

Centro de Investigación Científica de Yucatán, A.C.

Posgrado en Ciencias Biológicas

GENERACIÓN DE UN VECTOR PARA LA TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS EN CEDRO ROJO

(Cedrela odorata L.)

Tesis que presenta

MAX MIZRAÍM APOLINAR HERNÁNDEZ

En opción al título de

MAESTRO EN CIENCIAS

(Ciencias Biológicas: Opción Bioquímica y Biología Molecular)

Mérida, Yucatán, México

CENTRO DE INVESTIGACIÓN CIENTÍFICA DE YUCATÁN, A. C. POSGRADO EN CIENCIAS BIOLÓGICAS

RECONOCIMIENTO

Por medio de la presente, hago constar que el trabajo de tesis titulado GENERACIÓN DE UN VECTOR DE TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS EN CEDRO ROJO (*Cedrela odorata* L.) fue realizado en los laboratorios de la Unidad de Bioquímica y Biología Molecular de Plantas del Centro de Investigación Científica de Yucatán, A.C. bajo la dirección del Dr. Yuri Jorge Jesús Peña Ramírez y la Dra. Luisa Alhucema López Ochoa, dentro de la opción de Bioquímica y Biología Molecular de Plantas, perteneciente al Programa de Posgrado en Ciencias Biológicas de este Centro.

Atentamente,

Dr. Oscar A. Moreno Valenzuela

Director Académico

Mérida, Yucatán, México, 25 noviembre de 2011.

DECLARACIÓN DE PROPIEDAD

Declaro que la información contenida en la sección de Materiales y Métodos Experimentales, los Resultados y Discusión de este documento proviene de las actividades de experimentación realizadas durante el período que se me asignó para desarrollar mi trabajo de tesis, en las Unidades y Laboratorios del Centro de Investigación Científica de Yucatán, A.C., y que a razón de lo anterior y en contraprestación de los servicios educativos o de apoyo que me fueron brindados, dicha información, en términos de la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, le pertenece patrimonialmente a dicho Centro de Investigación. Por otra parte, en virtud de lo ya manifestado, reconozco que de igual manera los productos intelectuales o desarrollos tecnológicos que deriven o pudieran derivar de lo correspondiente a dicha información, le pertenecen patrimonialmente al Centro de Investigación Científica, A.C., y en el mismo tecnológicos, en lo especial, estos se regirán en todo caso por lo dispuesto por la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, en el tenor de lo expuesto en la presente Declaración.

Firma:

Nombre: I. B. Max Mizraím Apolinar Hernández

Este trabajo se llevó a cabo en la Unidad de Bioquímica y Biología Molecular de Plantas del Centro de Investigación Científica de Yucatán, y forma parte de los proyectos titulados "Establecimiento de protocolos eficientes para la multiplicación clonal masiva de dos especies forestales de alto valor comercial: cedro rojo (Cedrela odorata) y Pinabete (Pinus chiapensis) por organogénesis y/o embriogénesis somática." y "Aislamiento y caracterización de regiones del plastoma de cedro rojo (Cedrela odorata L.) y.desarrollo de protocolos para su transformación plastídica" bajo la Co-dirección de la Dra. Luisa López Ochoa (Centro de Investigación científica de Yucatán) y el Dr. Yuri Jorge Jesús Peña Ramírez (Instituto Tecnológico Superior de Acayucan).

Este proyecto fue financiado por el Consejo Nacional de Ciencia y Tecnología por parte de los Fondos Sectoriales CONACYT–CONAFOR C03–10013–2003, y de los Fondos Institucionales CONACYT–SEP C01–53851–2006.

AGRADECIMIENTOS

A mis asesores la Dra. Luisa A. López Ochoa (Centro de Investigación Científica de Yucatán) y al Dr. Yuri J. Peña Ramírez (Instituto Tecnológico Superior de Acayucan) por su amistad y todo su apoyo incondicional tanto en forma académica como personal, durante la realización de este proyecto.

A mi comité tutoral y revisor de tesis; Dra. Virginia A. Herrera Valencia, Dra. Aileen O'Connor Sánchez y al Dr. Jorge Humberto Ramírez Prado, por todas las críticas constructivas que me hicieron crecer como persona y profesionalmente y por todos sus comentarios y observaciones realizadas para mejorar mi escrito de tesis. Así como al Dr. Jorge Humberto Ramírez Prado por su ayuda en la utilización del software (Sequencher®) empleado para realizar la estrategia de este trabajo y la Dra. Virginia A. Herrera Valencia por facilitarnos el uso de la cámara de biobalística.

Al Centro de Investigación Científica de Yucatán, a la Unidad de Bioquímica y Biología Molecular de plantas y al Dr. Tomás González Estrada por las instalaciones prestadas para el desarrollo de la parte experimental de este trabajo.

Al Consejo Nacional de Ciencia y Tecnología por la beca otorgada Nº 2282.

A los técnicos académicos M.C Lucila A. Sánchez Cash, Q.B.A Ileana C. Borges Argáez y Biol. Felipe A. Barredo Pool por la ayuda prestada en la realización de este trabajo.

Al IB. Timoteo Rodríguez López y su esposa IB. Abadesa Caridad Gregorio Martínez egresados del Instituto Tecnológico Superior de Acayucan, por toda su ayuda en la elaboración del protocolo de extracción de DNA de cloroplastos y el aislamiento de secuencias ribosomales.

A todos mis amigos y compañeros del laboratorio N° 6 y de CICY por sus comentarios sobre mi trabajo.

A Dios por darme la vida y permitirme estar aquí así como a mi madre Sara Hernández Alemán por ser una mujer de carácter y que me forjó una idea de triunfo y éxito aun contra la adversidad y muy especialmente a mi esposa Ana Rosa Vasconcelos Acosta a quien amo y admiro por su comprensión, apoyo incondicional y por su maravillosa compañía.

Dedicada a toda mi familia...

-

Del mar, donde el cielo asoma,

Viene el gran pez a comerte

Porque es ley, verdad y axioma,

Que el débil lo coma al fuerte.

Y el leviatán de la muerte

Acude al puntual llamado Donde tú eres el que pesca,

Pero tú eres el pescado.

José Quintero.

ÍNDICE

ÍNDICEi
LISTADO DE FIGURAS
LISTADO DE CUADROS
ABREVIATURAS
RESUMEN 1
ABSTRACT 3
INTRODUCCIÓN5
BIBLIOGRAFÍA
CAPÍTULO I ANTECEDENTES 11
1.1 GENERALIDADES DE CEDRO ROJO (Cedrela odorata L.) 11
1.2 PROBLEMÁTICA DEL CEDRO ROJO
1.3 LA BIOTECNOLOGÍA COMO POSIBLE SOLUCIÓN A LA PROBLEMÁTICA DEL CEDRO
1.4 TRANSFORMACIÓN GENÉTICA
1.4.1 ¿QUÉ ES LA TRANSFORMACIÓN GENÉTICA?
1.4.2 MÉTODOS UTILIZADOS PARA REALIZAR TRANSFORMACIÓN GENÉTICA 17

i

1.4.3 MÉTODOS DE TRANSFERENCIA DIRECTA DE GENES	17
1.4.3.1 TRANSFORMACIÓN UTILIZANDO POLIETILÉNGLICOL	18
1.4.3.2 TRANSFORMACIÓN POR ELECTROPORACIÓN	19
1.4.3.3 TRANSFORMACIÓN POR BIOBALÍSTICA	19
1.5 TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS	20
1.5.1 ¿QUÉ SON LOS PLÁSTIDOS Y COMO ESTÁ ESTRUCTURADO EL GENOMA I LOS CLOROPLASTOS?	DE 21
1.6 RECOMBINACIÓN HOMÓLOGA	22
1.6.1 SITIOS DE INSERCIÓN DE TRANSGENES EN CLOROPLASTO	. 24
1.7 ESTRUCTURA DE LOS VECTORES UTILIZADOS EN LA TRANSFORMACIÓN DE CLOROPLASTOS	E 26
1.8 MARCADORES DE SELECCIÓN PARA LA TRANSFORMACIÓN PLASTÍDICA	. 27
1.9 GENES REPORTEROS UTILIZADOS EN CLOROPLASTO	. 28
1.10 TRABAJOS DE TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS EN ARBOLES FORESTALES	. 28
1.11 JUSTIFICACIÓN	. 31
1.12 OBJETIVOS	. 32
1.12.1 OBJETIVO GENERAL	. 32
1.12.2 OBJETIVOS ESPECÍFICOS	. 32
1.13 ESTRATEGIA EXPERIMENTAL	. 33

