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Abstract: Cocos nucifera L. is one of the most cultivated palm trees in the world since it is used to
obtain both raw materials and food. From a human point of view, the coconut fruit is a very valuable
product, producing an aromatic and tasty liquid endosperm (coconut water) containing high levels
of sugars, amino acids and other molecules of nutritional and nutraceutical value. Most of the
chemical composition studies conducted on coconut to date have focused on the determination of
fatty acid content in coconut oil and the extension of the shelf life of coconut water. Despite the
economic importance of this species, the maturation of the coconut fruit is a complex biological
process scarcely studied from the metabolic approach and biochemical changes occurring during
fruit maturation are not well-known. The objective of this study is to investigate and elucidate the
metabolic changes that occur during the maturation process of coconut (Cocos nucifera L.) fruits,
specifically focusing on the liquid endosperm of the Yucatan green dwarf variety. In this study,
the liquid endosperm of coconut fruits at the immature, intermediate and mature stages have been
analyzed through an untargeted metabolomics approach by ultra performance liquid chromatography
coupled to high resolution mass spectrometry (UPLC-HRMS). A total of 591 spectrometric features
were detected and the corresponding identified compounds were classified into 24 chemical classes.
The principal component analysis (PCA) showed segregation among the samples, according to their
stage of maturation. Most of the metabolites detected were related to the metabolism of flavonoids,
carbohydrates and organooxygen compounds. Pathway analysis showed that sphingolipid, starch
and sucrose metabolisms were among the most over-accumulated during ripening, followed by the
metabolism of glyoxylates and dicarboxylates and the metabolism of amino acids such as alanine,
aspartate and glutamate, and others. This is the first study that focuses on elucidating the metabolic
profiles of the liquid endosperm of coconut Yucatan green dwarf variety during three stages of
maturation with an untargeted metabolomics approach through UPLC-MS.

Keywords: biochemical changes; coconut fruit; liquid endosperm; maturation; untargeted metabolomics;
UPLC-HRMS

1. Introduction

The coconut palm (Cocos nucifera L.), the only species in the genus Cocos, is one of
the most widely cultivated palms in the world; it is a source of vegetable oil, foods and
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drinks, construction materials, household products, etc.; practically, every part of the plant
is useful [1,2]. This species is intensively cultivated in the tropical regions of the world; the
estimated cultivation area is about 12 million ha with a world production of approximately
61 million tons annually. The main coconut producers are Indonesia, the Philippines and
India; in Latin America, Brazil and Mexico lead the export market and rank fourth and
eighth, respectively [3]. Within this species, two main groups of coconut varieties are
described: tall and dwarf. Dwarf varieties are self-pollinating and early flowering. They
are precocious plants, producing numerous fruits four years after planting compared to
tall varieties that produce fruits six to ten years after planting [4,5]. Additionally, dwarf
varieties are resistant to lethal yellowing, one of the most devastating diseases of coconut
crops [6]. The most valuable products of the two varieties of coconut palm are the solid
and liquid endosperms; the former is mainly composed of highly methyl-esterified pectin
and medium-chain fatty acids such as lauric acid (C:12) and myristic acid (C:14). The solid
endosperm is also the source of coconut oil [7–9]. The liquid endosperm is a reservoir
of water, sugars and phytohormones with important functions in the germination and
development of the coconut embryo [10]. Glucose, sucrose and fructose constitute 80% of
the sugars contained in the liquid endosperm; the dwarf varieties tend to have a highest
sugar content than tall varieties, making them ideal for coconut water consumption [11].
Other components of the liquid endosperm are fatty acids, amino acids, organic acids,
enzymes, phenolic compounds, vitamins and minerals. Altogether, these molecules confer
great nutritional and functional value to coconut water [5,12], which generates significant
income for the economies of several countries, mainly in Southeast Asia [13]. Among the
other uses of liquid coconut endosperm, it is can be used as a component in plant tissue
culture media [14–16]; as an alternative to intravenous rehydration in critical situations [17];
as a dietary supplement [18]; and has recently been promoted as an important source of
molecules with nutraceutical potential [19,20]. However, despite the nutraceutical and
economic importance of coconut fruit, very few studies have been conducted to understand
the biochemical and molecular basis of the ripening process.

