
1. Introduction
Cellulosic fibers like flax, hemp, kenaf, henequen,
sisal, jute, coconut, coir, kapok, banana and many
others have been used as reinforcement agents of dif-
ferent thermosetting and thermoplastic resins. Unlike
the traditional engineering fibers, e.g. glass and car-
bon fibers, these lignocellulosic fibers are able to
impart the composite high specific stiffness and
strength, they have a desirable fiber aspect ratio and
a high degree of flexibility, recyclability and bio -
degradability, they are non-abrasive to the process-
ing equipment, non-irritating to the skin, no other
health hazards, they are readily available from natu-
ral sources, and more importantly, they have a low
cost per unit volume basis [1, 2].

The problem of fiber-polymeric matrix adhesion
has been approached modifying either the fiber sur-
face, or the matrix to ensure the stress transfer, nec-
essary for the effectiveness of the composite mate-
rial. It follows that the efficiency of load transfer
from matrix to fiber in a composite is not only
strongly related to the optimum mechanical proper-
ties of the constituent components but also to the
interfacial parameters, including factors such as:
the interfacial shear strength, the interfacial tough-
ness, the matrix shrinkage pressure on the fiber, and
the interfacial coefficient of friction [3, 4].
Effective analytical micromechanical models have
been developed for synthetic short fiber-reinforced
polymers [5]. The most utilized and known theories
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for tensile properties are the rule of mixtures (ROM),
the Cox model, the Halpin-Tsai model, and the
Bowyer-Bader model [6–8]. The ROMs are very sim-
ple models using fiber and matrix sum of volume
weighted properties to predict composite properties.
ROM can be parallel or series. The Hirsch model is a
combination of parallel and series ROM. The Halpin-
Tsai model considers matrix-to-fiber properties ratio
instead of sum of volume-weighted properties. The
Cox model suggests that stress in the fiber is propor-
tional to the difference between fiber strain and the
strain that the matrix would have if there were no
fibers. The Bowyer–Bader model considers the con-
tribution of fibers below and above critical fiber
length. More recently, Nairn proposed a generalized
shear-lag analysis model to calculate the tensile
elastic modulus of the composite. Nairn extended
the optimal shear-lag analysis to a generalized case by
enabling the shear stresses to be described by shape
functions. He also extended the capabilities of the
generalized shear-lag analysis to include an imper-
fect interface by the addition of an interface param-
eter Ds [9]. Nairn’s model considers the interfacial
quality explicitly; however, most models use con-
stants to fit the experimental measurements. Some
authors that have used analytical modeling for natu-
ral fiber-reinforced (or filled) polymers, incorporated
a reinforcement efficiency factor. For example,
Simonsen used factors that varied between 0.61 and
0.85, depending on the polymer matrix to model the
bending modulus of elasticity of wood fiber–filled
thermoplastics made with three different matrices:
polypropylene, polyethylene, and polystyrene. A loss
factor for fiber orientation has also been used to fit
the model to experimental values. Orientation factors
for tensile strength found varied from 0.1 to 0.36.
The loss factor for stress transfer efficiency was
used for the composite modulus of elasticity varied
from 0.42 to 0.51 for injection molded jute/poly -
propylene composites as a function of fiber volume
fraction using ROM [10, 11]. Fiber/matrix interfa-
cial shear stress was obtained from single fiber
pull–out tests and was incorporated into the tensile
strength model. A few other authors have incorpo-
rated values for the critical length (Lc) and fiber
matrix-adhesion strength (") for hemp single fiber/
polypropylene composites [12] and Herrera-Franco
and Valadez-González [13] used the single fiber

fragmentation tests together with pull–out tests on
henequen/polyethylene single fiber specimens and
found that the critical length and the fiber aspect
ratio, varied with fiber/matrix adhesion quality and
interfacial shear strength.
Fukuda and Kawata [14] developed a theory for the
Young’s modulus of short-fiber reinforced compos-
ites with variable fiber length and orientation. Later
on, Fukuda and Chou [15] adopted the basic proba-
bilistic approach of Fukuda and Kawata [14] to
develop a theory for the modulus of short-fiber rein-
forced composites with variable fiber length and
orientation. Summarizing it can be said that the role
of the fiber reinforcement is considered in these
model using an efficiency factor (or loss factor),
together with an orientation factor. The first factor is
related to the fiber length, either above or below the
fiber critical length Lc, and sometimes estimated
from the interfacial shear strength. The second fac-
tor is equal to one for unidirectionally oriented fibers
and less than one for randomly oriented fibers
depending on the angle distribution of the fibers.
Little attention has been paid to the fact that natural
fibers are flexible and that depending on their initial
length before processing and the processing method
used, their final shape will be distorted with shapes
other that the stiff, straight fibers upon which all the
micromechanical models were developed.
The aim of this paper was the study of the role of the
fiber curvature on the prediction of the tensile prop-
erties of short-natural-fiber reinforced composites
for a well-defined fiber-matrix adhesion system.
Emphasis on the flexible behavior of the natural
fibers, therefore, fiber length and orientation and its
effect on its stress transfer capability and the mechan-
ical properties of the constituents will be discussed.
The discussion is built around a well characterized
and controlled fiber-matrix system, namely, a high
density polyethylene (HDPE) matrix reinforced
with henequen fibers (Agave fourcroydes).
Although the fibers, as a result of the processing
method of the composite, may exhibit a curvature
with shapes such as C, D, S, etc., the U-shape was
proposed in this paper for the simplicity of the analy-
sis and as the basis to analyze the effect of the other
shapes mentioned before. In any case, the approach
to handle the fiber curvature will be discussed in the
section 7.1.
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2. Fiber-matrix adhesion and experimental
procedures