BIBLIOGRAFÍA	-
CAPÍTULO II MATERIALES Y MÉTODOS	
2.1 ESTRATEGIA GENERAL DEL PROYECTO	,
2.2 EXTRACCIÓN DE DNA DE CLOROPLASTO (cpDNA))
2.3 AMPLIFICACIÓN DE LA REGIÓN mn16S-trnl (PCR-I)	
2.4 AMPLIFICACIÓN DE LA REGIÓN trnA-rrn23S (PCR-II)	>
2.5 PREPARACIÓN DEL VECTOR pUC19 Y DE LOS INSERTOS	
2.6 LIGACIÓN DE LAS REGIONES rrn16S-trn1 Y trnA-rrn23S En pUC19	
2.7 TRANSFORMACIÓN DE E. coli CON LOS PRODUCTOS DE LIGACIÓN	ŀ
2.8 EXTRACCIÓN DE DNA DE PLÁSMIDO POR EL MÉTODO DE LISIS ALCALINA 55	
2.9 DIGESTIONES PARA VERIFICAR LA INSERCIÓN DE LOS INSERTOS	
2.10 ELECTROFORESIS DEL DNA	,
2.11 SECUENCIACIÓN	>
2.12 ANÁLISIS DE SECUENCIAS	,
BIBLIOGRAFÍA	\$
CAPÍTULO III RESULTADOS)
3.1 DISEÑO DE OLIGONUCLEÓTIDOS)
3.2 ANÁLISIS DE RESTRICCIÓN DE LA REGIÓN rm16S-trnl-trnA-rrn23S62	2
3.3 SECUENCIA rrn16S-trnI De CEDRO ROJO CLONADO EN pUC19 (pCBL-1) 64	ł

iii

3.4 CLONACIÓN DE LA SECUENCIA trnA-rrn23S pCBL-3
3.5 SECUENCIACIÓN DE LA REGIÓN rrn16S-trn1-trnA-rrn23S DE CEDRO ROJO 70
3.6 SECUENCIACIÓN DE LA REGIÓN m16S-tml DE CEDRO ROJO EN pCBL-1 71
3.7 SECUENCIACIÓN DE LA REGIÓN trnA-rrn23S DE CEDRO ROJO EN pCBL-3 72
3.8 ANÁLISIS DE LA SECUENCIA rm16S-trn1-trnA-rm23S DE CEDRO ROJO
3.8.1 ALINEAMIENTO DE LA SECUENCIA rrn16S-trn1-trnA-rrn23S DE CEDRO ROJO CON TABACO, OLIVO Y ROBLE
3.9 CLONACIÓN DE LA REGIÓN trnA-rrn23S EN pCBL-1 PARA OBTENER pCBL-4 79
3.10 DISEÑO Y CONSTRUCCIÓN DEL CASETE DE EXPRESIÓN
3.11 CONSTRUCCIÓN DEL VECTOR FINAL DE TRANSFORMACIÓN DE CLOROPLASTO DE CEDRO ROJO (pCBL-5)
BIBLIOGRAFÍA
CAPÍTULO IV DISCUSIÓN GENERAL
BIBLIOGRAFÍA
CAPÍTULO V CONCLUSIONES Y PERSPECTIVAS
ANEXOS 103

LISTADO DE FIGURAS

Figura 1.1 Estructura del DNA del cloroplasto
Figura 1.2 Modelo de recombinación homóloga
Figura 1.3 Mecanismo de transformación por recombinación homóloga en cloroplastos . 24
Figura 1.4 Región donde se lleva a cabo generalmente la inserción de transgenes 25
Figura 1.5 Representación esquemática del casete de expresión para cloroplastos 26
Figura 1.6 Estructura del vector de transformación de cloroplastos de Populus alba
(pCB1GFP) y su lugar de inserción en el cpDNA
Figura 2.1 Representación esquemática de las regiones que se pretenden amplificar del
plastoma de cedro rojo
Figura 2.2 Estructura esquemática de pCBL-1 y pCBL-3
Figura 2.3 Esquema de pCBL-4
Figura 2.4 Esquema de pCBL-5
Figura 2.5 Vector pUC19
Figura 3.1 Alineamientos de la región m16S-trn1-trnA-rm23S del plastoma de 8 especies
vegetales utilizados para el diseño de los oligonucleótidos
Figura 3.2 Digestión del amplicón de la region rrn16S-trn1-trnA-rrn23S de cedro rojo 63
Figura 3.3 Análisis electroforético de la región rrn16S-trn1 de cedro rojo
Figura 3.4 Preparación de inserto y vector para pCBL-1
Figura 3.5 Análisis de restricción de pCBL-1
Figura 3.6 Análisis electroforético de la region trnA-rrn23S de cedro rojo
Figura 3.7 Purificación de la digestión con Sall y Xbal de pUC19 y PCR-II
Figura 3.8 Análisis de restricción de pCBL-3
Figura 3.9 Estrategia utilizada para secuenciar la región rrn16S-trn1 (pCBL-1)71
Figura 3.10 Alineamiento de las secuencias obtenidas en sentido y antisentido para
ensamblar la región completa mn16S-trnl de cedro rojo
Figura 3.11 Estrategia para secuenciar la región <i>trnA-rrn23S</i> clonada en pCBL-3
Figura 3.12 Alineamiento de las secuencias correspondientes a la región trnA-rrn23S
decedro rojo
Figura 3.13 Alineamiento múltiple de la secuencia rrn16S-trn1-trnA-rrn23S de cedro rojo
con tabaco, olivo y roble

Figura 3.14 Doble digestión de pCBL-1 y pCBL-3 con Xbal y Notl	79
Figura 3.15 Ensayo de restricción de las clonas pCBL-4	80
Figura 3.16 Análisis por PCR de pCBL-4	81
Figura 3.17 Casete de expresión	82
Figura 3.18 Mapa del vector pBMH con el casete de expresión	83
Figura 3.19 Análisis de restricción del casete de expresión	83
Figura 3.20 Ensayo de restricción de pCBL-4 con enzimas de restricción presentes solo	1
en el casete de expresión	84
Figura 3.21 Construcción de pCBL-5	85
Figura 3.22 Análisis de restricción de las posibles clonas pCBL-5	86
Figura 3.23 Análisis de restricción para verificar la inserción correcta del casete de	
expresión	86
Figura 3.24 Análisis por PCR de la orientación del casete en las clonas pCBL-5 con los	
oligonucleótidos CBL-9/CBL-10	87

LISTADO DE CUADROS

Cuadro 1.1 Trabajos de transformación de cloroplastos en plantas superiores. Modificado	
de Heifetz 2000	D
Cuadro 2.1 Reacciones de digestión utilizando HindIII para preparar el vector pUC19 y el	
inserto PCR-I	2
Cuadro 2.2 Reacciones de digestión utilizando Pstl para preparar el vector pUC19 e	
inserto PCR-I	3
Cuadro 2.3 Condiciones para realizar la ligación pUC19 + PCR-I	4
Cuadro 2.4 Condiciones para realizar la ligación pUC19 + PCR-II	4
Cuadro 3.1 Especies utilizadas para realizar el alineamiento y diseño de los	
oligonucleótidos usados en este trabajo	Э
Cuadro 3.2 Oligonucleótidos para amplificar la región rrn16S-trn1-trnA-rrn23S de C.	
odorata L	2
Cuadro 3.3 Oligonucleótidos para secuenciar la región rrn16S-trn1-trnA-rrn23S de C.	
odorata L	C
Cuadro 3.4 Resultados del BLAST de la región m16S-trnl-trnA-23S de cedro rojo74	4
Cuadro 3.5 Porcentaje de identidad y cobertura de la secuencia de cedro rojo vs tabaco,	
olivo y roble	8
Cuadro 3.6 Secuencias, número de accesión y tamaño de las secuencias utilizadas para	
construir el casete de expresión	2

ABREVIATURAS

23

aadA	Gen que codifica para la Aminoglucósido 3' adeneiltransferasa
accD	Gen que codifica para la acetil-CoA carboxilasa
bar	Gen que codifica para la Fosfinotricina N- acetiltransferasa
BLAST	Basic Local Alignment Search Tool
Bt	Bacillus thuringiensis
CodA	Gen que codifica para la Citosina deaminasa
cpDNA	Ácido desoxirribonucleico de cloroplastos
GFP	Proteína verde fluorescente
GUS	Proteína Beta-glucuronidasa
Indel	Inserciones o deleciones
IPTG	Isopropil-β-D-1-tiogalactopiranósido
IR _A	Invertido repetido A
IR _B	Invertido repetido B
Kb	Kilo base = 1000 pb (pares de bases) de DNA
LSC	Región grande de una sola copia
mM	Milimol
PCR	Reacción en cadena de la polimerasa
PEG	Polietilénglicol
petA	Gen que codifica para el Citocromo f
pM	Picomol
PpsbA	Promotor del gen que codifica para la proteína (D1) del fotosistema II
PPT	Fosfinotricina
Pmn	Promotor del RNA ribosomal
psbA	Gen que codifica para la proteína (D1) del fotosistema II
psbE	Gen que codifica para la subunidad- α del citocromo b ₅₅₉
rbcL	Gen que codifica para la subunidad grande de la RuBisCO

*

RecA	Proteína de recombinación del DNA
RNA	Ácido ribonucleico
rpm	Revoluciones por minuto
rps7/12	Genes que codifican para las proteínas ribosomales 7S-12S
rm16S	Gen que codifica para el RNA ribosomal 16S
rm23S	Gen que codifica para el RNA ribosomal 23S
SSC	Región pequeña de una sola copia
T-DNA	Ácido desoxirribonucleico de transferencia
TPS	Proteínas solubles totales
TpsbA	Terminador del gen que codifica para la proteína (D1) del fotosistema II
tRNA	Acido ribonucleico de transferencia
trnA	Gen que codifica para el tRNA a alanina
trnH	Gen que codifica para el tRNA a histidina
trnl	Gen que codifica para el tRNA a isoleucina
trnN	Gen que codifica para el tRNA a asparagina
Trps16	Terminador del gen que codifica para la proteína ribosomal 16S
ubiC	Gen que codifica para la corismato piruvato liasa
UTR	Región no traducible
X-gai	5-bromo-4-cloro-3-indolil-beta-ō-galactopiranósido

