander, 2006; Bahram et al., 2013; Newbery et al., 2013). 
How different ecological factors affect the diversity and functioning 
of ECM fungi in non-monodominant tropical forests remains largely 
unknown, despite the potential for ECM symbioses to predict nutri-
ent cycling in mixed forest environments (Fitch et al.,  2020; Taylor 
et al., 2016; Waring et al., 2021).

Tropical forests occur across a wide spectrum of total annual 
precipitation, with many areas experiencing high variation in pre-
cipitation quantities by season (Allen et al.,  2017). SDTFs are char-
acterized by highly variable periods (2–7 months) of reduced rainfall 
(Murphy & Lugo,  1986; Pennington et al.,  2018). Production of 
ECM fungal mycelium has also been shown to increase in response 
to greater water availability (Nilsen et al., 1998; Swaty et al., 2004; 
Taniguchi et al., 2018) and plant C allocation below-ground (Cavelier 
et al., 1999; Yavitt & Wright, 2001). Furthermore, the frequency and 
abundance of ECM fungal taxa can vary intra-annually, likely reflect-
ing differing temporal strategies that avoid interspecific competition 
while maximizing access to host- and soil-derived resources (Bogar 
& Peay,  2017; Koide et al.,  2007; Štursová et al.,  2020; Vořiškova 
et al., 2014). Studies that have characterized the seasonal dynamics 
of tropical ECM fungi have found mixed support for seasonal shifts 
in ECM fungal community diversity and/or composition. Disyatat 
et al. (2016) found that ECM fungal richness was higher in the wet 
season, while Pachit et al. (2023) did not detect seasonal differences 
in ECM fungal richness or community composition in two deciduous 

dipterocarp forests. If host plants selectively partner with drought-
tolerant ECM taxa that improve resilience to climate extremes within 
and between years, then temporal variability in ECM fungal commu-
nities may be low or non-existent (Bogar & Peay,  2017; Moeller & 
Neubert,  2016). Additionally, the distribution of rainfall throughout 
the year (rainfall seasonality) along with total mean annual precipita-
tion (MAP) govern host plant distributions and soil properties, which 
in turn shape ECM fungal community composition (Dahlberg, 2001; 
Hayward & Horton,  2012; Tedersoo et al.,  2012; Vasco-Palacios 
et al.,  2020). Because SDTFs encompass notable plant-related and 
edaphic heterogeneity (Pennington et al., 2018; Waring et al., 2021), 
they represent a unique system to identify key environmental drivers 
of ECM fungal community composition across tropical forests.

With the rise of molecular-based identification, there has been 
growing recognition that ECM fungi exhibit biogeographic patterns 
driven by both dispersal limitation and environmental selection 
(Peay, Bidartondo, et al., 2010; Peay, Kennedy, et al., 2010). In con-
trast to the ‘everything is everywhere’ hypothesis postulated for 
organisms with microscopic propagules (Baas Becking,  1934), the 
dispersal of ECM fungal spores has been demonstrated consistently 
to be spatially limited (Galante et al., 2011; Peay et al., 2012), with 
ECM fungal communities in lowland neotropical forests showing sig-
nificant turnover within just tens of meters (Bahram et al.,  2013). 
Recent analyses of soil fungal communities also suggest that there 
is considerable turnover in fungal species across the SDTF biome 
in the neotropics (Tedersoo et al.,  2022), which parallels simi-
lar biogeographic heterogeneity in plant community composition 
(Banda et al., 2016). ECM tree genera in the families Polygonaceae 
(Coccoloba, Gymnopodium), Nyctaginaceae (Pisonia, Neea, Guapira), 
Achatocarpaceae (Achatocarpus) and Fagaceae (Quercus) have been 
documented as the primary hosts of ECM fungi in SDTFs (Alvarez-
Manjarrez et al., 2018; Desai et al., 2016; Hasselquist et al., 2011; 
Waring, Adams, et al., 2016; Waring, Gei, et al., 2016). Along with 
variation in tree community composition, edaphic environment 
may also shape tropical ECM fungal communities. Peay et al. (Peay, 
Bidartondo, et al., 2010; Peay, Kennedy, et al., 2010) demonstrated 
that soil nutrient status explained up to a quarter of the varia-
tion in ECM fungal community composition and other research in 
neotropical forests also suggests that soil fertility strongly influ-
ences the structure of ECM fungal communities (Corrales, Arnold, 
et al., 2016; Corrales, Mangan, et al., 2016). While studies in other 
tropical forests have found that tree community composition can 
act as a key factor controlling ECM fungal biogeography at regional 
scales (Kennedy et al., 2011), the extent to which tree community 
composition drives community turnover in SDTFs, particularly in 

composition due to climate or land-use change will have important consequences 
for ECM fungal diversity and associated effects on soil biogeochemical cycling.

K E Y W O R D S
ectomycorrhizal functioning, fungal community structure, neotropical dry forests, soil carbon 
and nitrogen cycling
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comparison with other factors such as geographic distance and soil 
environmental conditions, is not well understood.

The combination of high plant diversity and high heterogeneity 
in soil physical and chemical properties generates significant biogeo-
chemical variation across the SDTF biome (Waring et al., 2015, 2021). 
A recent regional-scale study of soil biogeochemical cycling across 
neotropical SDTFs found that rates of carbon (C) and nitrogen (N) cy-
cling were predicted in part by the relative abundance of ECM trees 
(Waring et al., 2021). Specifically, organic C and N pool sizes were pos-
itively correlated with the abundance of ECM trees and were greatest 
in forest stands where ECM trees comprised >20% of stand basal area 
(Waring et al., 2021). While these results indicate that ECM symbioses 
can significantly influence the soil C and N dynamics in mixed SDTFs, 
exactly how remains unresolved. It is possible that traits of ECM host 
plants (e.g. altered C:N:P ratios of litter and throughfall inputs relative 
to non-ECM host plants) may result in slowed soil C and N cycling 
(Chuyong et al., 2000, 2004). Instead, it may be that the overall abun-
dance of ECM fungi in soils suppresses organic matter decomposition 
dynamics through N-related competition with saprotrophic fungi and 
bacteria (Fernandez & Kennedy, 2016; Orwin et al., 2011). There is 
also increasing recognition that the organic matter decomposition 
abilities of ECM fungi vary widely across taxa (Kohler et al.,  2015; 
Pellitier et al., 2021; Shah et al., 2016), so altered soil C and N cycling 
may be driven specifically by higher abundances of particular ECM 
fungal lineages. Distinguishing among these different mechanisms re-
quires characterization of the ECM fungal community across SDTF 
sites that vary in biotic and abiotic conditions.