Fruit development and ripening are complex, genetically programmed processes that
occur in a species-specific manner [21]. Seed development involves a series of metabolic
processes aimed at the accumulation of nutrients, mainly carbohydrates, lipids, amino acids,
storage proteins and secondary metabolites, and many metabolic pathways are involved,
e.g., amino acid metabolism, starch and sucrose metabolisms, fatty acid and flavonoid
biosynthesis [22–24]. The ripening of the coconut is a complex biological process scarcely
studied from the biochemical point of view; it is a non-climacteric fruit and they are unique
in the fact that they contain solid and liquid endosperms throughout development [25].
In this era of omics, the emergence of metabolomics is presented as an alternative to help
understand the physiological processes and biochemical changes that occur during the
development of fruits and seeds [26]. Untargeted metabolomics is based on the comparison
of patterns of compounds obtained from different biological samples, using univariate and
multivariate statistical tools. This approach allows us to understand the complexity of
these matrices, and contributes to the identification of metabolites that could have a more
relevant role in various processes, such as postharvest storage, ripening or stress [27].

Regarding coconut metabolomics studies, Kumar et al. [28], used Gas Chromatography-
Flame Ionization Detector (GC-FID) to analyze the fatty acid profile in the coconut oil
extracted from fruits of tall, dwarf and hybrid varieties. They found differences among
the fruits of the varieties analyzed, the fruits of the hybrids have less unsaturated fatty
acids and lauric acid than in the tall and dwarf varieties. Chen et al. [29], reported that
the analysis of pathway enrichment showed that the tricarboxylic acid pathway and pro-
tein hydrolysis were enriched probably responding to taurine metabolism. More recently,
Zhang et al. [30], studied the deterioration process of coconut water since coconut water
has a short shelf life, and their analysis led them to conclude that cysteine, methionine,
glycine, serine and threonine metabolisms are the main metabolic pathways whose changes
may be responsible for the deterioration of the organoleptic properties of coconut water.



Horticulturae 2023, 9, 866 3 of 15

Kumar et al. [4], analyzed the liquid endosperm of “Chowghat Orange Dwarf” (COD) and
“Malayan Yellow Dwarf” (MYD) by targeted metabolomics using GC-MS and UPLC-MS to
characterize the nutrients present at four maturity stages and to gain a brief understand-
ing of the chemical profiles. They found great similarity in the profiles of amino acids,
proteins, carbohydrates and organic acids, but differences in the mineral composition of
the liquid endosperm of both varieties. On the other hand, they found eight metabolites,
mainly organic acids, with ripening stage-specific accumulation, and they proposed them
as biomarkers for distinguishing the ripening stages in coconut fruit.

Overall, most chemical composition and metabolomics studies currently conducted in
coconut have focused on determining the nutrients and fatty acid content of coconut oil
and shelf life of coconut water as well as other postharvest aspects. Therefore, in light of the
lack of biochemical information on the coconut fruit ripening process, we addressed this
gap by investigating the metabolic pathways that are regulated during ripening using an
untargeted metabolomic approach by ultra performance liquid chromatography coupled
to electrospray ionization and quadrupole time-of-flight mass spectrometry (UPLC-ESI-
QTOF-MS). The liquid endosperm of coconut fruits during different stages of maturity of
the Yucatan green dwarf cultivar was analyzed. The objective of this report was to identify
the metabolic pathways that accumulate (up-accumulated and down-accumulated) during
maturation of Yucatan green dwarf coconut. Principal component analysis (PCA) grouped,
with little dispersion, samples according their stage of maturation, supporting that fruits
were well classified. In addition, the over-accumulated and down-accumulated metabolic
pathways were identified to better understand the ripening processes in coconut fruit. This
is the first report of biochemical changes in the ripening of coconut fruit with a cultivar
of economic importance for Mexico and the Caribbean, contributing to the existing basic
knowledge of the coconut maturation process. Moreover, it is a worthwhile contribution to
the field of metabolomics and the ontogenetic knowledge of this species.