. 3

RESUMEN

La transformación de cloroplastos surge como una alternativa para realizar mejoramiento genético en plantas, por las ventajas que ofrece sobre la transformación de núcleos, por ejemplo: se evita el flujo génico debido a la estricta heredabilidad materna de los cloroplastos en la mayoría de las plantas, se pueden insertar operones completos bajo el control de una sola secuencia regulatoria (policistrones), se obtienen altos niveles de expresión y alta estabilidad de los transgenes porque no hay silenciamiento génico ni efecto de posición, esto último debido a que la integración ocurre por recombinación homóloga (RH) en sitios específicos del plastoma. Para lograr una RH que conduzca a una alta eficiencia de transformación, es necesario construir vectores especie-específicos. Una de las secuencias más utilizadas para flanguear a los casetes de expresión en dichos vectores, es la región ocupada por el loci rrn16S-trn1-trnA-rrn23S. El cedro rojo (Cedrela odorata L.) es una especie forestal tropical perteneciente a la familia de las meliáceas, de importancia comercial debido al alto valor que alcanza su madera. Uno de los problemas que afectan al cedro es el ataque por el insecto barrenador de las meliáceas (Hypsipyla grandella), que produce daño apical dando como resultado la bifurcación del tallo del árbol, haciéndolo inadecuado para su comercialización, lo cual ha afectado el desarrollo de plantaciones comerciales en el sureste de México. La transformación de cloroplastos de cedro con genes que confieran resistencia a insecto podría resolver esta problemática. Por ello se planteó el objetivo de construir un vector para la transformación de cloroplastos de cedro, que posteriormente podrá ser utilizado para la obtención de resistencia a H. grandella. Se diseñaron oligonucleótidos, a partir de secuencias heterólogas disponibles en las bases de datos, para amplificar un fragmento de 5.7 kb de la región 16S-trnl-trnA-23S del plastoma de cedro, esta región se clonó en el vector pUC19. En la región intergénica trnl-trnA de la secuencia, se insertó un casete de expresión que contiene el gen aadA, que codifica la aminoglucósido 3'adeniltransferasa que confiere resistencia a espectinomicina y el gen que codifica la proteína verde fluorescente, bajo la regulación de secuencias promotoras y UTR's que permiten su expresión en tejidos con plástidos verdes así como no fotosintéticos. La secuencia 16Strnl-trnA-23S de cedro mostró un 99 % de identidad con las secuencias de Mangifera indica L., Citrus sinensis y Theobroma cacao, abriendo la posibilidad de utilizar este vector de transformación en estas especies de importancia económica.

ABSTRACT

Chloroplast transformation is an alternative to nuclear transformation to carry out genetic improvement in plants. It offers several advantages such as: prevention of gene flow, due to strict maternal inherence of the plastid genome; insertion of multiple transgenes under the control of a single regulatory sequence. Also, because there's no gene silencing in plastids, a high stability of transgenes is achieved together with high levels of expression. Since chloroplast transformation occurs by homologous recombination (HR) in specific regions of the plastome, there is a lack of positional effects due to transgene integration. Therefore, to achieve high transformation efficiencies is necessary to construct speciesspecific vectors. The loci occupied by the ribosomal RNA region 16S-trnl/trnA-23S has successfully been used as HR sequence for strong transgene expression. The forest tree "Cigar box spanish cedar" (Cedrela odorata L.) is well known for its high-quality / highvalue timber. It is a member of the hardwood Meliaceae family. The shoot borer (Hypsipyla grandella) attacks C. odorata on its early years of development, producing branched stems, making the plants useless for timber production. This limits the establishment of commercial plantations. Trait introduction for insect resistance (i.e. cry genes) to red cedar via chloroplast transformation could contribute to solve this problem, without the risk of transgene flow. Therefore, we generated a chloroplast transformation vector using the ribosomal RNA region as targets for HR. Primers were designed in order to clone the red cedar 16S-trnl/trnA-23S region, based on an in silico analysis of heterologous sequences available in the databases. A 5.7 kb fragment was cloned into pUC19. An expression cassette containing both, the aminoglycoside 3'-adenyltransferace gene (aadA), which confers spectinomycin resistance and the green fluorescence protein gene (gfp), were introduced into the trnl/trnA intergenic region. Also, chloroplast regulatory sequences that trigger expression in both, green and non-green tissues were used. The red cedar 16Strnl/trnA-23S sequence shares 99% identity with important such as some fruit species as Mangifera indica, L., Citrus sinensis and Theobroma cacao, opening the application window of this transformation vector to other important plant crops.

INTRODUCCIÓN

Los árboles constituyen parte importante de la biomasa sobre la superficie terrestre. En el mundo entero la demanda de energías renovables, papel y productos de construcción derivados de la madera está creciendo rápidamente (Okumura *et al.*, 2006). Para reducir la presión de esta demanda sobre los bosques naturales, es necesario realizar plantaciones comerciales con árboles que tengan una mayor calidad (Boerjan, 2005).

El cedro rojo (Cedrela odorata L.) es una especie forestal maderable perteneciente a la familia de las meliáceas, su distribución va desde el sur de México hasta el norte de Argentina (Pennington y Styles, 1975). Este es altamente apreciado en todo el mundo por el alto valor económico que alcanza su madera, la cual es muy utilizada para la construcción de muebles finos (Lamb, 1968). A causa de su importancia económica, las poblaciones naturales de esta especie se enfrentan a problemas de sobre explotación lo que ha llevado a la pérdida de los mejores fenotipos (ITTO, 2002; Cavers et al., 2004; Lamb et al., 2005). Una forma de contrarrestar esta problemática es desarrollar cultivos intensivos en plantaciones comerciales, sin embargo, esto se ha visto frustrado a causa de que el cedro rojo es altamente susceptible al ataque del barrenador Hypsipyla grandella Zeller, el cual está considerado como una de las plagas forestales más severas en América latina y el Caribe (Hilje y Cornelius, 2001). Este insecto en estado larval se alimenta del meristemo apical de plantas jóvenes, rompiendo la dominancia apical, trayendo como consecuencia la ramificación del árbol. Como resultado se deforma el fuste haciéndolo inadecuado para su aprovechamiento por la industria maderera (Keay, 1996; Briceño-Vergara, 1997; Valera, 1997; O'Neil et al. 2001).

Entre las formas de control de *H. grandella*, se encuentra el uso de agentes químicos, biológicos, mecánicos en forma individual como conjunta, sin embargo, no se ha logrado controlar esta problemática en México (Briceño–Vergara, 1997). Una forma alternativa para controlar este insecto es utilizando la ingeniería genética para la introducción de genes que confieran resistencia contra las plagas; un ejemplo de esto es lo obtenido en álamo (*Populus nigra*) donde se introdujo un gen *Cry1Ac* obteniendo como resultado resistencia contra insectos defoliadores (Hu *et al.*, 2001). Generalmente para realizar la introducción de estos genes se utiliza como sitio de inserción el genoma nuclear, sin embargo, esto trae como consecuencia un alto riesgo de introgresión de los transgenes

INTRODUCCIÓN

debido a que las plantas transformadas producen polen que podría fecundar especies naturales (Slavov *et al.*, 2004; Williams, 2005).

Con el fin de reducir el flujo génico a través del polen, la transformación de los plástidos ofrece una alternativa atractiva debido a que en la mayoría de las especies forestales dicotiledóneas la herencia de los cloroplastos es estrictamente materna lo que evita que el transgén se herede mediante el polen (Daniell y Parkinson, 2003; Daniell, 2002). Además de esta característica, la transformación de plástidos permite obtener altos niveles de expresión (De Cosa *et al.*, 2001), se pueden insertar transgenes en forma de operones (Quesada-Vargas et al., 2005), y no hay silenciamiento génico ni problemas por efectos de posición, debido a que la integración de los transgenes se da por un mecanismo de recombinación homóloga (Maliga, 2004). La transformación de plástidos había sido aplicada solo a especies herbáceas (Daniell *et al.*, 2005), hasta que en el 2006 se publicó el primer reporte de una especie arbórea (Okumura *et al.*, 2006).

Debido a que el mecanismo de inserción de transgenes es por medio de recombinación homóloga (Maliga, 2004) los transgenes deben de estar flanqueados por secuencias recombinantes del genoma del cloroplasto. Daniell *et al.*, en 1998 propusieron una secuencia homóloga universal para todas las especies vegetales, sin embargo, más recientemente se ha aceptado que es más eficiente utilizar secuencias especie-específicas (Daniell *et al.*, 2006). Por lo que en este trabajo se construyó un vector para la transformación de cedro rojo (*Cedrela odorata* L.) utilizando como secuencias de recombinación homóloga, las regiones *rrn16S-trn1* y *trnA-rrn23S* de cedro rojo, estas secuencias se utilizaron para flanquear un casete de expresión que contiene el gen *aadA* (dirigido por el *Prm16S* y el *TpsbA*) como agente de selección y el gen *gfp* (dirigido por el promotor *G10 T7* y el *Trps16*) como gen marcador así como regiones reguladoras 5'UTR y 3'UTR de cloroplastos.