In this study, we assessed both the seasonal and spatial variation 
in ECM fungal community structure across four neotropical SDTFs 
that vary widely in abiotic and biotic factors (Figure  1; Vargas G 
et al., 2021). Building off the recent study of Waring et al. (2021), we 
also examined the extent to which ECM fungal community abundance 
and composition predicted soil C and N cycling relative to ECM host 
tree abundances and soil properties. We outline three research ques-
tions with related hypotheses below. (1) How do different aspects of 
ECM fungal community structure respond to seasonality, including fre-
quency, abundance, richness, and composition? We hypothesized that 
the frequency, abundance and richness of ECM fungi would all vary 
seasonally across SDTFs, being elevated in the wet season. (2) What 
ecological factors most strongly influence the composition of the ECM 
fungal community at regional scales, especially across SDTFs differing 
in tree community composition and edaphic properties? We hypoth-
esized that spatial rather than temporal heterogeneity would have a 
stronger effect on ECM fungal community composition. Specifically, 
we predicted that large differences in vegetation and soil properties 
across sites would result in greater community turnover than changes 
in seasonality within a given site. (3) Does incorporating ECM fungal 
community abundance and composition significantly increase the abil-
ity to predict soil C and N cycling in SDTFs? Similar to other analyses 
accounting for the relative importance of microbial community com-
position (Graham et al.,  2016), we hypothesized that including ECM 
fungal community abundance and composition would enhance the ex-
planatory power of models predicting soil C and N cycling processes.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and soil sampling

The four study sites were located in Colombia (5.06°N, 74.83°W), 
Costa Rica (10.72 N, 85.59 W), Mexico (21.02°N, 89.59°W), and 
Puerto Rico (17.97°N, 66.87°W). Collectively, these sites span major 
gradients of MAP, plant community structure, and soil properties 
(Figure 1). Within each country, four plots were established in inter-
mediate to mature secondary forests recovering from agricultural land 
use. Plots were located within 4 km of each other in areas with fairly 
level slopes. For additional details regarding site establishment, calcu-
lation of seasonality index (SI) and measurement of forest composi-
tion, see Vargas G et al. (2021).

A 20 m transect was established through the middle of each plot 
and sampled every 5 m. Five unique soil samples were collected from 
the top 10 cm of mineral soil in each plot using a 2.5 cm diameter soil 
corer. Sampling was repeated twice along each transect; once in the 
wet season (October 2016) and once in the dry season (February 
2017; N = 160). All soils were received at the University of Minnesota 
within 1 week of collection and then immediately processed for soil 
measurements or frozen at −20°C for later molecular analyses. For 
additional information on soil collection and processing, see Waring 
et al. (2021).

2.2  |  Molecular analyses

Total genomic DNA was extracted from each sample using a DNEasy 
PowerSoil Kit (Qiagen) following manufacturer's instructions. All ex-
tractions were secondarily cleaned using a DNEasy PowerClean Pro 
Cleanup Kit (Qiagen) following manufacturer's instructions. The ITS1 
rDNA subunit was PCR amplified using a barcoded fungal-specific 
ITS1F-ITS2 primer set and cycling conditions detailed in Smith and 
Peay  (2014), with the exception of having 35 rather than 30 total 
cycles. Both negative and positive (Palmer et al.,  2018) controls 
were included. All samples were cleaned and normalized using the 
Charm Just-A-Plate kit (Charm) following manufacturer's instruc-
tions. Samples were quantified on a Qubit fluorometer (Thermo 
Scientific), mixed at an equimolar concentration into a single library, 
and sequenced using Illumina MiSeq 2 × 250 bp v2 chemistry at the 
University of Minnesota Genomics Center.

The raw demultiplexed .fastq files were processed using the 
‘amptk’ pipeline outlined (v1.5.4) in Palmer et al. (2018). Briefly, prim-
ers were removed, and sequences were trimmed to 250 bp. Based on 
initial quality control analyses of a mock community (using the ‘syn-
mock’ community of Palmer et al.,  2018), we found that including 
both forward and reverse reads resulted in both fewer reads per OTU 
as well as greater OTU inflation (likely due to the poorer quality of 
the reverse reads). As such, forward-only sequences were denoised 
using DADA2 algorithm (Callahan et al., 2016) under the default pa-
rameters (minLen = 50, maxN = 0, truncQ = 2, maxEE = 2) and clus-
tered into operational taxonomic units (OTUs) at 97% similarity. Read 

 13652745, 2023, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14112 by C

entro D
e Investigacion, W

iley O
nline L

ibrary on [15/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1601Journal of EcologyBEIDLER et al.

counts in the OTU × sample matrix were adjusted to account for index 
bleed between samples, using 1% as the filter percentage. Taxonomy 
was assigned using a hybrid algorithm that integrates results from a 
USEARCH global alignment against the UNITE database (v8, Nilsson 
et al., 2019) and both UTAX and SINTAX classifiers. Raw sequences 
and associated metadata were deposited in the NCBI Short Read 
Archive (Bioproject ID #: PRJNA916723).