The optimization of interfacial bond between a fiber
and a polymer matrix is an important aspect with
respect to the optimal mechanical performance of
fiber reinforced composites in general, and durabil-
ity in particular. Since the fibers and matrices are
chemically different, strong adhesion at their inter-
faces is needed for an effective transfer of stress and
bond distribution throughout an interface. A good
compatibility between cellulose fibers and non-
polar matrices is achieved from polymeric chains that
will favor entanglements and inter-diffusion with
the matrix [13, 16]. Several approaches have been
explored, such as physical treatments by corona or
plasma, and chemical grafting with molecules and
macromolecules which display a good compatibil-
ity with the matrix and introduce surface hydropho-
bicity. The chemical modification by coupling agents
susceptible to react with the fibers and the matrix con-
stitutes a particularly astute way of controlling the
quantity and the nature of the groups present at their
surface. Moreover, it creates covalent bridges between
the fibers and the matrix which ensure the best
mechanical properties for the composite [17].  The
physical and mechanical properties of the henequen
fiber and the HDPE are listed in Table 1 [13].
The fiber surface properties were modified to
enhance the physicochemical interactions at the fiber-
matrix interphase. They are first treated with a NaOH
aqueous solution alkaline treatment which has two
effects on the fiber: (1) it increases the surface rough-
ness that results in a better mechanical interlocking;
and (2) it increments the amount of cellulose exposed
on the fiber surface, thus increasing the number of
possible reaction sites.
In this paper, the following materials were used: as a
matrix, high density polyethylene (HDPE) and as
reinforcement, henequen fibers (Agave fourcroy-
des) with an average diameter of 180 µm approxi-
mately.
In order to enhance the fiber-matrix adhesion two
surface pre-treatments were used: first, a silane cou-
pling agent was used and second, a matrix pre-

impregnation on the fiber. The henequen fibers were
treated with a 2% NaOH aqueous solution for 1 hour
at 25°C, washed with distilled water and dried at
60°C for 24 h, after they were surface modified.
The henequen fibers were also treated with vinyl-
tris(2-ethoxymethoxy) silane coupling agent and
dicumyl peroxide. The peroxide and silane coupling
agent were deposited on the surface of the fiber
from a methanol/water solution (90:10) adjusted to
a pH 3.5 with acetic acid at 25°C. The weight con-
centration was 1% silane and 0.5% peroxide with
respect to the fiber. Then the fibers were dried and
cured at 60°C during 24 h.
The fiber-surface silanization opens the way to the
rational use of silane coupling agents to functional-
ize the surface of organic materials. In some cases,
optimal conditions can be established thus favoring
the substrate condensation reaction and limiting the
self-condensation of the silanol groups that produce
polysiloxanes. This is particularly interesting, since
the grafting efficiency (both in terms of product con-
figuration at the surface and quantity of adsorbed
molecules) can be modulated, depending on the
envisaged extent of the fiber-surface modification
[18, 19].
After the surface modifications, the fibers were pre-
impregnated with a solution of HDPE-xylene to
ensure a better wetting of the fibers with the poly-
mer. Fiber preimpregnation allows a better fiber wet-
ting which in a normal fiber–polymer mixing pro-
cedure would not be possible because of the high
polymer viscosity, thus, it enhances the mechanical
interlocking between fiber and matrix. The nomen-
clature used for the different fiber surface treat-
ments and the expected adhesion mechanisms are
described in Table 2.
The composite laminates were prepared using a fiber
volume fraction of 20% w/w (Vf = 0.1237) calculated
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Table 1. Physical and mechanical properties of the con-
stituents of composite

Material !
[MPa]

E
[MPa]