2. Materials and Methods
2.1. Collection and Storage of Samples

Coconut fruits cultivar Yucatan green dwarf were collected in a plantation located in
San Crisanto, Yucatan, Mexico (21◦20′53.5′′ N 89◦12′08.6′′ W). Maturity stages were classi-
fied according to [31–33]. This method consists of identifying the unopened inflorescence
of the plant, to be considered as stage zero. The next open inflorescences (from top to
bottom) are designated as stage 1, 2, 3, etc. Fruits at each stage of ripening have particular
phenotypical characteristics. In this study, we selected three stages of fruit ripening: imma-
ture stages (6–8 inflorescence), intermediate stages (9–10 inflorescence) and mature stages
(11–14 inflorescence). For each stage, liquid endosperm for 4 fruits were pooled and then
200 mL of the composite samples were stored at −80 ◦C. For each stage, four biological
replicates were prepared, whit a total of 16 fruits per stage.

2.2. Extraction and Sample Preparation for LC-MS Analyses

Pooled samples were thawed at room temperature (25 ± 2 ◦C). Per composite sample,
200 µL was transferred to a 2 mL Eppendorf tube containing 600 µL of methanol HPLC
grade (Sigma-Aldrich, St. Louis, MO, USA), ultrasonicated for 15 min at 25 ◦C and cen-
trifuged at 10,500× g at 25 ◦C for 15 min. The supernatant was transferred to a new 1.5 mL
centrifuge tube, and excess solvent was removed in a Centrivap Concentrator system
(LABCONCO, Kansas City MO, USA). Then, samples were lyophilized to obtain the dry
extracts. For each pool sample, 50 mg of dry extract were recovered, e.g., four replicates
with 50 mg each were obtained per stage. The samples were sent to the Metabolomics
core facility of the Instituto de Ecología A. C. (Xalapa, Veracruz, Mexico) for UPLC-HRMS
analyses. Samples were resuspended in 1 mL of 0.1% formic acid in methanol, filtered
through a 0.22 µm PTFE membrane, and the concentration was adjusted to 50 mg/mL.
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2.3. Metabolomic Analysis on UPLC-ESI-MS-QTOF

A chromatographic system UPLC Class I coupled to a Synapt G2Si-HDMi mass
spectrometer (Waters™, Milford, MA, USA), was used in this study. Chromatography was
performed out on an Acquity BEH column (1.7 µm, 2.1 × 50 mm), with column and sample
temperatures of 40 ◦C and 15 ◦C, respectively. The mobile phases comprised of water (A)
and acetonitrile (B), both with 0.1% of formic acid (Sigma-Aldrich, St. Louis, MO, USA). The
gradient condition of the mobile phase was 0–20 min linear gradient 1–99% B, 20–24 min
99% B isocratic, 24–25 min linear gradient 90–1% B (total run time 30 min); 5 µL of extract
was injected and the flow rate was 0.3 mL/min. Mass spectrometric analysis was performed
with an electrospray ionization (ESI) source in negative and positive mode with a capillary,
sampling cone and source offset voltages were 3000, 40 and 80 V, respectively. The source
temperature was 120 ◦C and the desolvation temperature was 20 ◦C. The desolvation gas
flow was 600 L/h and the nebulizer pressure was 6.5 Bar. Leucine-enkephalin was used as
the lock mass (556.2771, [M+H]+; 554.2615, [M-H]−). The conditions used for MS analysis
were in the mass range 50–1200 Da; Function 1 CE of 6 V; function 2 CER of 10–30 V; scan
time 0.5 s.

2.4. Data Analysis

Data were acquired and processed with MassLynx (version 4.1, Waters, Milford, MA,
USA) and MarkerLynx (version 4.1, Waters, Milford, MA, USA) software. The retention
times and the protonated masses were generated at a noise threshold of 1000 counts
and peak smoothing was applied. The raw data were exported to Excel (Microsoft Soft-
ware) tables for statistical analysis; MetaboAnalyst platform (V. 5.0; [34]; https://www.
metaboanalyst.ca/), through its different modules, was used for the functional analysis of
untargeted metabolomics data. Using the statistical analysis module, multivariate methods
were used to compare the samples. Principal component analysis (PCA) was performed
to determine samples similarity based on their chemical composition and fold changes
analyses were performed to identify over-accumulated and down-accumulated metabolites
[Fold Change (FC) values ≥1.50 or ≤0.67, respectively] in the samples; for each set of
differentially accumulated metabolites, both ionization modes were linked. The spectro-
metric features [retention time-mass/charge (rt-m/z)] signals were tentatively identified
using the using the functional analysis module and analyzed using the pathway analy-
sis module and pathway analysis modules considering the Arabidopsis metabolome as
refence. The ClassyFire platform was used to classify the identified molecular ions [35];
http://classyfire.wishartlab.com/). This application is powered by SMILES identifiers and
uses a chemotaxonomic rule-based approach, providing a hierarchical chemical classifica-
tion of chemical entities.