2.3  |  Environmental variables

Tree community composition (including both arbuscular mycorrhi-
zal [AM] and ECM-associated tree species) was previously reported 
by Waring et al.  (2021). In brief, all tree or shrub stems 2.5 ≥ cm in 
diameter at breast height were identified by species, and diameters 
were recorded within each plot. The dominance of ECM-associated 
tree species was determined as a percentage of the total basal area 
of stems within a plot. ECM hosts were originally assigned according 

to Frioni et al.  (1999), Wang and Qiu  (2006) and Brundrett  (2009) 
and then confirmed against the FungalRoot database (Soudzilovskaia 
et al., 2020).

We used soil data reported by Waring et al.  (2021) and only in-
cluded variables that were measured for both wet and dry seasons. 
In short, soil moisture (SM) was determined gravimetrically, and soil 
elemental concentrations (Al, Ca, Fe, K, P, S and Si) were determined 
using X-ray fluorescence spectrometry (Olympus). Inorganic-N pools 
(NO3

− and NH4
+) were extracted with 2 mol/L KCl and quantified 

colorimetrically in microplates using standard methods described by 
Waring, Adams, et al. (2016) and Waring, Gei, et al. (2016). Pools of 
C and N contained within microbial biomass (MBC and MBN) were 
measured via chloroform fumigation extraction (0.5 mol/L K2SO4 ex-
tractant) and quantified using a TOC/TN analyser (Shimadzu, Japan). 
Dissolved organic carbon (DOC) and nitrogen (DON) were equivalent 
to organic C and N contents of the unfumigated microbial biomass 
extracts (Waring & Powers,  2016). An ascorbic acid protocol was 
used to determine PO4 concentrations colorimetrically (Murphy & 

F I G U R E  1  (a). Map showing four neotropical dry forest sites with pie charts inset at sampling locations. The percentage of tree species 
belonging to ectomycorrhizal (ECM) associated host genera, by total basal area (% BA) is listed in parentheses next to each site location. 
Grayscale colours within pie charts show the proportion of total ECM BA occupied by the different ECM host genera present at each site. (b) 
Site climate information including mean annual temperature (MAT), mean annual precipitation (MAP), number of dry months and seasonality 
index (SI) along with average (± Standard Error) wet season soil clay content, total organic carbon (TOC) and total organic nitrogen (TON). 
For additional information on site soil characteristics and measurements see Waring et al. (2021).
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Riley, 1962). Using the methods of Saiya-Cork et al. (2002), extracel-
lular enzyme activities were determined for two hydrolytic enzymes: 
β-glucosidase (BG), which breaks down cellulose and N-acetyl-
glucosaminidase (NAG), which liberates C and N from organic matter 
(OM). Additionally, the activities of two oxidative enzymes: polyphe-
nol oxidase (PPO) and peroxidase (PER), both of which are involved in 
the degradation of chemically complex OM (e.g. lignin).

2.4  |  Pre-analysis data quality control

Only samples that had read totals in the 90% data quantile (more than 
6160 reads) were included, leaving 117 out of the 130 samples that 
were successfully PCR amplified (Table S1). To account for differences 
in sequence reads among remaining samples, the OTU table was rare-
fied to 5977 sequences per sample. Based on the taxonomic assign-
ments, fungal OTUs were assigned to saprotrophic, pathotrophic and 
symbiotrophic trophic modes using FUNGuild (Nguyen et al., 2016). 
The top 40 most abundant OTUs without guild assignments were 
checked manually in UNITE and reassigned when pairwise alignments 
were greater than 98% similarity (21 OTUs). When multiple fungal 
guilds were assigned to a single OTU, the primary or most commonly 
occurring lifestyle was determined using the FungalTraits database 
(Põlme et al., 2020). All OTUs assigned to the ECM guild with a ‘pos-
sible’ confidence score were manually checked by querying the top 
matching accession number against UNITE. All matches to the ECM 
fungal genus Suillus were eliminated (6 OTUs) due to laboratory con-
tamination as determined by the presence in negative controls. ECM 
fungal lineages were assigned to genera according to Tedersoo and 
Smith (Tedersoo & Smith, 2013, 2017).

After rarefaction, 699,309 sequences representing 2941 fungal 
OTUs were assessed for functional guild membership. In total, 202 
OTUs were assigned to ECM fungal taxa representing 21 lineages. 
Although OTU accumulation curves were variable across samples, the 
majority appeared to reach saturation (Figure  S1). On average, soil 
samples contained 4 ECM fungal OTUs (range: 0–24; median = 3) and 
287 sequences (range: 0–3648; median = 32).

2.5  |  Statistical analyses

To address our first question—How do different aspects of SDTF ECM 
fungal community structure respond to seasonality?—we calculated 
ECM fungal frequency as the proportion of soil samples containing any 
ECM sequence reads, ECM fungal relative abundance as the number of 
ECM reads/total number of fungal reads per sample, and ECM fungal 
richness as the total number of ECM fungal OTUs in a given sample. 
These alpha diversity metrics were then used as response variables in 
linear mixed effects models (LME), with season, country and their in-
teraction as fixed factors and soil cores taken along transects within 
countries (1|Country/Transect/Soil Core) as a nested random factor. 
Statistical analyses and data visualization were performed using R 
(R version 4.2.0; R Core Team, 2022) and PRIMER V7 (Primer-E Ltd). 

The models were run using the ‘lmer()’ function from the LME4 pack-
age (Bates et al., 2015) and then assessed the statistical significance of 
fixed effects using the analysis of variance (ANOVA) in the LMER TEST 
package (Kuznetsova et al., 2017); degrees of freedom were estimated 
using a Satterthwaite approximation and we utilized Type III sums of 
squares to test for significance. Post-hoc tests were carried out using 
Tukey's honestly significant difference (HSD) tests, using the package 
EMMEANS (Lenth et al.,  n.d.). We estimated marginal (variance ex-
plained by fixed factors) and conditional (variance explained by both 
fixed and random factors) R2 values using the ‘r2_nakagawa()’ function 
from PERFORMANCE package (Nakagawa & Schielzeth, 2012). The 
contribution of our random factor to alpha diversity metrics was deter-
mined by subtracting the marginal R2 from the conditional R2.