Poisson
ratio, "

Equivalent diameter
[mm]

Henequen 604 13200 0.33 0.18
HDPE 28 792 0.30 –

Table 2. Nomenclature used for different fiber surface treat-
ments

Type of
bonding Keyword Description of treatment

Mechanical
bonding

FIB Fiber without any treatment

FIBNA Fiber treated with a NaOH aque-
ous solution

FIBNAPRE
Fiber treated with a NaOH aque-
ous solution and then pre-impreg-
nated with dissolved HDPE

Mechanical plus
chemical bond-
ing

FIBNASIL
Fiber treated with a NaOH aque-
ous solution and then with a
silane coupling agent



considering the fiber density equal to 1.7 g/cm3. The
value of the shear modulus of the matrix, Gm, was
calculated using the expression Gm = Em/(2(1 + #m))
where Em and vm are the Young’s modulus and
Poisson’s ratio of the matrix, respectively [14]. The
fiber length used for the composite fabrication was
equal to 15 mm.

3. Photoelastic model and resin calibration
To know the stress distribution around a curved
inclusion in an infinite media, when the material
was subjected to a tensile load, a photoelastic analy-
sis was performed. It is convenient to mention that
this photoelastic as well as a finite element analysis,
to be mentioned latter, were performed not to meas-
ure the actual stress at the fiber-matrix interface, but
rather to identify the distribution of the stress com-
ponents around the curved fiber (inclusion). The resin
selected to make the model was an epoxy, Bisphe-
nol A, DER 331 from DOW Chemical because of
its excellent photoelastic properties. The curing agent
used was an aliphatic amine, Ancamine 1784 from
Air Products and Chemicals, Inc., using 60% w/w
ratio with the resin. After mixing and degassing, the
resin was poured in silicon mold to fabricate a disk
with a diameter D equal to 44.6 mm. To simulate a
curved fiber inclusion, a piece of copper wire of
0.32 mm of diameter was used. The composite sin-
gle inclusion sample was an ASTM standard tensile
test dog bone shaped specimen. It was also casted in
a silicon mold. First, the resin was poured to fill half
the mold cavity and when the resin started to gel,
the wire was carefully placed in the cavity and then
the mold was filled with the resin and allowed to
cure at room temperature for 48 hours.
The principal-stress difference ($1 –!$2) at each point
in the model is proportional to the induced birefrin-
gence at the point. The constant of proportionality
was determined using a well-known method of a
disk loaded in diametric compression. The isochro-
matic pattern is related to the stress system by the
stress-optic law (Equation (1)):

                                                  (1)

where f" is the stress-optical coefficient, a constant
that depends upon the model material and the wave-
length of light employed, t is the model thickness, and
N is the relative retardation of rays forming the pat-

tern. The term N is also known as an isochromatic
fringe order. The state of stress at the center of the
disk is known [20] and substituting in Equation (1),
the stress-optical coefficient f" is given by Equa-
tion (2):

                                                          (2)

where P is the diametral compression force and D is
the diameter of the disk.
Then, the maximum shear stress in the plane is
obtained relating the fringes to fringe order by
Equation (3):

                                    (3)

4. Finite element analysis
As mentioned previously, a finite element analysis
was also performed together with the photoelastic
analysis. Figure 1 shows the finite element model and
the boundary conditions used for the single curved
fiber inclusion. A commercial finite element code was
used (NISA Ver. 15.0) using rectangular four-node
isoparametric elements. A total of 20706 nodes and
20400 elements were used and the material proper-
ties were supposed to be homogeneous and iso -
tropic and an elastic plane stress analysis was
assumed within the framework of small displacement
theory. Perfect adhesion was assumed at the fiber-
matrix interphase, that is, only two faces are consid-
ered, the fiber and the matrix. The material proper-
ties used were: for the matrix, Em = 1032 MPa,
Poisson’s ratio #m equal to 0.38 and the inclusion,
Ef1 = 11.772 GPa, Ef2 = 1.1772 GPa Poisson’s ratio
#f equal to 0.35. The shear modulus in both materi-
als was calculated using G = E/(2(1 + #)). Special
care was taken during meshing to avoid (or, at least,
to reduce to a minimum) distorted elements, partic-
ularly at the ends of the inclusion.
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Figure 1. Finite element model and the boundary condi-
tions used to for the single curved fiber inclusion