For the processing and visualization of metabolomics data, multivariate methods were
used, such as the unsupervised method principal component analysis (PCA), and volcano
plot (univariate method) was constructed to identify potentially discriminatory variables.
PCA, Volcano plot, heatmap and hierarchical clustering (HCA) were generated with the
Statistical Analysis of MetaboAnalyst. The Venn diagram was generated with the Venny
Platform (V. 2.1; https://bioinfogp.cnb.csic.es/tools/venny/index.html).

3. Results
3.1. Cluster Analysis and PCA

Liquid endosperm samples from immature, intermediate and mature fruits were
analyzed from four biological replicates (pooled samples), each one by UPLC-HRMS.
Mass spectrometry analysis detected 238 rt m/z signals in positive ionization mode, and
353 rt m/z signals in the negative ionization mode. The intensity of the rt m/z signals was
transformed (Log10) and normalized by Pareto scale. The heatmap with hierarchical clus-
tering (HCA) and the principal component analysis (PCA) were carried out by combining
the dataset matrix of both ionization modes (ESI+ and ESI−). The heatmap-HCA shows
three specific clusters (Figure 1A), corresponding to each maturity stage; this indicates that

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
http://classyfire.wishartlab.com/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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the liquid endosperm at each stage of maturity has particular chemical profiles. In the
heatmap, the intensity of each rt m/z signal is indicated by the z-score using a red/blue
scale. In most cases, a trend of decreasing intensities is observed from the immature to
the mature fruits. For example, the ions (m/z) 272.9824, 344.9143 and 464.8038 had high
intensities in the immature stage, medium intensities in the intermediate stage and lower
intensities in the mature stage. This trend suggests that in the immature stage there was
a greater presence of these compounds, which may be transforming into more complex
molecules to supply the physiological requirements of the fruit. In some cases, an opposite
trend is observed, e.g., the intensity of ions (m/z) 302.3057, 348.0608 and 146.1170 increased
throughout maturity. The changes in the intensity of the detected signals reflected the
dynamic accumulation of the compounds due to the activation and inactivation of various
metabolic pathways. The PCA score plot (Figure 1B) shows that each biological replicate
was grouped according to the stage of maturity, but with separation between clusters of
the maturity stages, supporting the previous observation of chemical differences between
the different stages of maturity. The principal components (PCs) explained 85.3% of the
total variance. In summary, PCA and HCA showed that the overall profile of the UPLC-MS
analysis was affected by the stage of fruit maturity.

A Venn diagram was created to depict the number of statistically significant rt m/z
signals that were shared/unshared between the maturity stages (Figure 1C). The core
metabolome consists of 176 rt m/z signals; the immature stage contained the highest
number of unique rt m/z signals (76), while the stage with the lowest number of unique rt
m/z signals was the mature stage (12). Signals unique to the intermediate stage numbered
20. Between the immature and intermediate stages 64 rt m/z signals are shared, 9 rt m/z
signals were shared between the intermediate and mature stages, and 40 rt m/z signals
between the immature and mature stages. Figure 1D shows how the liquid endosperms are
observed at different stages of maturity. Although the metabolomic profile is more complex
in the water of immature fruits, the liquid endosperm was less turbid at this stage.

3.2. Enrichment of Metabolic Pathways during Ripening

Statistical analysis of the signals detected at the different stages of ripening was
performed and the results were presented by plotting p-values against the log (10) of the
fold-change value on a volcano plot for each signal detected as statistically differential
for each stage of maturation (e.g., immature vs. intermediate or mature). No similar
distribution was observed between liquid endosperms of the fruits in different stages of
ripening. The comparison of liquid endosperms from immature fruits vs. intermediate
stage fruits revealed 79 signals were down-accumulated, 11 over-accumulated, and 88
did not show any change. In the immature stage vs. mature stage, 56 signals were down-
accumulated, 34 over-accumulated, and 105 had no significant changes (Figure S1). Based
on the differential ion intensities at each maturity stage, pathway enrichment analysis was
performed.