We investigated differences in ECM fungal community compo-
sition across sites and seasonally (a.k.a. β-diversity) by calculating a 
Bray–Curtis dissimilarity matrix with log-transformed read-abundance 
data using the ‘metaMDS()’ function in the VEGAN package (Oksanen 
et al.,  2022). Differences in community composition were visualized 
using nonmetric multidimensional scaling (nMDS). Prior to generating 
dissimilarity matrices, samples containing zero ECM fungal reads were 
eliminated as well as seven samples considered outliers in nMDS results 
indicated by a dubious stress value (close to zero; N = 83). To check if 
the results were robust regardless of the dissimilarity index, we also 
generated nMDS ordination plots using a Jaccard dissimilarity index. 
Clustering was similar for both Bray–Curtis and Jaccard dissimilarity in-
dices (Figure S2), therefore only abundance-based data are presented. 
Permutational multivariate analyses of variance (PERMANOVA) were 
performed using PRIMER V7 (with PERMANOVA+) to assess the ef-
fect of fixed factors: season, country, and their interaction, and the 
nested random factors (1|Country/Transect/Soil Core) on ECM fungal 
community composition. To test the dispersion of samples in nMDS 
space, we used the PERMDISP distance-based test for homogeneity of 
multivariate dispersions in PRIMER V7.

To address our second question—how does ECM fungal commu-
nity composition vary across SDTFs differing in their abiotic and biotic 
properties?—we utilized generalized dissimilarity modelling (GDM) to 
assess the relative effects of tree community, edaphic factors related 
to soil fertility and geographic distance on ECM fungal β-diversity. 
An extension of matrix regression, GDM is able to fit non-linear rela-
tionships between response and explanatory dissimilarity matrices by 
assuming a curvilinear relationship between community turnover and 
environmental and spatial distances (Ferrier et al., 2007). The VEGAN 
package was used to construct dissimilarity matrices (Bray–Curtis) for 
ECM fungal and tree communities along with Euclidean distances for 
selected edaphic variables (SM, NO3

−, NH4
+, PO4, Al, Ca, Fe, K, P, S 

and Si) and geographic distance (spatial distance from latitude, and 
longitude). The variance in ECM fungal turnover explained by environ-
mental variables was determined using the ‘gdm.partition.deviance()’ 
function included in the GDM package (Fitzpatrick et al., 2022). Simple 
linear regression analyses were used to assess relationships between 
ECM fungal richness or relative abundance and host tree richness or 
basal area. ECM fungal β-diversity was also calculated for each plot 
and regressed against tree β-diversity.
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Given that environmental variables differed between seasons and 
across SDTFs, we used differential abundance analysis to detect sea-
sonal shifts in ECM fungal lineages within countries. We also calcu-
lated the relative abundance of ECM fungal lineages across countries 
and explored correlations between ECM fungal lineage abundance 
and individual soil variables (SM, nutrient and elemental concentra-
tions). Pairwise Wilcoxon tests were used to identify differentially 
abundant ECM fungal lineages via log2(fold-change) between seasons 
using the function ‘wilcox.test()’ in the STATS package. To better un-
derstand the ECM fungal lineages that might be driving distribution 
patterns across sites we correlated lineage abundances to nMDS ordi-
nation via the ‘envfit()’ function included in the VEGAN package in R.

To address our third question—does incorporating ECM fungal 
community abundance and composition increase our ability to predict 
soil C and N cycling in SDTFs?—we adapted the GDM approach to 
predict spatial patterns in a soil biogeochemistry dissimilarity matrix 
(including DOC, DON, MBC, MBN, NO3

−, NH4
+, N-mineralization, 

NAG, BG, PER and PPO activity) using tree (community composition 
and ECM tree basal area), fungal (ECM community composition and 
relative abundance) and soil (soil moisture, Al, Ca, Fe, K, P, S and Si 
concentrations) dissimilarity matrices as predictors. To assess the rel-
ative importance of individual soil, tree and fungal variables, we used 
matrix permutation (n = 50) to estimate the average loss in explanatory 
power or the percent decrease in deviance explained by the full model 
and the model fit without the variable of interest (Ferrier et al., 2007). 
To assess predictor importance, we used the ‘gdm.varImp()’ function 
in the GDM package (Fitzpatrick et al.,  2022). We also partitioned 
the deviance from GDM into variance explained by the soil, tree and 
ECM fungal variable sets. GDMs were fitted using the ‘gdm()’ function 
in the GDM package with the default number of splines and knots 

(Fitzpatrick et al., 2022). To match ECM fungal community and soil 
C/N measurements, the model sample size was reduced to 67 (32 dry 
season samples and 35 wet season samples).

3  |  RESULTS

3.1  |  Seasonal and spatial variation in 
ectomycorrhizal fungal community structure

ECM fungi were detected in 77% of soil samples but made up a small 
portion of total fungal OTUs on average (<10%; Figure S3). All coun-
tries showed a marked increase in the frequency, relative abundance 
and richness of ECM fungi from the dry season to the wet season 
(Table 1; Figure 2). ECM fungal richness (Figure 2c) was ca. three times 
higher in the wet season, with the greatest seasonal increase occur-
ring at the Mexican site (Figure S4). Ordination showed strong clus-
tering of ECM fungal communities by country (Figure 2d), with visible 
separation between wetter (CR and CO) and drier sites (MX and PR) 
occurring along the first nMDS axis. Unlike alpha diversity, ECM fun-
gal β-diversity was similar between wet (BC = 0.97 ± 0.003) and dry 
(BC = 0.99 ± 0.002) seasons (PERMANOVA: p = 0.3) but varied signifi-
cantly across countries (PERMANOVA; p = 0.001). Although seasonal 
effects on β-diversity were not significant, compositional dispersion 
tended to be greater in the dry season, when fewer soil samples con-
tained ECM fungal OTUs (Table 1).