5. Fiber–matrix adhesion characterization
and the interphase

The concept of interphase is the geometrical surface
of the classic fiber-matrix contact as well as the
region of finite volume extending therefrom, wherein
the chemical, physical and mechanical properties
vary either continuously or in a stepwise manner
between those of the bulk fiber and matrix material.
Experimental methods for characterization of the
fiber-matrix interface are based on the measurement
of the adhesion of a single fiber. The fiber-fragment
critical length and the interfacial shear strength can
be measured using the Single fiber Fragmentation
Test (SFFT). This technique consists of a single fiber
embedded in a polymer matrix dog bone shaped spec-
imen tensile specimen. During application of the
load, the tensile stress in the fiber increases and frag-
mentation occurs at points where its tensile strength
$f is reached. This fragmentation process continues
as the applied stress $0 is increasing. At some point,
the fiber fragments are so short that the stress trans-
ferred to the fiber through the interface is not enough
to cause any further fiber failure. When this happens,
it can be said that the critical fiber fragment length lc
has been reached. To a first approximation, the inter-
facial shear strength (") is calculated from a simple
equation obtained from a force balance on a frag-
ment of fiber and, recognizing the random nature of
the fiber fragmentation process, the expression is
given by Equation (4) [21]:

                                           (4)

where $f is the tensile strength of the fiber, % and &
are Weibull scale and shape parameters and # is the
Gamma function.

6. Modelling of micromechanical properties
The rule of mixtures was also modified by Fukuda-
Chou [15] to predict the strength of a fiber reinforced
composite when both, the fiber length and orienta-
tion varies. For a continuous unidirectional fiber
developed using the assumption of equal strain in
both matrix and fiber, the rule of mixtures is
expressed by Equation (5):

$cu = $fuVf + $m(1 – Vf)                                        (5)

where $cu and $fu represent the ultimate strength of
the composite and fiver respectively, Vf denotes the
fiber volume fraction $m is the matrix strength upon
failure of the composite. In the case of short unidi-
rectional fibers, is expressed by Equation (6):

                  (6)

where the factor F(lc/l
–
) is added to consider the effect

of the fiber length lc and l
–

represent the critical length
and the average fiber length respectively. If a con-
stant uniform shear stress and a uniform fiber length
are assumed, this factor is given by Equation (7):

                         (7)

If the fiber length is not uniform, Equation (6) must
be modified. Considering the manufacturing
processes used for composite materials, there is a
variation, not only of the fiber length but of the
fiber orientation too. In the case of randomly ori-
ented fibers, the rule of mixtures is further modified
as shown by Equation (8):

              (8)

where C0 is the factor of fiber orientation. The impor-
tance of the factors F(lc/l

–
), and C0, are important for

the discussion in this paper. Fukuda and Chou [15]
also proposed the expansion of the concept of ‘crit-
ical zone’ to predict the strength of composites rein-
forced with randomly fibers reinforced with short
fibers with variable fiber orientation and length.
The critical zone is defined by means of a pair of
planes separated by a distance !l

–
, where ! is a con-

stant value less than one and l
–
, is the average length

of the fiber crossing a plane normal to the tensile
stress applied and aligned with the fiber. The length
and orientation of the fiber were considered intro-
ducing a probability density function of the fiber
length h(l), together with probability density func-
tion of fiber orientation g('), and then, the strength
of the composite material was also given in the
form of a probability density function by Equa-
tion (9):
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This is a general expression for the strength of a
short fiber reinforced composite. In this case, to
analyze a particular composite material it is neces-
sary to know the functions g(') and h(l) as well as
$fu, $m, Vf and lc. In the case of a unidirectional and
uniform fiber length (case 1), this expression was
reduced to Equations (10) and (11):

(l
–

> lc)            (10)

(l
–

< lc)            (11)

In the case of unidirectional distributed fiber length
(case 2), !$ 0, we get Equation (12):

+ $m(1 – Vf)                  (12)

and in the case of random orientation, uniform fiber
length, and longer than the critical length we get
Equation (13):

If C0 is defined, for a constant value of g(') = 2/",
as shown by Equation (14):

 

   (14)

and in the limiting case, !$ %, C0 $!0.27. Fig-
ure 2 shows a plot of C0 as a function of (.
In the case of the elastic modulus of the short fiber
reinforced composites, Fukuda and Kawata [14]
analyzed the load transfer mechanism from fiber to
matrix in a single fiber model using the theory of
elasticity, assuming that the interactions between
fibers were negligible, and expressed as a relative
modulus value Kc with respect to the matrix modu-
lus by Equation (15):