First, the enrichment of metabolic pathways between the immature and intermediate
stages was compared using the Mummichog and GSEA algorithm of MetaboAnalyst
platform. In total, 11 metabolic pathways were over-accumulated, mainly sphingolipid
metabolism, anthocyanin biosynthesis and arginine and proline metabolism (Figure 2A;
Table S1), while 25 metabolic pathways were down-accumulated, mainly the biosynthesis
of fatty acids, steroids and flavonoids (Figure 2B; Table S1) during the transition from the
immature to the intermediate stage.

In the comparison of the intermediate and mature stages, 17 metabolic pathways
were over-accumulated; the main ones were: glyoxylate and dicarboxylate metabolism,
alanine, aspartate and glutamate metabolism and steroid biosynthesis (Figure 3A; Table S2).
Conversely, 32 metabolic pathways were down-accumulated, the main ones being flavone
and flavonol biosynthesis, purine metabolism, riboflavin metabolism and amino sugar and
nucleotide sugar metabolism (Figure 3B; Table S2). Table S3 presents the main predicted
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compounds annotated in silico and the metabolic pathway to which they belong in the
comparisons performed in this section.
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Figure 1. Untargeted metabolomic analysis and physical appearance of fruits and liquid coconut
endosperm. (A) Heatmap with hierarchical ordering of the total ions detected by UPLC-MS-QTOF
(ESI+ and ESI−). (B) Principal component analysis (PCA) of ions detected by UPLC-MS-QTOF (ESI+

and ESI−). (C) Venn diagram with the core metabolome of the liquid endosperm at three stages of
maturity. (D) Physical appearance of liquid endosperm in three stages of maturity. AM/red dots
(liquid endosperm from immature fruits), BM/green dots (liquid endosperm from intermediate
fruits), CM/red dots (liquid endosperm from mature fruits).
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metabolites. The dots represent the enrichment factor of each metabolic pathway; the size of the
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rt m/z signal in the corresponding pathway.

3.3. Annotated Chemical Classes

The most abundant chemical classes were identified based on in silico annotation,
using Classyfire. In total 24 classes were annotated according to their chemical classes.
Figure 4A,B show the over-accumulated and down-accumulated chemical classes in the
comparison of immature liquid endosperm vs. intermediate liquid endosperm, respec-
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tively. Figure 4C,D show the over-accumulated and down-accumulated chemical classes
in the comparison of intermediate liquid endosperm vs. mature liquid endosperm, re-
spectively. The main groups were carbohydrates and derivatives, lipids, flavonoids and
organooxygen compounds.
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Figure 4. Classification of the accumulated metabolites in the liquid endosperm of C. nucifera L.
during ripening. (A) Classes of over-accumulated compounds in the comparison of immature vs.
intermediate stages. (B) Classes of down-accumulated compounds in the comparison of immature vs.
intermediate stages. (C) Classes of over-accumulated compounds in the comparison of intermediate
vs. mature stages. (D) Classes of down-accumulated compounds in the comparison intermediate vs.
mature stages. Numbers within the colored spaces indicate the percentage of m/z signals classified in
each category.

4. Discussion

Fruit development and ripening are complex genetically-programmed processes, that
occur in a species-specific manner; the physiological changes that occur during ripening
have an impact on organoleptic properties and fruit quality [21]. During fruit ripening, a
dynamic and complex series of metabolic processes occur that are reflected in the production
of metabolites [36,37]. Primary and secondary metabolites are the end products resulting
from different cellular regulatory mechanisms [38]. In the development of most seeds,
nutrients such as amino acids, soluble proteins, lipids, soluble sugars and starch are
transported to the endosperm and stored as nutritional components [39]. Despite the
complexity of fruit development and ripening, fruits are classified simply as climacteric and
non-climacteric [29]. Cocos nucifera is a non-climacteric fruit that during early development
presents mainly liquid endosperm (coconut water), and as it matures, the formation of solid
endosperm (meat) occurs, reaching up to 30% of the total endosperm volume in mature
fruits [40]. Coconut is the only fruit with well-differentiated liquid and solid endosperm in
the intermediate and mature stages of ripening [11].
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Untargeted metabolomics permits functional analyses of positively or negatively reg-
ulated pathways based on metabolite annotations [41]. Here, PCAs for both modes of
ionization grouped the samples according to the state of maturation (immature, intermedi-
ate or mature). This supports an acceptable classification of the fruits according to their
phenotypic characteristics, and fosters reproducibility in the extractions of metabolites and
the LC-MS analyses. Similar results were reported by Kumar et al. [4], whose study found
that the metabolome of the coconut liquid endosperm could be grouped according to the
stage of physiological maturity which is based on phenotypic characteristics and months
after pollination. The volcano plot is a powerful graphical tool for high-throughput analy-
ses which aids in the identification of significantly differentially expressed genes or signals
across two or more conditions [42]. The volcano plot supported (statistically with p-values)
the significance of the fold-change values of the differentially accumulated signals in the
liquid endosperm during coconut ripening (e.g., immature vs. intermediate stages). The
volcano plots showed that the liquid endosperm was largely different among the different
stages during fruit maturation, meaning that the composition and abundance of specific
molecules or compounds vary while the fruit is ripening (blue and red dots) (Figure S1).
Variation in the chemical composition of fruits during ripening is congruent with existing
literature; there are similar reports for several fruits such as Fragaria × ananassa [43], Citrus
reticulata [44] and Rosa roxburghii [45].