Much of the variability in ECM fungal community structure could 
be attributed to individual soil cores and along transects within sites, 
with random effects explaining more than half of the variance in ECM 
fungal OTU relative abundance (59%) and richness (55%; Table S2). 

TA B L E  1  Analysis of variance (ANOVA) table for ectomycorrhizal (ECM) fungal community alpha diversity metrics including occurrence 
frequency (percentage of soil samples containing ECM amplicon reads), relative abundance (percentage of fungal amplicon reads 
categorized as ECM for a given soil sample) and ECM richness (total number of ECM OTUs). Permutational multivariate analysis of variance 
(PERMANOVA) and dispersion differences based on Bray–Curtis dissimilarities using abundance (count) data for ECM fungal community 
structure.

ANOVA Frequency Relative abundance Richness

Num Den

SS MS F p (>F)

Den

SS MS F p (>F)

Den

SS MS F p (>F)df df df df

Alpha diversity

Season 1 10 17 17 8.9 0.01 0.26 0.26 22 <0.001 67 18 18 60 <0.001

Country 3 20 4.9 1.6 0.88 0.5 42 0.03 0.01 0.84 0.48 56 0.15 0.05 0.17 0.90

Season × Country 3 9 9.0 3.0 0.25 0.3 36 0.10 0.03 2.8 0.05 62 9.3 3.1 10 <0.001

PERMANOVA Dispersion

Num Den

SS MS

Pseudo

p (Perm)

Den Pseudo

p (Perm)df df F df F

Beta diversity

Season 1 4 3371 3371 1.22 0.30 81 8.42 <0.001

Country 3 18 34,567 11,522 2.44 0.001 79 1.19 0.42

Season × Country 3 12 11,950 3983 1.44 0.09 83 3.01 0.14
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Notably, not a single ECM fungal OTU was shared among countries 
(Figure  S5) and dominant ECM fungal lineages varied by country 
(Figure 2e). The /tomentella-thelephora lineage had the highest rel-
ative abundances in Puerto Rico and Costa Rica, while /sebacina, /
clavulina and /pisolithus-scleroderma were dominant in Mexico 
and Puerto Rico (Figure S6). Colombian soils had the lowest overall 
ECM fungal relative abundances and contained a greater number of 
ECM fungal OTUs from the lineages /amanita and /russula-lactarius 
(Figure 2e; Figure S6). The ECM fungal lineages driving site differences 
in community composition included /pisolithus-scleroderma (r = 0.31; 
p = 0.002), and /sebacina (r = 0.19; p = 0.003; based on correlations to 
NMDS1; Figure S7a).

3.2  |  Environmental drivers of ectomycorrhizal 
fungal community structure at regional scales

Tree community, selected soil variables and geographic distance to-
gether explained 37% of total deviance in ECM fungal species turno-
ver. Tree community alone explained 11% of ECM turnover, which was 
more than both geographic distance (4%) and variables related to soil 
fertility (0.7%) alone (Table S3; Figure S8). ECM fungal OTU richness 
increased with host tree richness regardless of season (Figure S9a), 

while ECM fungal relative abundance was positively related to ECM 
tree basal area, but only in the wet season (Figure S9b). ECM fungal 
community dissimilarity increased with increasing tree community 
dissimilarity and the coupling of tree ECM fungal β-diversity was more 
pronounced in the wet compared with the dry season (Figure S9c). 
In Colombia, the /amanita and /amphinema-tylospora lineages more 
than doubled in the wet season, while /cortinarius increased in rela-
tive abundance at the Costa Rican and Mexican sites (Figure 3a). The 
relative abundance of the /tomentella-thelephora lineage was signifi-
cantly higher in the wet season in Mexico but decreased in abundance 
between the dry and wet seasons in Puerto Rico. Across sites, the 
abundance of /amanita, /hebeloma-alnicola, /pseudotomentella, /
pulvinula and /sebacina lineages were positively correlated with 
soil moisture and fertility variables (e.g. NO3

−, NH4
+, PO4), which in-

creased during the wet season (Figure 3b).

3.3  |  Ectomycorrhizal effects on soil C and 
N cycling

Regardless of season, soil moisture was the best predictor of dif-
ferences in soil C and N cycling across sites (Figure 4a; Figure S10). 
However, the importance of abiotic versus biotic predictors differed 

F I G U R E  2  (a). Box and whisker plots of ectomycorrhizal (ECM) fungal occurrence frequency, (b) relative abundance and (c). OTU richness 
for wet and dry seasons. Asterisks denote significant differences in mean values according to ANOVA results (see Table 1). (d) Non-metric 
multidimensional scaling (nMDS) plot depicting similarity of fungal communities sequenced from soil samples at the Colombian (CO), Costa 
Rican (CR), Mexican (MX) and Puerto Rican (PR) sites. (e) Relative abundance of dominant ectomycorrhizal (ECM) fungal lineages present at 
the four sites. *, p < 0.05; ***, p < 0.001.
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between seasons with soil variables being more important in the dry 
season and tree and fungal variables increasing in importance in the 
wet season (Figure 4b; Table S4). Although soil and tree community 

variables tended to explain more variation in soil C and N cycling, the 
inclusion of ECM community metrics increased explanatory power 
in the wet season model. Specifically, the addition of ECM fungal 

F I G U R E  3  (a) Lollipop plots of the log2 fold change in ECM fungal lineage abundance between dry and wet season soils from each 
site (CO, Colombia; CR, Costa Rica; MX, Mexico; PR, Puerto Rico). Mann–Whitney Wilcoxon tests were used to determine the statistical 
significance of changes in ECM fungal lineage abundance in the wet season. (b) Spearman correlations between the relative abundances of 
ectomycorrhizal (ECM) fungal lineages and soil variables across seasons. SM, soil moisture. Bolded soil variables did not change seasonally, 
while italicized variables did change seasonally (see Waring et al., 2021 for more information). *, p < 0.05; **, p < 0.01.