                           (15)

where R0 is given by Equation (16) and Ca by Equa-
tion (17):
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~
c #

lc

b l

l
2l

c

h1l 2dl 1 #
q

lc

a 1 2
l
c

2l
b h1l 2dl d 1 s

m
11 2 V

f
2

scu 5 sfuVf#
p>2

u0

g1u 2cosudu#
u0

0

g1u 2cos3
udu
~#

q

b l2
c #

u0

0

a 1 2
bl2

lcosu
b g1u 2du dh1l 2dl

~
scu 5 sfuVf#

p>2

u0

g1u 2cosudu#
u0

0

g1u 2cos3
udu
~#

q

b l2
c #

u0

0

a 1 2
bl2

lcosu
b g1u 2du dh1l 2dl

~

~
c #

lc

b l

l
2l

c

h1l 2dl 1 #
q

lc

a 1 2
l
c

2l
b h1l 2dl d 1 s

m
11 2 V

f
2

Figure 2. (a) Orientation factor of the fiber C0 for random fiber orientation; (b) effect of fiber length on composite strength

          (13)scu 5 sfuVf a1 2
lc
2l
b #

p>2

u0

g1u 2cosudu#
u0

0

g1u 2cos3
udu#

u0

0

a 1 2
bl2

cosu
b g1u 2du 1 s

m
11 2 V

f
2scu 5 sfuVf a1 2

lc
2l
b #

p>2

u0

g1u 2cosudu#
u0

0

g1u 2cos3
udu#

u0

0

a 1 2
bl2

cosu
b g1u 2du 1 s

m
11 2 V

f
2



 (16)

            (17)

It should be noted that Kc is independent of the fiber
length. When the short fibers are unidirectionally
aligned, in the x-direction, g(') converts into the
Dirac delta value ) which possess a singularity at
& = 0, and Ca is equal to unity. When the fibers are
randomly oriented, Ca is less than one and when the
fibers are unidirectionally aligned, equal to one. Ca is
regarded as the coefficient of reduction of Young’s
modulus. R0 shows the degree of Young’s modulus
caused by the length of the fiber. When %0 = "/2, the
fiber distribution is random Ca has a value equal to
0.23.

7. Results and discussion
Figure 3 shows photographs of the fibers in the fibers
inside the composite materials, for each of the dif-
ferent fiber surface treatments. The curvature of
each fiber was represented with the A/L ratio. Here A
is the amplitude of the curve and L is the fiber span
from end to end. When A tends to zero, the fiber
approaches a straight line, that is, the curvature
decreases. Typically, fiber fragment lengths are meas-
ured using microscopy techniques after dissolving the
matrix. However, in this case, these photographs
were taken to show that there are fibers whose shape
is not straight and any dissolution and handling
might change such curved shape. This curvature
exhibited by the fibers, is especially noticeable in
photographs of FIB, FIBNA and FIBNAPRE com-
posites. The fiber fragments from FIBNASIL do not
show a noticeable curvature.
The values of interfacial shear strength, and fiber-
fragment critical length and tensile properties as a

function of the different fiber surface treatments
obtained from the SFFT are shown in Table 3. When
the fiber surface topography was modified with the
alkaline treatment, (FIBNA), a 10% increase of IFFS
was noticed. When the surface-modified fiber was
pre-impregnated, a 50% increase was observed. The
treatment with the silane coupling agent results in
more impressive results. In the case of FIBNASIL
(a combination of mechanical and chemical bond-
ing mechanisms) results in an IFFS increase of
more than 160%.
The importance of the chemical bonding is notori-
ous as observed from the higher IFFS increments.
Similar observations can be made with the fiber-frag-
ment critical lengths, instead of increments, shorter
lengths or fiber aspect ratios are observed for stronger
IFFS values. One of the advantages of the single fiber
fragmentation test is that the experimental parame-
ter which is actually measured in the test is the
fiber-fragment critical length [21, 22].
Optimum mechanical properties in composite mate-
rials are strongly related to the efficiency of load
transfer. The critical length lc in composites is a
parameter which is an indicator of the amount of
stress transferred to the fiber: a fiber whose aspect
ratio s = l/df (where df is the fiber diameter) is much
greater than the critical aspect ratio sc = lc/df strength-
ens the material, while a fiber whose aspect ratio is
much smaller than the critical aspect ratio is more
likely to weaken the material [23, 24]. Therefore, a
good understanding of the factors which influence
the critical aspect ratio in order to design optimum
continuous or short-fiber composites either is impor-
tant [25–29].
The effect of the interfacial quality between henequen
short, randomly oriented in a matrix of HDPE and
its effect on the tensile strength of the composite for
various surface treatments is shown in Table 3.
Again, the effect of fiber surface morphology mod-
ification results in increments of approximately
11.7%, however, the effect of chemical bonding is
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Table 3. Fiber critical length, tensile strength, fiber aspect ratio and interfacial shear strength obtained for the different sur-
face treatments (*Tensile strength increase [%] with fiber surface treatment with respect to FIB)

Fiber surface
treatment

Micromechanical results Macromechanical results
Critical length

[mm]
Fiber aspect ratio

lc/df

IFSS SFFT
[MPa]