Due to the nutraceutical potential of coconut water, the nutrient profile has been
analyzed by targeted metabolomics in fruits with different degrees of maturity. A study
carried out on COD and MYD cultivars (common cultivars in India) found significant
differences in the regulation of the metabolic pathways between the different maturation
stages in each variety, but there were no significant differences when comparing both
varieties [4]. In the Yucatan green dwarf coconut cultivar, starch and sucrose are among
the main metabolic pathways regulated in the immature stage, and they showed similar
regulation to that previously reported in COD and MYD cultivars. This pathway is more
active in intermediate fruits since a higher accumulation of the compounds involved in
this metabolic pathway is observed at this stage. Some annotations of compounds in the
Yucatan green dwarf cultivar, based on their m/z ratios consulted in databases such as
MassBank, match with compounds identified most of them coincide in the carbohydrate
profile, for example, fructose, glucose, sucrose and mannitol.

During ripening of the Yucatan green dwarf coconut cultivar, changes in over-accumulation
were observed for flavonoid biosynthesis, steroid biosynthesis, diterpenoid biosynthesis,
anthocyanin biosynthesis, metabolism of ascorbate and aldarate, and metabolism of the
amino acids: alanine, aspartate and glutamate. Although it cannot be ruled out that
these results reflect biochemical differences between these cultivars, the differences are
most probably due to methodological factors [46,47]. In the cultivars COD and MYD,
up-regulation in the metabolism of phenylalanine, tyrosine and tryptophan was observed.
This could be because the precursor chemicals of these amino acids have an affinity for
the ethyl acetate used [48]. Conversely, the precursor chemicals of alanine, aspartate and
glutamate are polar with an affinity for methanol, which was used in this present study.

The classification of fruits in different stages of maturity is based on phenotypic
characteristics; although this classification has worked quite well overall, some scatter in
the PCA analyses show that there is some bias in the classification of the samples [4,49].
Kumar et al. [4] proposed eight biomarkers for the different stages of maturity which were
identified when they conducted targeted nutritional metabolomics. Here, the untargeted
method employed was able to identify sucrose, succinic acid and fumaric acid, in semi-
quantitative analysis. The advantages of our procedure include a significantly shorter
analysis time in the preparation of the samples, since a small volume of solvent was used
(200 µL methanol vs. 200 mL ethyl acetate in the literature). Furthermore, concentration by
rotary evaporator was not required; there was no derivatization of compounds in our case.
Consequently, the lower cost of analysis of our method may be more attractive for routine
applications in the classification of samples for research or industry.
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Sucrose and starch play key roles in photosynthesis and are synthesized from triose-
phosphate during plant CO2 fixation in the cytosol and the chloroplasts, respectively [50,51].
In the endosperm of the fruits in the intermediate ripening stage, intermediate precursors
and end-products of these pathways were highly accumulated. Sucrose 6-phosphate, tre-
halose 6-phosphate, D-Fructose and others were identified in the liquid endosperms, which
are also intermediates of glycolysis, the pentose phosphate cycle and the tricarboxylic acid
cycle (TCA), all of which are related to carbon metabolism [52]. In the seed of Styrax tonki-
nensis, these metabolites are accumulated in fruits in the intermediate stages of maturation
as a preliminary step for lipid synthesis [22]. These major sugars confer the sweet flavor of
coconut water, mainly in the immature stage of ripening, supported by results from Kumar
et al. [4]. Total soluble sugars in coconut liquid endosperm changes throughout ripening;
in the intermediate stage, they are in high concentration and then decrease in the mature
stage [4,53]. Reducing sugars also participate in the metabolism of reactive oxygen species
(ROS), contributing to the generation of energy through the oxidative pentose phosphate
pathway [54]. Additionally, they play a key role in osmoprotection and cell membrane
stabilization [55].