F I G U R E  4  (a) Relative importance of different plant, soil and ectomycorrhizal (ECM) fungal variables for predicting soil carbon (C) and 
nitrogen (N) cycling in the dry and wet seasons. Predictors include geographic distance, soil moisture, a matrix of soil elemental composition 
dissimilarities, ECM tree abundance (% ECM tree basal area), ECM tree community composition (Bray–Curtis dissimilarity matrix), ECM 
fungal community composition (Bray–Curtis dissimilarity matrix) and ECM fungal relative abundances. (b) Variance partitioning of soil 
composition (elemental composition and moisture), tree community (composition and ECM tree abundance) and ECM fungal community 
(composition and ECM fungal relative abundance) individually and in combination.
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β-diversity and relative abundance increased deviance explained by 
7% compared with soil and tree variables combined (Figure  4b). 
Additionally, the abundance of ECM tree hosts (% basal area) and 
fungi were of similar importance for explaining variation in soil C and 
N cycling in the wet season (Figure 4a).

4  |  DISCUSSION

Plant host diversity, abiotic conditions and edaphic factors all contrib-
ute to the diversification of ECM fungal symbionts in forest ecosystems 
(Looney et al., 2016; Sánchez-Ramírez et al., 2015). To better under-
stand the spatial and temporal controls on ECM fungal communities 
in seasonally dry neotropical forests (SDTFs), we characterized soil 
inhabiting ECM fungi in both wet and dry seasons in SDTFs at a re-
gional scale (Figure 1). We hypothesized that ECM alpha diversity would 
be responsive to rainfall seasonality. In support of our hypothesis, we 
found ECM fungal frequency, abundance and richness all increased in 
the wet season (Figure 2). We also hypothesized that spatial rather than 
temporal heterogeneity would have a stronger effect on ECM fungal 
community composition. Spatial variability did exceed seasonal vari-
ability in explaining ECM fungal β-diversity, with community turnover 
being greater among sites than between seasons (Figure 2; Table 1). In 
support of our final hypothesis, we also found that ECM fungal abun-
dance and community composition increased the explanatory power of 
models predicting soil C and N cycling, particularly in the wet season 
(Figure 4). We elaborate on each of these findings below.

4.1  |  Ectomycorrhizal fungal frequency, relative 
abundance and richness increased in the wet season

In agreement with previous studies from temperate forests, we 
observed a significant increase in ECM fungal frequency, relative 
abundance, and richness during the wet season (Nilsen et al., 1998; 
Swaty et al., 2004; Taniguchi et al., 2018). In other systems, seasonal 
increases in ECM fungal abundance and richness have been shown 
to relate strongly to increase photosynthetic activity of host plants 
(Heinemeyer et al.,  2007; Vořiškova et al.,  2014). Plant photosyn-
thetic rates are consistently higher in the wet season in SDTFs (Lugo 
et al.,  1978), likely facilitating greater C allocation to ECM fungi. 
Incident precipitation in the tropics can also increase throughfall nu-
trient inputs to ECM fungal communities (Chuyong et al., 2004). We 
found that the abundance of several ECM fungal lineages increased 
with greater soil moisture and nutrient availability (Figure 3b), con-
sistent with non-molecular assessments of fungal abundance pat-
terns at these sites (Waring et al., 2021). Additionally, MAP has been 
identified as a key controller of fungal richness at the global scale 
(Tedersoo et al., 2014), which is consistent with greater water avail-
ability being critical for the turgor-driven lifestyle of hyphal growth. 
Regardless of specific mechanism (none of which are mutually ex-
clusive above), our results highlight the potential for seasonal niche 
differentiation to help maintain ECM fungal diversity in SDTFs.

Despite the aforementioned cross-site trends, the magnitude of 
seasonal changes in ECM fungal relative abundance and richness 
varied by country (Table 1). Seasonal differences in alpha diversity 
were strongest in Mexico and weakest in Puerto Rico despite both 
sites having low MAP and dry seasons which can last over half the 
year. Compared with Mexico, sites in Puerto Rico experienced a 
longer dry season (up to 90% of the year) and less seasonal vari-
ability in soil moisture (Waring et al., 2021). Soil moisture more than 
doubled at the Mexican sites which experienced an abnormally dry 
season in 2017; this large increase in precipitation between wet 
(~100 mm) and dry (~2 mm) seasons might explain the particularly 
strong seasonal trends in Mexican soils (J. Dupuy-Rada, pers. obs.). 
A significant increase in the relative abundance of the /sebacina 
lineage is also consistent with reports of seasonal sebacinoid spo-
rocarp production of taxa such as, Tremelloscypha gelatinosa, found 
under Gymnopodium trees in Mexican SDTFs during the wet sea-
son (Bandala & Montoya,  2015). In contrast, several ECM fungal 
lineages declined in relative abundance in Puerto Rico during the 
wet season, with taxa in the /tomentella–thelephora lineage de-
creasing six-fold in abundance (Figure 4a). Tomentelloid fungi have 
been shown to associate with osmotically stressed trees (Thiem 
et al., 2018) and may increase the efficiency of water uptake (Cabot 
et al., 2014). As such, it is possible that the more drought-tolerant 
Tomentella species decreased in relative abundance in the wet sea-
son at the Puerto Rican site. However, it is unclear why the op-
posite pattern was observed in Mexico, where abundance of the /
tomentella–thelephora lineage increased in the wet season. Given 
this discrepancy, more studies are needed to better understand how 
seasonal variability in rainfall might interact with site-level condi-
tions to select different functional groups of ECM fungi. As warmer 
and drier climate conditions may cause dry forests to expand into 
regions previously occupied by moist tropical forests (Siyum, 2020), 
it is important to study how ECM fungal communities are seasonally 
and spatially structured, particularly in tropical forests functioning 
at the edge of precipitation extremes (Maia et al., 2020).