Tensile strength
[MPa]

Young’s modulus
[MPa]

FIB 12.96 72.00 5.4 20.80 891.00
FIBNA 9.25 51.38 6.0 (11%)* 21.00 (1%)* 945.00
FIBNAPRE 6.00 33.33 9.2 (70%)* 23.25 (12%)* 945.00
FIBNASIL 3.50 19.44 16.0 (196%)* 27.00 (30%)* 873.00



close to a 30%, that is, three times higher than the
mechanical bonding. It should be noticed that the
increments of IFSS and tensile strength for each fiber
surface treatment with respect to FIB are shown in
parenthesis in Table 3. It should also be noticed that
the improvements in the IFSS measured obtained
with the fiber surface treatments are not reflected in
the same increments in the macromechanical prop-
erties. The measured values for Young’s modulus, on
the other hand, were not sensitive to the fiber surface
treatments as demonstrated by previous reports [7].

7.1. Analysis of stress transfer in a curved
fiber

The optimum mechanical properties in composite
materials are strongly related to the load transfer effi-
ciency between fiber and matrix. This is especially
true in the case of polymeric matrices which are vis-
coelastic at all temperatures [22]. Other factors that
govern the intrinsic properties include fiber archi-
tecture, fiber geometry, fiber orientation, packing
arrangement and fiber volume fractions, and fiber-
matrix quality, determine many composite proper-
ties, particularly mechanical properties. Additionally,
the complex state of stress near fiber fragment ends

make the modelling of the mechanical behavior of a
natural fiber reinforced composite extremely diffi-
cult. One parameter that is usually omitted in most
of the micromechanical models is the flexibility of
the fiber that results in bent or twisted fibers after
processing of the composite. A natural fiber will eas-
ily bend in the composite as a result of the high
shear stresses resulting from the extrusion and/or
injection molding process. With this in mind it is rea-
sonable to think that the micromechanical models
require an adjustment factor that takes into account
the presence of curvature of the natural fiber to be
able to more precisely estimate the mechanical prop-
erties of the composite. Although there are reports
in the literature that consider other factors that con-
tribute to the theoretical, these results do not con-
form to the experimental values [25–29]. Further-
more, the structure and composition of a natural
fiber allows the formation of failure surfaces because
of their microfibrillar and hollow nature and to the
irregular shape of their cross section. Also, it should
be remembered that henequen fiber itself is a com-
posite with cellulose microfibrils embedded in a
lignin matrix and that such microfibrils are not ori-
ented perfectly aligned with the fiber axis, and
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Figure 3. Photographs of fibers inside the composite laminates of FIB, FIBNA, FIBNAPRE and FIBNASIL showing the
curved fibers, especially for the first three cases



instead, they form a helical pattern along the fiber’s
length [1].
Figure 4 shows the $xx distribution and Figure 5
shows the finite element and photoelasticity mod-
els, maximum shear stress "max, around the curved
fiber (seen in white color). As it can be appreciated,
the state of stress around the curved fiber is very
complex. In Figure 4, it can be seen that the tensile
stress $xx in the matrix and at the fiber matrix inter-
face is positive in the direction of the applied load.
But the stress distribution on the convex side is dif-
ferent from the stress distribution on the concave
side of the fiber. This tensile stress is acting almost
perpendicularly to the fiber ends as shown by the
two lobes on the convex sides. A more uniform dis-
tribution of $xx is noted in the matrix, on the con-
cave side of the fiber but still trying to separate the
fiber from the matrix, especially at the fiber ends.
Figure 5 shows finite elements and isochromatic
fringes from a photoelastic model of a curved fiber
embedded in a resin matrix, subjected to a tensile