Seed germination requires a great reserve of energy; the glyoxylate cycle, the TCA
cycle and gluconeogenesis are key processes which provide the energy needed for germi-
nation [56]. Glyoxylate and dicarboxylate metabolisms are over-accumulated during the
ripening of coconut fruits in the mature stage. A key enzyme in the glyoxylate cycle is isoc-
itrate lyase (ICL), which catalyzes the cleavage of isocitrate into glyoxylate and succinate;
succinate enters the mitochondria for subsequent reactions [57]. Félix et al. [49] recently
demonstrated that glyoxylate is significantly regulated during the ripening of coconut
fruits, following an inverted bell curve, in agreement with the regulation of glycolysis.
Glyoxylate and dicarboxylate metabolisms are also related to abiotic stress, providing a
balance in metabolic changes to improve tolerance to drought stress [37]. The metabolism of
ascorbate and aldarate was found here to be one of the most over-accumulated, suggesting
an important role of this metabolism in the detoxification of glyoxal and methylglyoxal in
coconut, to overcome the oxidative stress imposed by highly active glycolysis.

Organic acids are involved in various metabolic pathways such as the synthesis of
amino acids, auxins, gibberellins, salicylic acid, fatty acids, phenolic compounds and cell
wall compounds [58]. The high concentration of aconitic acid, malic acid and succinic
acid, and the low concentration of sugars in coconut water from immature fruits are
determinants of its flavor [59]. Unexpectedly, a high accumulation of some ions related to
organic acids in coconut water was also observed in mature fruit, and this may be related
to metabolic activity in the tricarboxylic acid cycle, as well as gluconeogenesis and amino
acid interconversion, prior to embryo germination and haustorium development [30].

The metabolism of alanine, aspartate and glutamate is a short catabolic pathway, where
alanine is converted to pyruvate [60]. This metabolic pathway is intricately connected
to various biochemical processes, and also influences cellular energy balance and signal
transduction [61]. In the mitochondria, different multi-enzyme complexes are involved in
various metabolic branches, such as for the synthesis of isoleucine, methionine or threonine,
which are important nutrients and precursors for the synthesis of essential amino acids [62].