BIBLIOGRAFÍA

- Boerjan W. (2005). Biotechnology and the domestication of forest trees. Curr Opin Biotech. 16:159–166.
- Briceño-Vergara A. J. (1997). Aproximación hacia un manejo integrado del barrenador de las meliáceas *Hypsipyla grandella* Zeller. Rev. For. Ven. 41: 23–28.
- Cavers S.; Navarro C.; Lowe A. J. (2004). Targeting genetic resource conservation in widespread species: a case study of *Cedrela odorata* L. For. Ecol. Manag. 197: 285–294.
- Daniell H, Datta R, Varma S, Gray S, Lee SB. (1998). Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16: 345–348.
- Daniell H, Kumara S, Dufourmantel N. (2005). Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245.
- Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK. (2006). Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503–1518.
- Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20 581–586.
- Daniell, H. y Parkinson, C. L. (2003). Jumping genes and containment Nat. Biotechnol. 21 374–375.
- De Cosa B, Moar W, Lee S-B, Miller M, Daniell H. (2001). Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74.
- Hilje L., Cornelius J. (2001). Es inmanejable Hypsipyla grandella como plaga forestal? Manejo integrado de plagas. CATIE, Costa Rica. No. 61. 4 pp.
- Hu, J.J., Tian, Y.C., Han, Y.F., Li, L. & Zhang, B.E. (2001). Field evaluation of insectresistant transgeneic *Populus nigra* trees. *Euphytica*, 121: 123–127.

INTRODUCCIÓN

- ITTO. (2002). International Tropical Timber Organization guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests, ITTO Policy Development Series No 13. ITTO, Yokohama.
- Keay R. W. J. (1996). The future of the genus Swietenia in its native forest. Bot. J. Linn. Soc. 122: 3–7.
- Lamb A.F.A.(1968). Fast growing timbers of the lowland tropics, no. 2 *Cedrela odorata* L. Commonwealth Forestry Institute, University of Oxford, Oxford.

Maliga P. (2004). Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313.

- O'Neil G. A.; Dawson I.; Sotelo-Montes C.; Guarino L.; Guari-Guata M.; Current D.; Weber J. C. (2001). Strategies for genetic conservation of trees in the Peruvian Amazon. Biodivers. Conserv. 10: 837–850.
- Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K. (2006). Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637-646.
- Pennington T.D., Styles B.T. (1975). A generic monograph of the Meliaceae. Blumea 22(3):419-540.
- Quesada-Vargas T, Ruiz O.N., Henry Daniell H. (2005). Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physiol 138:1746–1762.
- Slavov G.T., Difazio S.P., Strauss S.H. (2004). Gene flow in forest trees gene migration patterns and landscape modeling of transgene dispersal in hybrid poplar. In: Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Pub, Cambridge, pp 89–106.
- Valera F. P. (1997). Genetic resources of Swietenia and Cedrela in the neotropics: Proposals for coordinated action. Forest Resources Division, Forestry Department, Food and Agriculture Organization of the United Nations, Rome.

Williams C.G. (2005). Framing the issues on transgenic forests. Nat Biotechnol 23:530--532.

CAPÍTULO I ANTECEDENTES

1.1 GENERALIDADES DE CEDRO ROJO (Cedrela odorata L.)

El cedro rojo (*Cedrela odorata* L.) es una de las especies forestales de mayor importancia económica en los bosques tropicales de México, fue descrito originalmente por Linneo en 1759 en su obra System Naturae. De acuerdo a Cronquist, el cedro rojo se clasifica de la siguiente manera: División: Magnoliophyta; Clase: Magnoliopsidae; Subclase: Rosidae; Orden: Sapindales; Familia: Meliaceae; Género: *Cedrela*; Especie: *odorata* (citado por Tullume, 2000).

El cedro al igual que la caoba (Swietenia macrophylla) (otra especie de interés económico) es originario de América, y su distribución va desde el norte de México, pasando por Centroamérica incluyendo las islas del Caribe, hasta Brasil. En México se encuentra en la vertiente del Golfo, desde el sur de Tamaulipas y sureste de San Luís Potosí hasta la Península de Yucatán. En la vertiente del Pacífico, desde Sinaloa hasta Guerrero, en la depresión Central y las costas de Chiapas (Vázquez-Yanes et al., 1999). Crece de manera natural en los estados de: Campeche, Colima, Chiapas, Durango, Guerrero, Jalisco, Hidalgo, Michoacán, Nayarit, Oaxaca, Puebla, Querétaro, Quintana Roo, San Luís Potosí, Sinaloa, Sonora, Tabasco, Tamaulipas, Veracruz y Yucatán. Sin embargo, los estados con potencial óptimo para el desarrollo de plantaciones comerciales son; Campeche, Chiapas, Tabasco, Veracruz, Oaxaca, Quintana Roo y Yucatán, ya que en estos estados se satisfacen los requerimientos necesarios para su buen desarrollo como altitud, temperatura, suelo, humedad y precipitación. De un total de 93,000 has los estados con mayor superficie plantada de cedro rojo son: Veracruz 24.8%, Campeche 18.42%, Oaxaca 12.28%, Chiapas 11.10%, Puebla 9.13%, Tabasco 4.78%, Yucatán 4.09% y el resto de los estados mencionados 15.4% (Fumiaf y SAGARPA, 2005).

El árbol de cedro rojo es caducifolio, con número cromosómico 2n = 50 o 2n = 56 (Styles y Koshla, 1976), con una altura de 20 a 35 m alcanzando hasta 45 m en algunas zonas, el diámetro del tronco puede ser de hasta 2.5 m, sus flores son pequeñas (Urbina, 2000), es un árbol monoico, es decir que sus flores femeninas y masculinas se encuentran en el mismo árbol agrupadas en racimos florales o panículas. El fruto es una cápsula leñosa de

CAPÍTULO I

color pardo verdoso con apariencia de nuez, de 2.5 a 5 cm de largo, el cual contiene de 20 a 40 semillas aladas, las cuales son de color café oscuro y se encuentran adheridas al eje del fruto (Patiño, 1997). La copa es grande, redondeada, con hojas compuestas alternas paripinnadas o imparipinnadas, de 15 a 50 cm (INIFAP, 2005). Crece en climas tropicales y subtropicales, húmedos y semihúmedos, se puede situar en comunidades a nivel del mar e incluso hasta los 3000 msnm (metros sobre el nivel del mar). Un ejemplo de esto es Chiapas, donde se puede encontrar desde los 0 hasta 1800 msnm. Se localiza comúnmente cohabitando con especies del género *Pinus* (Lamb, 1968).

La importancia del cedro radica en su aromática madera, conocida como "cigar box spanish-cedar" en las esferas comerciales, es considera preciosa debido a los altos precios y su demanda es alta en los trópicos americanos porque es naturalmente resistente a las termitas y a la pudrición (Cintrón, 1990). Esta apreciación es consecuencia de su dureza, color y aroma, además de su magnífico comportamiento como material para distintos usos: madera aserrada, chapa, triplay, ebanistería y carpintería (Simula *et al.*, 2005). Se utiliza en acabados y divisiones de interiores, muebles de lujo, chapas decorativas, artículos torneados, gabinetes de primera clase, puertas talladas, contrachapados, molduras y paneles.

A la fecha, el comercio de esta madera ha representado un buen negocio para los productores mexicanos, que exportan a los EE. UU. Esta madera aserrada y en determinadas medidas (madera dimensionada) se cotiza en 13,000 pesos por m³. En la actualidad, las plantaciones comerciales en México suman 93,000 hectáreas pero el plan de la CONAFOR, mediante el programa PRODEPLAN, es alcanzar 180,000 ha para el año 2025 (Fumiaf y SAGARPA, 2005).

A pesar de su amplia distribución, el cedro no es nunca común a través de los bosques tropicales americanos; su número de individuos se ve constantemente reducido debido a la sobreexplotación sin una regeneración exitosa.

1.2 PROBLEMÁTICA DEL CEDRO ROJO

Nuestro país cuenta con una superficie arbolada para uso forestal que se aproxima a los 57 millones de hectáreas, de las cuales el 32% corresponde a selvas tropicales que se encuentran en las zonas litorales del Golfo de México y del pacífico, en el Istmo de Tehuantepec, la península de Yucatán y la zona de la frontera con Guatemala. En contraste, la producción maderera nacional no ha crecido en congruencia con esta disposición natural ya que de la producción natural maderable, el 82% corresponde a coníferas, 12% a encino y otras latifoliadas, y solo el 4% corresponde a maderas tropicales comunes y preciosas (Simula *et al.*, 2005; SEMARNAT, 2002).

El cedro rojo es una especie que ha sido sobreexplotada a lo largo de los siglos debido a la constante demanda de su madera, existiendo una tala inmoderada, lo que ha llevado a la pérdida de los mejores fenotipos (Vázquez et al., 1999). Según reportes de la FAO (por sus siglas en inglés, Food and Agriculture Organization of the United Nations) en el 2001, en todo el mundo se perdieron 14.2 millones de hectáreas de bosque por deforestación y se están plantando anualmente 5.2 millones de hectáreas de árboles, lo que indica que la deforestación neta es de 9 millones de hectáreas, ocasionando una pérdida de material genético importante para la supervivencia de esta especie. Aunado a la problemática antes descrita, emerge otra con considerables consecuencias y que tiene como fuente la práctica artesanal para su multiplicación. Debido a que el cedro fructifica en época de lluvia, las semillas —una vez que han llegado al suelo— son muy susceptibles al ataque de patógenos y a la pudrición. Las prácticas tradicionales de recolección de semillas han sido poco eficientes ya que consisten en subir a la copa de los árboles y como los mejores fenotipos tienen grandes alturas se dificulta su recolección, lo que ha causado que se disponga de semilleros que provienen de árboles de baja estatura y con fustes muy ramificados, trayendo como consecuencia la selección de genotipos poco favorables para su comercialización (Simula et al., 2005; SEMARNAT, 2002).