load. Isochromatics are the loci of the points along
which the difference in the first and second princi-
pal stress remains the same [30]. Thus they are the
lines which join the points with equal maximum
shear stress magnitude. It should be noticed that the
number of fringes on the convex side of the fiber is
higher than the number on the concave side. Then, it
can be said that the shear stress on the convex side
of the curved fiber is different from the shear stress
on the concave. The graph (Figure 5b) shows a plot
of the shear stress 'i normalized by the far-field ten-
sile stress $0 versus the position along the curved
fiber and normalized by the fiber diameter, plotted
in a straight line. Along the convex side, three stress
discontinuities are observed whereas on the con-
cave side, only one is observed and that their rela-
tive magnitude is different but on the concave side
is lower. Then, it can be said that, when a fiber is bent
the interfacial shear stress induced by the externally
applied load will be different along its length
depending on its geometry.
Figures 6 to 8 shows plots for the $xx ,$yy and "max
stress components along the fiber-matrix interface
on the concave and convex sides of the curved fiber.
Figure 6 the normal stress in the center line of the
curved fiber in the direction of the applied load. The
state of stress and the distribution of the different
components on the curved fiber should be discussed
considering two different parameter of the compos-
ite material. The first is the quality of the fiber-
matrix interphase and the second is the inherent
anisotropy of the natural fiber.
When the level of adhesion between fiber and
matrix is low as in the case of the composite made
with FIB, the shear stress on both, concave and con-
vex sides will soon produce failure because there is
and added stress component contributing to the sep-
aration of the fiber from the matrix, that is, $xx on
the concave side especially on the central portion
and $yy, although smaller than $xx, still acting to
separate fiber from matrix.
When the frictional adhesion is increased as in the
case of FIBNA and FIBNAPRE, the amount of poly-
mer penetrating the fiber crevices increases and the
upper bound of the interphase strength will be dic-
tated by the shear strength of the matrix. In these
cases, there should also be some matrix tearing
depending on the degree of entanglement with the
outer layer of the fiber. This type of failure could be
attributed to the normal stress components at the
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Figure 4. Shows the $xx stress components distribution
around the curved fiber obtained from the finite
element analysis

Figure 5. Loci of ($1 –!$2), that is, "max, the maximum shear
stress from (a) finite element and (b) photoelas-
ticity models, around the curved fiber



interphase. The formation of covalent bonds in the
case of FIBNASIL, contributes to the formation of
bridges between fiber and matrix which will better
resist the action of both normal and shear stress
components.
As seen in Figure 8, the effective length could be
considered to be achieved only in the central por-

tion of the curved fiber. In fact, it can be seen in
Figures 6–8 that the stresses are higher in approxi-
mately one third of the total length of the curve
fiber, either at the central portion or at both ends.
Therefore, the contribution of the fiber to strength
will be limited to only portions where the stress
transmission is more efficient. It has been reported
for jute fibers, that this type of fibers exhibited sig-
nificant elastic and thermal expansion anisotropy.
The fiber’s longitudinal Young’s modulus E1f was
estimated to range between 5 and 10 times that of its
transverse modulus E2f over the temperature range
–50 to 50°C [31]. A similar behavior is expected for
the henequen fibers, at least from the anisotropic
point of view. Because of the curvature and depend-
ing on the orientation of the bent fiber with respect
to the applied load, the fiber’s longitudinal Young’s
modulus E1f will form an angle with the applied load.
This should reduce the contribution of the fiber to
both modulus and strength depending on cosine of
the angle ' formed by fiber longitudinal axis and the
direction of the load. Furthermore, when the value
of ' increases, the normal radial component of the
applied load also increases in the radial direction of
the fiber but its modulus and strength are much
lower than the longitudinal value.
These differences in the state of stress along the
bent fiber can be explained from a simple force res-
olution considering the angle between the direction
of the applied load and the tangential line on any
point along the fiber surface (see Figure 7). One com-
ponent will be responsible of the interface shear
stress, whereas the other component of a normal
stress component in a radial direction. It should be
noted that the relative magnitude of these stress com-
ponents will vary from one point to another along
the curved fiber. The radial normal stress compo-
nent should be held responsible for any defibrilla-
tion damage to the natural fiber. In the case of FIB,
since fiber-matrix adhesion is low, interface debond-
ing is expected and then, no defibrillation damage is
observed, but as the adhesion level increases, defib-
rillation will increase, especially when there is a
good fiber wetting. Additionally, the effective length
of stress transfer of the bent fiber is not symmetrical
nor it is acting on both of its sides. Therefore, this
behavior results in a lower stress transfer efficiency
as that observed with rigid, stiff fibers which remain
straight after processing [32, 33].
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Figure 6. Variation of stress components along the concave
side of the curved fiber

Figure 7. Variation of stress components along the convex
side of the curved fiber

Figure 8. Normal stresses in the center line of the curved
fiber in the direction of the applied load



7.2. Results from the micromechanical models
by Fukuda

According to the finite element and photoelastic
analysis, there seems to be three different portions
of reinforcing efficiency of the curved fiber. The
inherent anisotropy of the fiber, as shown in Figure 9,
can be considered as a composite material with two
main material directions. Therefore, considering that
the fiber is subjected to different loading conditions,
it could be discretized into a number of straight seg-
ments, that is, it could be considered equivalent to
three different straight fibers with their materials
directions according to the curvature. Then, with
equivalence if the bent fiber is close to the critical
length, it is then possible to consider a ratio (lc/l

–)
equal to 3.
Then in Figure 2b, it would result in an asymptotic
value for F(lc/l