4.2  |  Spatial variation in ectomycorrhizal 
fungal community composition was linked to both 
abiotic and biotic factors

Our sampling locations captured substantial heterogeneity in soil 
moisture, texture and elemental composition (Waring et al., 2021), 
offering a variety of optimal growth conditions for different ECM 
fungal lineages (Smith & Read, 1997). Local-scale edaphic variation 
can play an important role in influencing ECM fungal community 
structure (Peay, Bidartondo, et al., 2010; Peay, Kennedy, et al., 2010; 
Read, 1991). Previous studies have shown that soil properties in-
cluding moisture and nutrient availability are important drivers 
of ECM fungal community composition in tropical forests at local 
scales (Peay, Bidartondo, et al., 2010; Peay, Kennedy, et al., 2010; 
Schappe et al.,  2020; Tedersoo et al.,  2010; Waring et al.,  2015). 
In support of these studies, we found that abundances of several 
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ECM fungal lineages were positively correlated with soil moisture, 
ammonium and phosphate concentrations (Figure 3b). Our findings 
also support the reported preference of Hebeloma species for forest 
soils with increased concentrations of ammonium (Sagara, 1992). In 
addition to capturing heterogeneity in the edaphic environment, 
our study locations represent 4 of the 12 floristic provinces that 
characterize the SDTF biome (Banda et al., 2016), and sites differed 
notably in their abundance and composition of ECM host trees 
(Figure 1). We found that tree composition explained more variation 
in ECM fungal community composition than soil properties and that 
ECM fungal community structure was significantly correlated with 
tree community composition and ECM host tree basal area. These 
findings support those of Schappe et al. (2020) who report greater 
host tree effects of ECM fungal communities compared with soil 
properties in mixed-AM-dominated lowland tropical forests.

Biotic links between plant and ECM fungal community struc-
ture could be the result of strong host preferences known to exist 
for certain tropical plant genera, including Coccoloba and Pisonia 
(Ishida et al.,  2007; Põlme et al.,  2017; Suvi et al.,  2010; Tedersoo 
et al., 2010). Both Pisonia (Hayward & Hynson, 2014; Suvi et al., 2010) 
and Coccoloba spp. (Põlme et al., 2017) have been shown to form ECM 
associations with specific assemblages of Tomentella species and sites 
where Pisonia trees were present (Costa Rica and Puerto Rico) had 
the greatest relative abundances of the /tomentella–thelephora lin-
eage followed by sites containing Coccoloba hosts (Puerto Rico and 
Colombia). In addition to site differences in host tree incidence, the 
patchy distribution of host trees along transects likely explained 
the large within-site variation in ECM fungal community composi-
tion (Table S2) as well as the overall low ECM fungal relative abun-
dances found in soil cores (John et al., 2007; Tedersoo et al., 2010). 
This within-site variation highlights the importance of studying ECM 
fungal communities in non-monodominant tropical forests (Corrales 
et al., 2022; Schappe et al., 2020), especially given the potential for 
low-abundance species to serve as reservoirs of microbial diversity 
(Dawson et al., 2017) and for individual ECM fungal taxa to influence 
biogeochemical processes at the forest scale (Lindahl et al., 2021).

4.3  |  Ectomycorrhizal symbioses impact soil C and 
N cycling via plant and fungal effects

Communities of plants and fungi are known to influence soil biogeo-
chemistry individually, but their relative contributions and interactive 
effects are not well known, particularly in tropical forests. Despite rep-
resenting a small fraction of tropical plant diversity (6%–20% of species; 
Brundrett,  2009; Fukami et al.,  2017), trees that associate with ECM 
fungi can have disproportionate effects on soil C and N cycling in tropical 
forests (Corrales et al., 2017; Waring et al., 2021). In a common garden 
study, Lin et al. (2017) found that soil C:N ratio and rates of N cycling 
were lower beneath tropical ECM trees relative to AM trees. As a result, 
soils beneath ECM trees are thought to have more ‘closed’ N cycles, that 
is, lower N loss relative to the N that is recycled (Mushinksi et al., 2020). 
In the study of Lin et al. (2017), the more ‘closed’ N cycling under ECM 

trees was largely attributed to lower leaf litter decomposability (but see 
Keller & Phillips, 2019) and less resorption of leaf N compared with AM 
tree species. Chuyong et al. (2000) suggest that root mats under ECM 
trees may help trap the nutrients contained within ECM leaf litter by pre-
venting leaching of mobile nutrients during the wet season. In support 
of greater nutrient recapture by tropical ECM trees, Lin et al. (2018) also 
found that ECM trees produced more root length per soil volume and 
had greater rhizosphere effects on N transformations. To determine the 
ECM plant traits that most influence soil biogeochemistry in tropical dry 
forests, future studies should compare leaf and root traits of ECM plant 
species growing outside of mono-dominant stands with those of nearby 
AM-associated plant species (Barceló et al., 2022).

Although ECM fungal predictors alone had low explanatory power 
compared with ECM host tree basal area, the inclusion of ECM fungal 
relative abundance and community composition improved the explan-
atory power of models predicting soil C and N cycling across SDTFs 
(Figure  4b). Similar to ECM tree effects, we found that ECM fungal 
effects on soil biogeochemistry were stronger in the wet compared 
with the dry season. The wet season also showed greater abundance 
of ECM fungi from the /pisolithus-scleroderma lineages, which were 
positively correlated with concentrations of soil inorganic nitrogen 
(Figure S10b). Gao et al. (2022) recently found that the abundance of 
ECM fungi in the genus Pisolithus increased in response to irrigation and 
N fertilization in a tropical Eucalyptus plantation and these increases 
were associated with enhanced growth of host trees. Inorganic N pools 
were also larger in the wet season, as greater precipitation likely accel-
erated microbial nutrient uptake and soil N cycling (Waring et al., 2021; 
Waring & Powers, 2016). It could be that ‘nitrophilic’ ECM fungi that 
are better at foraging for inorganic sources of N are more abundant in 
the wet season (Lilleskov et al., 2001; Pellitier et al., 2021). However, it 
is not yet clear if nitrophilic ECM fungi can influence soil C and N pro-
cesses directly by priming microbial activity (Lindahl & Tunlid, 2015) or 
indirectly via increased growth of host trees. Thus, SDTFs serve as an 
interesting system to further study nitrophilic ECM fungal species and 
their effects on soil processes (Lilleskov et al., 2011).