En conjunto a esta problemática, existe otra dificultad para establecer plantaciones con árboles de calidad forestal de cedro rojo y es la falta de variedades resistentes al ataque del insecto lepidóptero, conocido como el barrenador de las Meliáceas *Hypsipyla grandella* Zeller, el cual es una de las plagas forestales más severas conocidas en el trópico. El principal daño es causado por la larva del insecto, la cual destruye el

CAPÍTULO I

meristemo apical, barrenándole los ápices y haciendo túneles en los tallos jóvenes. Los rebrotes de las plantas afectadas por repetidos ataques del insecto, dan como resultado numerosas ramas laterales y como consecuencia árboles mal formados con los fustes deformados, indeseables para la producción de madera (Briceño, 1997).

Solo una larva del insecto *H grandella* es suficiente para deformar un árbol completo. En 2006 en México, la superficie afectada por insectos barrenadores con notificación fue de 3761.25 ha, de los cuales sobresalió *Hypsipyla grandella* que afectó 67.4% del total (2536.25 ha). El nivel de incidencia fue de 33.33% con incidencia media y de 66.66% con incidencia fuerte (en base a ondulación, bifurcación o polifurcación de las plantas) con lo que se concluyó que los tratamientos aplicados no están controlando adecuadamente a esta plaga (SEMARNAT, 2006).

Una de las formas de tratar al barrenador de las meliáceas es por medio de control químico, para ello se han utilizado insecticidas sintéticos y naturales, sin embargo, este método ha producido fuertes intoxicaciones a las personas que los aplican, aunado al riesgo de contaminación ambiental y también el incremento desproporcionado del costo de producción (INIFAP, 2005). El control natural y/o biológico también se ha utilizado y consiste en buscar depredadores naturales de *Hypsipyla sp.*, algunos de estos depredadores son: *Hexamermis sp.*(nemátodos en larvas), *Metiops mirabilis Towns* (Tachinidae en larvas y pupas) y especies de *Trychogrammitidae*, en huevos (Grijma, 1974) y hongos tales como *Metarrhizium anisopliae* y *Beauveria bassiana.* No obstante, este método tiene el inconveniente de la poca permanencia en las plantaciones si no existen las condiciones adecuadas para el desarrollo de los organismos (Briceño, 1997).

A pesar de utilizar estos métodos no se ha podido controlar *Hypsipyla grandella* al 100%. Un ejemplo de esto es lo realizado por Díaz (2004) quien probó 3 métodos de control: 1) biológico (Aplicación de *Beauveria bassyana*), 2) químico (insecticida sistémico Furadárı) e 3) insecticida orgánico (Neem), obteniendo que aplicando cualquiera de estos tres tipos de control se obtenía una incidencia de *H. grandella* del 10% lo que era suficiente para atacar a toda una plantación de cedro rojo (Díaz, 2004).

1.3 LA BIOTECNOLOGÍA COMO POSIBLE SOLUCIÓN A LA PROBLEMÁTICA DEL CEDRO

La biotecnología ha tenido un gran impacto en el desarrollo de sistemas de propagación masiva mediante técnicas de cultivo in vitro, permitiendo la producción de grandes cantidades de plántulas, las cuales pueden ser utilizadas para reforestación o para iniciar plantaciones comerciales con organismos de características élite, que ayuden a disminuir la tala inmoderada de los bosques (Patiño, 1997). Esto ha quedado demostrado en diversas especies forestales, como por ejemplo: las coníferas Picea abides (Chalupa, 1985; Hackman y Von Arnol, 1985) y Larix decidua (Nagmani y Bonga, 1985). Por otro lado, la generación de variedades transgénicas de especies forestales permitiría la mejora de sus características agronómicas y maderables, prometiendo grandes beneficios a mediano y largo plazo para la industria (Kellison et al., 2004). Los esfuerzos para desarrollar variedades de árboles transgénicos y su posterior comercialización iniciaron hace alrededor de 15 años, y dentro de las mejoras que se han buscado conferirles a estos individuos se encuentran: mejoramiento en la forma y crecimiento del fuste (Israelson et al., 2004), mejoras que faciliten los procesos industriales de extracción de pulpa (Baucher et al., 2003; Zhong et al., 2000), restauración ecológica, mejora en la capacidad de enraizamiento y recuperación de suelo (Balocchi y Valenzuela, 2004), mejorar la calidad de la madera, resistencia a enfermedades e insectos (Tang y Tlan, 2003, Xiao-Hua et al., 2003; Dowd et al., 1998), tolerancia a herbicidas, tolerancia a sequía y otros agentes abióticos (Gleeson et al., 2005).

Según cita Balocchi y Valenzuela (2004) en el libro "Biotecnología forestal en América latina" el primer experimento con árboles transgénicos —del cual se tiene conocimiento fue establecido en Gante, Bélgica en 1988 usando álamo tolerante a herbicidas. Desde entonces ha habido más de 200 reportes de pruebas en campo, que involucran 15 especies forestales. La mayoría de los ensayos de campo (64%) se han llevado a cabo en E.U. y más del 50% se han realizado en *Populus* spp., los rasgos designados son principalmente: tolerancia a herbicida (31%), seguido por los genes marcadores (23%) y resistencia a insectos (14%). Se tiene solo un reporte de plantaciones comerciales establecidas de álamo (*Populus nigra*) con un gen *Cry1Ac* de *B. turingiensis* contra los insectos defoliadores *Apocheima cinerarius* Erschoff y *Orthosia incerta* Hufnagel, en el

CAPÍTULO I

cual se obtuvo que las plantas transgénicas solo presentaban un 10% de daños en sus hojas, comparado con los controles donde se obtuvo un 80-90% de daño (Hu *et al.*, 2001).

Pese a los logros tecnológicos obtenidos y los beneficios alcanzados con la transformación genética en especies forestales tales como: incrementos en la densidad de la madera, reducción del contenido de lignina, modificación de los tipos de lignina, incrementos en el contenido de celulosa, resistencia a insectos, entre otras (Balocchi y Valenzuela, 2004), hasta la fecha el uso de esta tecnología no es muy aceptada en la comunidad académica así como tampoco en el sector social, debido a que estas especies son cultivadas como parte integral de los ecosistemas naturales y pudieran tener repercusiones en caso de existir hibridación intraespecífica, por la posibilidad del paso del transgén hacia poblaciones silvestres (Kaiser, 2001; James, 1997). Cabe destacar que todos los trabajos mencionados se han realizado utilizando el genoma nuclear como sitio blanco de inserción de transgenes, por lo que la transformación del cloroplasto ofrece la posibilidad que evitar el flujo genético así como otras ventajas mencionadas anteriormente.

1.4 TRANSFORMACIÓN GENÉTICA

1.4.1 ¿QUÉ ES LA TRANSFORMACIÓN GENÉTICA?

Es un proceso por medio del cual se mueve material genético de un organismo a otro horizontalmente de manera natural o mecánica, alterando el genotipo del receptor. La transferencia puede ser con DNA ya sea entre organismos emparentados o incluso entre reinos como hongos, plantas, bacterias, animales (SABIC, 2001).

La transformación genética ocurre de manera natural entre organismos, las bacterias se encargan de mover material genético de forma rutinaria entre ellas mismas, los virus también tienen la capacidad de transferir DNA y RNA dentro de un organismo (animal, planta e incluso hongos) y causar cambios en el material genético del hospedero. Bacterias como *Agrobacterium tumefaciens* y *Agrobacterium rhizogenes*, son dos ejemplos de sistemas de transformación naturales (SABIC, 2001).

En la naturaleza *A. tumefaciens* causa la enfermedad llamada agalla de corona, introduciendo en la célula vegetal una parte de su DNA de transferencia (T–DNA). El T– DNA es integrado dentro del genoma de la planta durante el proceso de infección. Los genes del T–DNA son expresados en el hospedero e inducen la formación de tumores y la síntesis de unos derivados de aminoácidos llamados opinas y nopalinas, los cuales son aprovechados por la bacteria (Valderrama, 2005). Desde 1970, hasta nuestros días se ha venido estudiando en detalle el mecanismo por el cual *A. tumefaciens* induce la formación de tumores en plantas y el conocimiento adquirido ha sido fundamental para su uso como herramienta en la ingeniería genética de plantas. Así mismo, esta interacción ha dado pie a formular mecanismos de integración genómica (Tzfira y Citovssky, 2002).

1.4.2 MÉTODOS UTILIZADOS PARA REALIZAR TRANSFORMACIÓN GENÉTICA

Uno de los métodos más utilizados en el laboratorio para lograr la transformación genética es utilizando cepas de *A. tumefaciens* modificadas genéticamente. Estas cepas se denominan desarmadas, debido a que los genes que causan la enfermedad de la agalla de corona han sido removidos y sustituidos por genes de interés (SABIC, 2001).

La inserción de nuevos genes y sus elementos regulatorios en el T–DNA ha permitido la transformación genética de plantas susceptibles con genes de importancia agronómica. Esto a su vez ha servido para el estudio de la función y expresión de genes, así como para el desarrollo de plantas con nuevas características (Gelvin, 2003).