Other metabolic pathways that may play critical roles in the biochemical transforma-
tion of coconut fruit during ripening are: sphingolipid metabolism, anthocyanin biosyn-
thesis, flavone and flavonol biosynthesis, riboflavin metabolism and amino sugar and
nucleotide sugar metabolism. (A) Sphingolipid metabolism: Coconut liquid endosperm is
described as a fat-free drink, however, in immature and intermediate stages of the green
dwarf coconut water, the presence of sphingolipids was detected. They are likely to be
involved in the transition from the immature to the intermediate stage, since these lipids are
key elements in many cellular processes, including cell signaling, membrane structure, and
apoptosis [63] and fruit maturity processes [64]. Likewise, Fonseca et al. [65] and Cunha
et al. [66] reported in green dwarf coconut water the presence of long-chain fatty acids
such as palmitic, myristic and stearic acids. In line with these reports, the biosynthesis
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of fatty acids was found to be up-regulated in our study. Fatty acids play critical roles in
energy storage and membrane structure. Over-representation of this pathway is congruent
with the need for lipid-building blocks during fruit growth and maturation [67]. Another
lipid metabolism that was found to be important was steroid biosynthesis. Steroids con-
tribute to the synthesis of hormones, structural components of membranes, and signaling
molecules. Changes in steroid biosynthesis are related with a shift in hormonal regula-
tion [68], which is expected during fruit development. The content of these lipids, although
important for fruit physiology, may be lower in coconut water compared with oily fruits,
classifying this drink as a low-caloric product, suitable for hyperglycaemic, hyperlipidimic
and nephropathy patients [69]. (B) Anthocyanin biosynthesis: anthocyanins are pigments
responsible for the red, purple and blue colors in many fruits, flowers, and leaves [70],
and they have been previously reported in coconut water [71,72]. For this reason, coconut
water is considered to be useful for human health, against cancer and heart diseases. The
coconut kernel may contain 10 times more anthocyanin compared with coconut water [71],
and the over-accumulation of these products contribute to the change of color in the ex-
ocarp during fruit maturation. (C) Flavone and flavonol biosynthesis: Flavonoids are a
group of plant secondary metabolites involved in pigmentation, UV protection, defense
against pathogens, and as signaling molecules [63]. Changes in flavonoid biosynthesis
during fruit ripening can affect fruit color and nutritional quality. Flavonoids are important
antioxidants against reactive oxygen species (ROS), oxidases (e.g., xanthine oxidase [XO],
and phosphoinositide 3-kinase [PI3K]), and they also activate antioxidant enzymes [73].
(D) Riboflavin metabolism: Riboflavin (vitamin B2) is a vital coenzyme involved in various
redox reactions and energy metabolism. It is essential for plant growth, development,
and stress response [74]; therefore, regulation of riboflavin metabolism is consistent with
the expected biochemistry of coconut ripening. (E) Amino sugar and nucleotide sugar
metabolism: these pathways are crucial for the synthesis of glycoproteins, glycolipids, and
other important cellular components. Changes in these pathways can influence cell wall
composition and other aspects of fruit development [75].

The identification of all these metabolisms have been related with other oilseeds
such as cashew nut (Anacardium occidentale L.) [76] and sesame (Sesamum indicum L.) [77],
showing similar metabolic profiles associated with simple and complex sugars, organo-
oxygenated compounds, flavonoids and phenolic compounds, amino acids, nucleosides,
nucleotides and organic acids during maturation. These compounds are an important
fraction of the nutrients in most oilseeds, and they are directly associated with appearance,
texture and flavor [78].

Although the liquid endosperm metabolomes of yellow dwarf and orange dwarf
cultivars were previously reported, here we present, for the first time, information on
the liquid endosperm metabolome of the Yucatan green dwarf; these three dwarf culti-
vars are the predominant cultivars used to obtain coconut water worldwide. Differences
in sample preparation and analytical platforms make metabolomics results complemen-
tary [79,80]; therefore, the information obtained for Yucatan green dwarf coconut expands
the knowledge of the metabolome of dwarf coconut cultivars.

The metabolome of the Yucatan green dwarf coconut is highly conserved with metabolomes
reported for COD and MYD dwarf varieties from India, with respect to sugars, organic acids,
and amino acid accumulation [4], and is consistent with the recently reported proteomics
study for green dwarf coconut [49], although some discrepancies were also noted.

5. Conclusions

The metabolomic differences of Yucatan green dwarf with dwarf coconut varieties
COD and MYD likely arise from differences in methodologies and not biological differences,
since different solvents were used for the extraction and different approaches to MS analyses
were taken. We identified potential biomarkers for the classification of coconut fruits at
different stages of maturity. The protocol followed here is simpler, faster and cheaper,
compared to previous metabolomics analyses in coconut, making it suitable for routine
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classification of coconut for research projects or industry. Metabolomics profiles are different
among the coconut fruits with different maturity. It will be interesting to further evaluate
whether better selection of fruits with the same degree of maturity using biomarkers
improve the nutraceutical properties of the food products. In terms of the biological
results, the present metabolomics results suggest that the metabolism of ascorbate and
aldarate is an important player in coconut development. They most likely play a role
in overcoming oxidative stress, probably by detoxifying glyoxal and methylglyoxal to
overcome the oxidative stress imposed by highly active glycolysis. Taken together, these
results contribute to the current knowledge of coconut biochemistry to understand the
molecular basis of fruit maturation. Further multi-omics analyses will be suitable to deeply
uncover new insights of coconut ripening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae9080866/s1. Figure S1: Volcano plot for each signal
detected with statistically significant differences; Table S1: Pathways enrichment in immature vs.
intermediate stage comparison; Table S2: Pathways enrichment in intermediate vs. mature stage
comparison; Table S3: Mummichog matched compounds.
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