4.4  |  Caveats

While our results indicate that SDTF ECM fungal communities pre-
sent are clearly dynamic in both time and space, we encountered 
some methodological issues that merit discussion. Sampling soils in-
stead of root tips directly may have biased our ability to detect ac-
tive ECM fungi (Bruns,  1995). Despite applying a secondary DNA 
purification step following DNA extraction as well as multiple PCR 
attempts under different settings, we were unable to successfully am-
plify a number of samples (30 of the 160 soil samples), particularly 
from the organic-rich soils of Puerto Rico. This remains a challenge 
facing microbial community analyses in tropical areas (Frostegård 
et al., 1999) and indicates that optimization is still needed for tropical 
soil molecular-based analyses. The sequence read counts we obtained 
for the ECM fungal communities were also relatively low, which we 
suspect parallels a generally lower abundance of this guild in SDTF 
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soils. The within-site read count patterns for individual ECM fungal 
OTUs in samples with low and high read count totals was often similar 
(data not shown), however, suggesting our low total read count sam-
ples were able to capture the biological signal. We also recognize that 
shifts in other fungal guilds by season or site might have influenced 
our ECM-focused results because the community measures of fungal 
abundance were relativized. The across-site trends were, however, 
variable for other guilds (Figure S3), suggesting there was not a con-
sistent directionality in those non-ECM fungal shifts that skewed the 
larger ECM fungal relative abundance trends that emerged. Finally, 
subsetting our data to only include samples that contained ECM fun-
gal reads reduced our sample size, potentially limiting our ability to 
actually infer links between biogeochemical processes and different 
plant, soil and fungal predictors. Despite the reduced sample size, our 
findings align with those of the companion study Waring et al. (2021), 
which reported a significant effect of ECM tree abundance on soil 
C/N cycling across the same SDTF sites in the wet season.

5  |  CONCLUSIONS

The extreme heterogeneity in plant and soil properties that exists 
within SDTFs provides a unique context in which to study spatiotem-
poral variability in communities of ECM fungi. We found that multiple 
ECM fungal community metrics were strongly responsive to rainfall 
seasonality, suggesting that seasonal water limitation in SDTFs acts 
as an important ecological control on ECM fungal community struc-
ture. Despite the importance of seasonality on ECM fungal richness 
and frequency relative abundances, we also determined that tree spe-
cies community composition rather than geographic distance and soil 
edaphic factors was the dominant driver of the ECM fungal commu-
nity variation across the neotropical dry forest biome. Additionally, 
we found that ECM tree abundance explained more variation in wet 
season soil C and N cycling than ECM fungal community metrics, high-
lighting the importance of the plant side of ECM associations to influ-
ence soil biogeochemistry. At the same time, we also found that the 
addition of ECM fungal community metrics did improve the power to 
predict soil biogeochemical processes in the wet season. These find-
ings demonstrate the potential for ECM associations to influence soil 
biogeochemistry even within mixed non-monodominant tropical for-
ests where ECM hosts and fungi exist in relatively low abundance.
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Figure S1. Sample-based rarefaction curve for ectomycorrhizal 
(ECM) fungi found in seasonally dry tropical forests. Following initial 
quality filtering, a total of 2,132,526 fungal ITS sequences were 
obtained from 117 soil samples.
Figure S2. Non-metric multidimensional scaling (nMDS) ordination 
plots of Jaccard and Bray-Curtis community dissimilarities for 
ectomycorrhizal (ECM) fungal communities across dry forest sites in 
Colombia (CO), Costa Rica (CR), Mexico (MX) and Puerto Rico (PR) in 
wet and dry season.
Figure S3. Relative abundance of fungal guilds across dry forest sites 
in Colombia (CO), Costa Rica (CR), Mexico (MX) and Puerto Rico (PR) 
in wet and dry season.
Figure S4. Boxplots of ectomycorrhizal (ECM) fungal relative 
abundance (A), frequency (B) and OTU richness (C) for dry forest 
sites in Colombia (CO), Costa Rica (CR), Mexico (MX) and Puerto Rico 
(PR). Blue boxes represent wet season samples and yellow boxes 
represent dry season samples.
Figure S5. Venn-Diagrams displaying the number unique and shared 
OTUs across sites (A) and between seasons (B).
Figure S6. Relative abundance of ectomycorrhizal (ECM) fungal 
lineages in in Colombia (CO), Costa Rica (CR), Mexico (MX) and 
Puerto Rico (PR).
Figure S7. Dominant ECM lineages across sites (A) Relationship 
between /Pisolothus-Scleroderma abundance with inorganic N (B; 
concentration of NH4+). Only significant relationships are displayed 
(p < 0.05).
Figure S8. Results of generalized dissimilarity modeling (GDM). The 
partial or marginal effect (f()) of each predictor plotted against the 
level of a given predictor while holding all other predictors constant 
(B–D). Bray–Curtis dissimilarity was calculated for ectomycorrhizal 

(ECM) fungal and tree communities and Euclidean distances were 
calculated for soil fertility metrics (elemental composition and soil 
moisture). Geographic distance is in km.
Figure S9. Relationships between ectomycorrhizal (ECM) fungal and 
host tree richness (A) ECM fungal and tree abundance (B), and ECM 
fungal and tree beta diversity (C). Only significant relationships are 
displayed (p < 0.05).
Figure S10. Results of generalized dissimilarity modeling (GDM). The 
partial or marginal effect (f ( ) ) of each predictor plotted against the 
level of a given predictor while holding all other predictors constant 
(B–H). Bray–Curtis dissimilarity was calculated for ectomycorrhizal 
(ECM) fungal and tree communities and Euclidean distances were 
calculated for soil fertility metrics (elemental composition and soil 
moisture). Geographic distance is in km.
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