El principio de transferencia de DNA mediante *A. tumefaciens* y *A. rhizogenes* ha sido útil para la transformación de especies de plantas dicotiledóneas. Sin embargo, ciertas condiciones experimentales deben ser establecidas para que el sistema de transformación funcione adecuadamente en monocotiledóneas, las cuales no son generalmente susceptibles a *A. tumefaciens* aunque, aun así se ha logrado la transformación de especies de importancia económica como el arroz (Cheng *et al., 1998*), el banano (May *et al., 1995*), callos embriogénicos de maíz (Ishida *et al., 1996*), trigo (Cheng *et al., 1997*) y embriones inmaduros de la caña de azúcar (Arencibia *et al., 1998*), entre otras.

1.4.3 MÉTODOS DE TRANSFERENCIA DIRECTA DE GENES

Además de la transferencia de genes por medio de *A. tumefaciens,* existen varios métodos artificiales que han sido desarrollados para la transformación genética de plantas. El objetivo de estos métodos es introducir directamente una gran cantidad de

CAPÍTULO I

1

DNA a través de la célula vegetal. Varios agentes y estrategias son utilizados para lograr este fin, algunos de estos métodos son: químicos, campos eléctricos, bombardeo de tejidos de plantas con partículas a gran velocidad, entre otros. Este ultimo método puede ser utilizados no solo para transformar genomas nucleares sino también para genomas de cloroplastos (Crouzed, 2002).

1.4.3.1 TRANSFORMACIÓN UTILIZANDO POLIETILÉNGLICOL

Las células de las plantas tienen un obstáculo que dificulta la transformación, este obstáculo es la pared celular. Por esta razón, los primeros métodos utilizados para lograr la transformación genética consistían en el cultivo de células sin pared celular, esto se lograba utilizando enzimas (celulasas, pectinasas) para poder remover la pared celular y quedarse solo con células sin pared, estas células son llamadas protoplastos (Hooykaas, 2001). Los protoplastos son sujetos a tratamientos con polietilénglicol (PEG) y cationes bivalentes (calcio o magnesio) en presencia de DNA transformante (Paszkowski *et al.*, 1984). El PEG y el catión condensan el DNA, desestabilizan la membrana plasmática y la dejan permeable para el paso del DNA. Una vez en el interior de la célula, el DNA entra al núcleo, donde ocurre la integración al genoma nuclear, esto sucede posiblemente durante la división celular, en un proceso muy azaroso (Crouzed, 2002).

El hecho de que se usen protoplastos para la transformación mediante PEG tiene ventajas y desventajas. Los protoplastos pueden ser obtenidos de un gran número de tejidos. Millones de estos pueden ser manipulados y transformados simultáneamente, principalmente para la producción de cientos e incluso miles de protoplastos transformados. Sin embargo, la generación de plantas transgénicas fértiles por esta técnica depende de la eficacia del proceso de regeneración de un protoplasto a planta (Crouzet, 2002). La tecnología de los protoplastos fue inicialmente restringida a ciertas especies de plantas dicotiledóneas, pero posteriormente llegó a ser posible para especies monocotiledóneas importantes como los cereales (Hooykaas, 2001).

Un ejemplo utilizando este principio es el trabajo realizado por Lazzeri, en el cual protoplastos aislados de células en suspensión de cebada, fueron transformados con un plásmido que contenía a los genes de la neomicina fosfotransferasa *NPT II* y β -glucuronidasa (*uidA*), para ello se utilizaron tres tratamientos diferentes con PEG, como resultado se obtuvo una eficiencia de transformación de 40 a 80% (Lazzeri *et al.*, 1991).

1.4.3.2 TRANSFORMACIÓN POR ELECTROPORACIÓN

Un método alternativo al tratamiento químico de protoplastos es la aplicación de choques eléctricos en presencia de una gran cantidad de DNA transformante desnudo. La membrana plasmática se vuelve temporalmente permeable por un campo eléctrico a alto voltaje aplicado por un periodo de tiempo muy corto de milisegundos (Fromm *et al.*, 1985), lo cual permite la introducción del DNA (Crouzed, 2002) a las células vegetales. Originalmente la electroporación podía ser únicamente aplicada para protoplastos, por lo tanto la posibilidad de obtener una planta transgénica fue extremadamente limitada por la disponibilidad de protocolos eficientes para la regeneración de protoplastos a plantas completas. Más recientemente, la electroporación ha sido aplicada exitosamente para tejidos más complejos, por lo cual la regeneración puede ser más fácil (Crouzed, 2002).

En 1992 D'Halluin, logró transformar y regenerar callos embriogénicos de maíz utilizando electroporación, al maíz le fue introducido el gen de la neomicina fosfotransferasa (*neo*) obteniendo como resultado que el 90% de plantas recuperadas de callos expresaban el gen *neo*. El número de plantas regeneradas a partir de callos seleccionados con kanamicina varió de 1 a 30 y el tiempo total desde la transformación hasta el invernadero fue de 12 semanas (D'Halluin *et al.*, 1992).

1.4.3.3 TRANSFORMACIÓN POR BIOBALÍSTICA

Este es uno de los métodos más utilizados para la transformación solo después de *A. tumefaciens*. El término biobalística deriva de la fusión de las palabras "biología y balística" o "balística biológica", fue ideado y refinado en la década de 1980-1990 por un grupo de investigadores de la Universidad de Cornell E.U (Sanford, 1988; Sanford *et al.*, 1987).

La biobalística es una técnica basada en principios físicos que permiten literalmente disparar genes a las plantas, para lo cual se emplean micropartículas de un tamaño que oscila entre 0.6 hasta 1.6 µm de un metal denso como es el caso del oro o el tungsteno (Crouzed, 2002). Estas partículas son recubiertas con DNA (esto se logra adicionando espermidina y calcio), posteriormente las partículas son impulsadas a través de una columna por un gas, usualmente helio, aunque también se suele utilizar dióxido de carbono (CO₂), pólvora o bien por medio de una descarga eléctrica, hacia el tejido que se

CAPÍTULO I

quiera transformar. Una vez que se ha penetrado la pared celular, el DNA de las partículas puede expresarse en el citoplasma dando como resultando una expresión transitoria de los genes insertados, pero esta expresión se pierde después de que la célula se divide. Lo más deseable es que la integración se realice covalentemente en el DNA nuclear (cromosomas) logrando así una transformación estable, aunque esto es menos frecuente ya que esta integración es totalmente aleatoria, por lo que se utiliza un sistema de selección *in vitro* que permita distinguir células transformadas y no transformadas (Crouzed, 2002).

1.5 TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS

Como una alternativa innovadora para la transformación genética de plantas surge la transplastómica, en donde el blanco de inserción de nuevos genes es el cloroplasto, con la cual un amplio rango de productos han sido obtenidos. Hasta ahora más de 100 transgenes han sido integrados y expresados establemente incluyendo genes que codifican enzimas de alto valor industrial, biomateriales, proteínas de interés biofarmacéutico, anticuerpos, antibióticos, antígenos de vacunas y genes para conferir importantes tratamientos agronómicos (Bock y Warzecha 2010; Daniell *et al.*, 2009).

Además esta estrategia es una opción viable para la contención de transgenes debido a la estricta heredabilidad materna de los cloroplastos en la mayoría de las especies forestales dicotiledóneas (Daniell y Parkinson, 2003; Daniell, 2002). También se aprovechan las ventajas que ofrece este sistema comparado con la transformación nuclear como son: la alta acumulación de proteínas solubles totales o TSP (por sus siglas en ingles, Total Soluble Protein) de hasta el 46% (De Cosa *et al.*, 2001), la ausencia de efectos epigenéticos como el silenciamiento génico (Lee *et al.*, 2003; De Cosa *et al.*, 2001) que sí ha sido observado en la transformación via nuclear. El efecto de posición (Daniell *et al.*, 2001) es otro problema en la transformación nuclear que no ocurre en la transformación de cloroplastos, ya que la integración de los transgenes se lleva a cabo por un mecanismo de recombinación homóloga, facilitado por un sistema tipo *RecA* (Cerrutti *et al.*, 1992), por esta razón los vectores de transformación para cloroplastos incluyen secuencias de recombinación homóloga que flanquean el casete de expresión. Estas secuencias se encuentran dentro del genoma del cloroplasto de forma que la integración se lleva a cabo

en forma sitio-específica (Daniell, Ruiz, y Dhingra, 2005; Kumar y Daniell, 2004; Daniell, 1997, 1993).

Aunque originalmente esta estrategia estuvo limitada solo a plantas de tabaco (*N. tabacum*) y al alga *Chlamydomonas reinhardtii*, actualmente se ha extendiendo a cultivos de interés comercial de alto valor económico tales como: soya, algodón, especies de *Brassica*, papa, tomate, lechuga, remolacha, berenjena, entre otras; y más recientemente a árboles forestales (revisión realizada por Verma y Daniell 2007; Okumura *et al.*, 2006). Hasta hoy, existen más de 90 patentes registradas solo por el grupo del doctor Henry Daniell quien es pionero en la transformación de cloroplastos y quien ha publicado más de 100 artículos sobre transformación de cloroplastos (http://daniell.ucf.edu/people/daniell).

1.5.1 ¿QUÉ SON LOS PLÁSTIDOS Y COMO ESTÁ ESTRUCTURADO EL GENOMA DE LOS CLOROPLASTOS?

Los plástidos son una familia de organelos que se encuentran en las células vegetales de las plantas y algas eucariotas, cumpliendo una gran variedad de procesos metabólicos y de biosíntesis que son vitales para el desarrollo y crecimiento de las plantas (McFadden, 2001).