–) of approximately 0.20. The experi-
mental tensile mechanical properties of the short-
natural fiber composites and the theoretical ones,
estimated with the Fukuda-Chou and the Fukuda-
Kawata models are shown in Tables 4 and 5. The
composite tensile strength was calculated with the
Fukuda-Chou model considering two approaches:
i) that the natural fiber behaves as straight one, and
ii) recognizing their inherent flexibility that curve it
during processing. For the calculations, the value of
was estimated to be 7.5 mm, and considering an
efficiency in one third of the length, the new l–

decreases to 2.5 mm. The corrected values of F(lc/l
–)

of are used to recalculate the value of the tensile

strength. As it can be seen in Table 4 and Figure 10,
the theoretical results for the composite strength
according to the equation developed by Fukuda-
Chou shows better agreement with the experimental
results using the corrected effective length due the
fiber curvature compared with the direct approach
(straight fiber). In another hand, it is evident that
there is a better agreement with both approaches for
the strong fiber-matrix adhesion composite (FIB-
NASIL) compared with the other composites, and in
fact there is a slight overestimation. It should be
remembered that there are factors which are not
taken into account in the development of the model.
Among them, the stress concentration caused by the
early separation of the fibers from the matrix that
should results in larger stress concentration factors
which are not taken into account anywhere in the
theoretical development.
Table 5 shows the values for Young’s modulus cal-
culated using Fukuda-Kawata model. In this case
the estimated value shows good agreement with the
experimental results, but the values were slightly
lower than the measured values.
The small inconsistencies found between the exper-
imental and theoretical results could be attributed to
the inherent variability in cross-section area, physi-
cal and mechanical properties of the natural fibers
(a therefore of both, their non-circular cross section
and the equivalent diameter), resulting in variations
of the fiber aspect ratio and in differences between
the experimental and theoretical mechanical prop-
erties.
The curvature of natural fibers resulting from their
flexibility and the severe stresses during processing
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Figure 9. Discretization of a single curved fiber in three
straight segments

Table 4. Tensile strength calculated utilizing the Fukuda-Chou model

Experimental
[MPa]

Fukuda-Chou straight fibers Fukuda-Chou curved fibers

C0 F(lc/l
–) Tensile strength

[MPa] C0 F(lc/l
–) Tensile strength

[MPa]
FIB 20.80 0.20 0.38 29.60 0.05 0.2 25.30
FIBNA 21.00 0.20 0.42 30.67 0.08 0.2 25.70
FIBNAPRE 23.25 0.20 0.55 33.10 0.16 0.2 26.91
FIBNASIL 27.00 0.20 0.70 35.92 0.38 0.2 30.18

Table 5. Young’s modulus calculated utilizing the Fukuda-
Kawata model

Experimental
[MPa] Ca R0

Fukuda-Kawata
[MPa]

FIB 891 0.23 0.38 837
FIBNA 945 0.23 0.38 837
FIBNAPRE 945 0.23 0.38 837
FIBNASIL 873 0.23 0.38 837



is a feature that it is very difficult to control directly
but it can be done indirectly by improving the fiber-
matrix interfacial adhesion. As it has been observed,
when the interfacial adhesion is very strong, the criti-
cal fiber length is short and the critical fiber aspect
ratio also decreases and the fiber fragments tend to
remain straight during the processing of the com-
posite. In this case, the fibers with the FIBNASIL
surface treatment, the fiber curvature was very low
after processing.

8. Conclusions
From the photoelastic and finite element analysis, it
was seen that the state of stress around a curved
fiber inclusion is very complex. It was noticeable
that the stress distribution was more uniform in the
concave side of the fiber and more complex on the
convex side of the curved fiber. It was also noticed
that on the convex side of the curved fiber inclusion,
there are three distinctive regions along the fiber and
that the ‘effective fiber length’ is very short of
approximately one third the average length. The mod-
els proposed by Fukuda and based on the probabil-
ity of length and orientation distribution; they seem
to be very convenient to calculate the effective
mechanical properties of the composite. This fiber
length of higher stress transfer was used to correct
the value of the fiber efficiency to recalculate the
tensile strength of the composite laminate. Much
better agreement was obtained after decreasing the
fiber efficiency by using an average length value to
compensate for the fiber curvature in the strength

properties specially, also, the best agreement between
the predicted and the experimental values was
observed with the fiber-matrix system subjected to
surface treatment with both mechanical and chemi-
cal bonding being this the best combination to get
the most effective mechanical properties of the
composite. Then, prediction of the tensile mechani-
cal properties using the micromechanical models
proposed by Fukuda-Kawata and coworkers, would
be reasonable if the curved fiber is considered
equivalent to two or three shorter straight fiber frag-
ments to estimate the reinforcing efficiency in the
composite.
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