Los plástidos de acuerdo con su función y localización en las plantas, se pueden clasificar en: Cromoplastos, los cuales biosintetizan y almacenan pigmento, localizándose en flores y frutos; leucoplastos, que se encuentran en raíces; oleoplastos, que acumulan ácidos grasos y se encuentran en la semilla; amiloplastos, se encuentran en semillas y tubérculos, acumulando almidón; cloroplastos, se encuentran principalmente en tejidos verdes y son responsables de la fotosíntesis (Leister, 2003).

El DNA de los cloroplastos (cpDNA) es una molécula circular cerrada de doble cadena contiene la maquinaria necesaria para realizar la replicación del cpDNA independiente del núcleo (Maliga, 2003), un genoma típico de cloroplasto consiste de unidades básicas de doble cadena de DNA de 110 a 220 Kb, arregladas en círculos monoméricos o multiméricos (Lilly *et al.*, 2001; Palmer, 1985). Generalmente este genoma está altamente conservado (Raubeson y Jansen, 2005), cuenta con dos regiones repetidas inversas (IR_A e IR_B; del inglés *"Inverse Repeat A" e "Inverse Repeat B"*) de aproximadamente 20 a 30 Kb cada una, separadas por una región grande de una sola copia (LSC; del inglés *"Large*

CAPÍTULO I

Sigle Copy") y de una región pequeña de una sola copia (SSC; del inglés "Small Single Copy") (figura 1.1) (Verma y Daniell, 2007). Dependiendo de la especie, tejido, estado de desarrollo y condiciones ambientales el número de genomas puede superar 10,000 copias idénticas por célula (Bendich, 1987).

Figura 1.1 Estructura del DNA del cloroplasto. Forma esquemática en la cual se representan los repetidos invertidos (IR_A e IR_B) así como las dos regiones de copia sencilla, la grande (LSC) y la pequeña (SSC)(modificada de Daniell *et al.*, 2005).

1.6 RECOMBINACIÓN HOMÓLOGA

La integración de los transgenes dentro de los cloroplastos se realiza por recombinación homóloga facilitada por un sistema tipo *RecA* (Cerutti *et al.*, 1992), entre las secuencias recombinantes del vector de transformación y la región blanco del genoma plastídico (figura 1.3). La recombinación homóloga se define como el intercambio recíproco de información genética entre dos moléculas idénticas de DNA (Szostak *et al.*, 1983). El complejo *RecBCD* inicia la recombinación con DNA de doble cadena (Kowalczykowski, 2000), este complejo es llamado así en *E. coli*. Participa durante la replicación del DNA al reparar y reiniciar la replicación de horquillas rezagadas (Kuzminov, 1995). La función de cada vía de recombinación es generar extremos 3' del DNA, los cuales son necesarios para el evento de invasión y apareamiento de regiones complementarias en el DNA, esta etapa es dependiente de la proteína RecA (Kowalczykowski *et al.*, 1994). Al final del

proceso de recombinación, una DNA ligasa sella las cadenas y termina el evento de recombinación homóloga (figura 1.2).

Figura 1.2 Modelo de recombinación homóloga. Las vías *RecBCD, RecFOR y RecET* generan extremos de DNA 3⁻, las cuales son reconocidas por *RecA* para la invasión de la región homóloga. Proteínas como *RuvAB, RecG* migran hacia el intermediario de Holliday, *RuvC* lo resuelve con un corte y posteriormente la DNA ligasa liga los cortes (modificada de Santoyo, 2008).

Figura 1.3 Mecanismo de transformación por recombinación homóloga en cloroplastos. después de que los vectores (arriba) son flanqueados con secuencias de los repetidos invertidos del cloroplasto, la integración del transgen se lleva a cabo por un mecanismo de recombinación homóloga (abajo). (Modificada de Dhingra y Daniell, 2005).

1.6.1 SITIOS DE INSERCIÓN DE TRANSGENES EN CLOROPLASTO

En la transformación de cloroplastos, generalmente los transgenes son insertados dentro de la región espaciadora entre dos genes funcionales a través de un mecanismo de recombinación homóloga. Lo cual permite una integración sitio específica eliminando el problema del efecto de posición observado en la transformación nuclear de plantas (Daniell, 2002).

Muchas regiones espaciadoras del genoma del cloroplasto han sido utilizadas como sitios blancos para la inserción de transgenes, entre las cuales se encuentran: *rbcL-accD*, *psbE-petA*, *trnN-rps7/12*, *trnN-rrn16S*, *psbA-trnH*, *trnI-trnA* entre otras (Maliga, 2005). Sin

embargo, el sitio más utilizado para la inserción de transgenes en los cloroplastos, es la región que codifica para los RNA ribosomales, la cual consiste de cuatro marcos de lectura abiertos, el gen del RNA Ribosomal 16S (*rrm16S*), los genes que codifican para los *tRNAs* de isoleucina y alanina (*trn1 y trnA*) y el gene que codifica al RNA ribosomal 23S (*rm23S*) (De Cosa *et al.*, 2001) (figura 1.4). La inserción se realiza particularmente entre la región intergénica de los genes del *tRNA* de isoleucina y alanina (*trn1 y trnA*). Esta región está localizada en el IR_A e IR_B del genoma del cloroplasto por lo cual se pueden alcanzar hasta 20,000 copias del transgén por célula, facilitando así la alta expresión de los transgenes. Otra característica importante de este sitio es la presencia de un origen de replicación río abajo al gen *rm23S* (Lugo *et al.*, 2004; Kunnimalaiyaan, 1997) lo cual puede facilitar la replicación del vector dentro del cloroplasto (Daniell *et al.*, 1990) incrementando la probabilidad de la integración del transgén y lograr la homoplastia en la primera ronda de selección (Guda *et al.*, 2000).

Figura 1.4 Región donde se lleva a cabo generalmente la inserción de transgenes.

Los niveles de expresión de transgenes que se han reportado utilizando este sitio de integración han sido de los más altos, ejemplos de ello son: 31% de TSP obtenidos al expresar el péptido 2L21 el cual confiere resistencia a *C. lupus familiaris* contra el virus canino parvovirus (Molina *et al.*, 2004); 35% TSP, al expresar el gen de *E.coli ubiC* el cual codifica para la corisimato piruvato liasa (CPL) (Viitanen *et al.*, 2004); 46.1% TSP de toxinas Bt (De cosa *et al.*, 2001), cabe destacar que todos estos resultados han sido obtenidos en tabaco (*N. tabacum*).

3

1.7 ESTRUCTURA DE LOS VECTORES UTILIZADOS EN LA TRANSFORMACIÓN DE CLOROPLASTOS

El vector básico para la transformación de cloroplastos está compuesto de regiones recombinantes flanqueantes a un casete de expresión específico para cloroplasto. Las secuencias recombinantes son específicas para cada especie (ej. *trnl–tn*A), normalmente se utiliza la técnica de PCR para aislar estas secuencias (Singh *et al.*, 2009; Verma *et al.*, 2008).

El casete de expresión para cloroplasto está compuesto de un promotor, un marcador de selección y secuencias reguladoras no traducibles (UTR) 5' y 3' que incrementan la eficiencia de la transcripción y traducción del gen. Los promotores específicos de cloroplasto así como los elementos reguladores son amplificados del DNA plastídico usando la información de la secuencia base disponible del plastoma. Una vez clonadas estas secuencias pueden ser manipuladas para la adición de sitios de restricción para facilitar el ensamblado del vector (figura 1.5).

Para un nivel óptimo de expresión de genes en hojas trnl-Prm-ggagg-aadA-Trps16-PpsbA-GI-TpsbA-trnA

Figura 1.5 Representación esquemática del casete de expresión para cloroplastos. En esta imagen se muestran los diferentes genes que se han utilizado para diseñar los casetes de expresión en cloroplastos (Modificado de Verma y Daniell, 2007).

En 1998, Daniell *et al.* propusieron utilizar un vector universal para la transformación de cloroplastos de varias especies de plantas, que contenía los genes *rbcL* y *accD* del genoma del cloroplasto de tabaco (*N. tabacum*) como secuencias flanqueantes para la

recombinación homóloga. Esto fue basado en la alta identidad de las secuencias nucleotídicas de la región espaciadora intergénica entre los genomas de cloroplastos de plantas superiores (Daniell, *et al.*, 1998).

Este vector fue utilizado exitosamente en la transformación de cloroplastos de papa y tomate, pero la eficiencia de transformación fue significativamente más baja comparada con tabaco (Ruf *et al.*, 2001; Sidorov *et al.*, 1999) ya que se obtuvo solo una línea transgénica de 35 bombardeos en papa y solo una línea de plantas transgénicas de 87 bombardeos en tomate. Aunque las secuencias recombinantes flanqueantes de tabaco que se utilizaron en el vector tenían 98 % de identidad con las secuencias de papa y tomate, la eficiencia fue mucho más baja que en tabaco donde se obtuvieron 15 líneas de cloroplastos transgénicos en un solo bombardeo (Fernandez-San Millan *et al.*, 2003). Un caso similar ocurrió con la transformación de cloroplastos de tabaco, empleando un vector basado en secuencias nucleotídicas de diferentes especies, lo que reduce el éxito de la recombinación homóloga. Esto ha sido reportado para solanáceas (Daniell *et al.*, 2006) y 9 genomas cloroplastídicos de algunos cereales (Saski *et al.*, 2007).

1.8 MARCADORES DE SELECCIÓN PARA LA TRANSFORMACIÓN PLASTÍDICA

El primer gen utilizado con éxito para la selección de plantas transplastómicas fue el gen aadA que codifica la enzima 3'adenililtransferasa, la cual inactiva a los antibióticos espectinomicina y estreptomicina por adenilación (Svab and Maliga, 1993). Este gen fue el primero en ser utilizado para verificar la integración y expresión estable durante la transformación de *Chlamydomonas reinhardtii* (Goldschmidt y Clermont, 1991).

Otro gen marcador alternativo es el de la neomicina fosfotransferasa (neo), el cual confiere resistencia a kanamicina (Carrer *et al.*, 1993). Un gen diferente que también confiere resistencia a kanamicina (*aph*A6) con relativamente alta eficiencia de transformación fue reportado después (Huang *et al.*, 2002). El gen bacteriano *bar* también es utilizado como marcador de selección, este codifica la fosfinotricina acetiltransferasa (PAT) dando resistencia al herbicida PPT (Fosfinotricina) (Lutz *et al.*, 2001); también

existe un agente de selección negativo que está basado en el gen bacteriano codA (Serino y Maliga, 1997).

1.9 GENES REPORTEROS UTILIZADOS EN CLOROPLASTO

Los genes que codifican la beta glucuronidasa de *E. coli* (*uidA*), la cloranfenicol acetiltranferasa de *Streptomyces venezuelae* (CAT) y la proteína verde fluorescente (GFP) de la medusa *Aquorea victorea*, han sido utilizados como reporteros en plástidos (Khan y Maliga, 1999; Daniell *et al.*, 1990; Ye *et al.*, 1990; Daniell y McFadden, 1987). La actividad enzimática de GUS puede ser visualizada por análisis histoquímicos (Daniell *et al.*, 1991; Ye *et al.*, 1990) y también cuantificada por métodos fluorométricos, en ambos casos es necesaria la destrucción de los tejidos. GFP es un marcador visual fluorescente que funciona mediante autocatálisis en presencia de oxígeno y produce una fluorescencia verde al absorber luz azul o UV (Hanson y Kohler, 2001), la fluorescencia puede ser cuantificada o bien la proteína puede ser detectada mediante anticuerpos. Es particularmente útil porque permite monitorear la expresión génica *in vivo*, *in situ* y en tiempo real, sin destruir los tejidos bajo estudio y a bajo costo.

1.10 TRABAJOS DE TRANSFORMACIÓN GENÉTICA DE CLOROPLASTOS EN ARBOLES FORESTALES

Hasta ahora solo existe un trabajo de transformación de cloroplastos en árboles reportado por Okumura *et al.*, 2006, quienes trabajaron con álamo blanco (*Populus alba*) como modelo de estudio. La metodología de este trabajo consistió en bombardear hojas de álamo con un vector construido de forma monocistrónica, que contenía el gen *aadA* el cual confiere resistencia a espectinomicina y *gfp* como gen reportero. La proteína GFP se puede observar como un producto visible (fluorescencia). El casete de expresión del vector fue introducido entre la secuencia *rbcL y accD* del vector pCB1, para dar como resultado el vector de transformación pCB1GFP (figura 1.6), la expresión del gen *aadA* fue dirigida por el promotor del RNA ribosomal 16S de tabaco (*Prrn*) y como terminador *pbsA* de tabaco (*TpsbA*). La expresión de la proteína verde fluorescente (GFP) fue dirigida por el promotor del gen *psbA* de tabaco (*PpsbA*) y el terminador del gen *Trps16* de la misma especie (Trps16).

Figura 1.6 Estructura del vector de transformación de cloroplastos de *Populus alba* (pCB1GFP) y su lugar de inserción en el cpDNA. En este vector se utilizaron como regiones flanqueantes de los transgenes a la secuencia del gen de la subunidad grande de la RUBISCO (*rbcL*) y del gen de la acetil carboxilasa (*accD*) para dirigir la inserción de los genes *aadA* y *gfp* (Okumura *et al.*, 2006).

Como resultado del trabajo se obtuvieron 10 brotes desarrollados que presentaban fluorescencia, de los cuales 3 fueron transferidos a tierra y el resto se cultivó de forma aséptica. De los árboles sembrados en tierra se realizaron diferentes ensayos como *Southern blot* y *western blot* para asegurarse de que realmente se tenían líneas transplastómicas. Mediante el *Southern blot*, los autores comprobaron que los transgenes se habían insertado en el plastoma del álamo blanco. La presencia de la proteína GFP se detectó mediante excitación con luz UV en las plantas y se corroboró por *western blot*. Además se realizó un ensayo con enzimas de restricción para verificar la homoplastía de la transformación. Con estos tres experimentos se logró constatar que efectivamente se habían obtenido plantas transplastómicas homoplastídicas utilizando promotores y terminadores de *Nicotiana tabacum*.

Para otras especies vegetales se han hecho varios trabajos de transplastómica, mismos que pueden ser observados en el cuadro 1.1.

Cuadro 1.1 Trabajos de transformación de cloroplastos realizados en plantas superiores. Modificado de Heifetz, 2000.

Especie	Gen	Secuencia	Método	Resultado	Referencia
Tabaco	uidA	tmV-16S	BB	homoplastía	Staub y Maliga, 1993.
Papa	gfp	rps12-tmV	BB	homoplastía	Sidorov et al. 1999
Tabaco	Toxinas Bt	trnl-trnA	BB	homoplastía	De Cosa <i>et al.</i> 2001
Tabaco	CT-B (cólera)	trnl-trnA	BB	homoplastía	Daniell et al. 2001
Zanahoria	Betaína aldehído deshidrogenasa	tml-trnA	BB	homoplastía	Kumar <i>et al.</i> 2004
Tabaco	interferón a2b	trnl-trnA	BB	homoplastía	Daniell et al. 2005
Álamo blanco	aadA-gfp	rbcL-accD	BB	homoplastía	Okumura et al. 2006

BB. Biobalística

1.11 JUSTIFICACIÓN

Debido a que el mejoramiento genético de las especies forestales utilizando cruzas de parentales puede tomar muchos años, además de la falta de individuos de cedro rojo (Cedrela odorata L.) resistentes al ataque del insecto plaga Hypsipyla grandella en México, es necesario tratar estos problemas a mediano plazo, lo que se puede lograr utilizando la ingeniería genética para la introducción de uno o más genes que confieran resistencia contra este insecto. En el caso de las especies tropicales preciosas como el cedro rojo no se han realizado trabajos para su mejoramiento genético. Tomando en cuenta los posibles problemas de aceptación de especies forestales sometidas a transformación genética por la vía nuclear, debidos principalmente al flujo génico por polen, aunados a los posibles problemas técnicos que se pueden presentar, como son 1) bajos niveles de expresión, 2) variación en la expresión y 3) posible inestabilidad del transgén, etc. se requiere implementar la transformación genética de cloroplastos de cedro rojo, la cual podría constituirse como una herramienta muy útil en el mejoramiento de esta especie. Para llevarlo a cabo, en el presente trabajo se generó un vector para la transformación genética del cloroplasto de cedro rojo que permitirá en un futuro la introducción de genes de resistencia contra Hypsipyla grandella, así como otros que se consideren convenientes.

1.12 OBJETIVOS

1.12.1 OBJETIVO GENERAL

 Realizar la construcción de un vector para la transformación genética del cloroplasto del cedro rojo (Cedrela odorata L.).

1.12.2 OBJETIVOS ESPECÍFICOS

- Clonar y secuenciar la región rrn16S-trn1 del plastoma de cedro rojo.
- Clonar y secuenciar la región trnA-rrn23S del plastoma de cedro rojo.
- Construir un casete de expresión que contenga como marcador de selección el gen *aadA* que confiere resistencia a espectinomicina y el gen reportero *gfp.*
- Construir un vector de transformación para cedro rojo que incluya como secuencias flanqueantes del casete de expresión las secuencias rrn16S-trn1 y trnA -rrn23S del genoma del cloroplasto de esta especie.

1.13 ESTRATEGIA EXPERIMENTAL

. 1

.

BIBLIOGRAFÍA

- Arencibia, A. (1998). An efficient protocol for sugarcane (*Saccharum* spp. L.) transformation mediated by *Agrobacterium tumefaciens*. *En*: Transgenic Research. Vol. 7; p. 1–10.
- Balocchi, C. and Valenzuela S. (2004). Introduction to GMOs and Biosafety in Forestry. In
 Forest Biotechnology in Latin America. Proceedings from the workshop
 Biotecnologia Forestal. Institute of Forest Biotechnology Universidad de
 Concepción. Global Biotechnology Forum, Concepción, Chile. 126 pp.
- Baucher, M., Halpin, C., Petit–Conil, M. and Boerjan, W. (2003). Lignin: Genetic Engineering and Impact on Pulping. Crit Rev Biochem Mol Biol (38) 305–350.
- Bendich A.J. (1987). Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279-282.
- Bock R, Warzecha H. (2010). Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28:246–252.
- Briceño Vergara, A. (1997). Aproximación hacia un manejo integrado Del barrenador de las meliaceas, Hypsipyla Grandella (zeller). Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, Centro de Estudios Forestales y Ambientales de Postgrado, Mérida – Venezuela.
- Carrer H., Hockenberry TN., Svab Z., Maliga P. (1993). Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49–56.
- Cerutti H., Osman M., Grandoni P., Jagendorf A.T. (1992). A homologous of Escherichia coli Rec A protein in plastids of higher plants. Proc Natl Acad Sci USA 89: 8068–8072.

- Chalupa V. (1985). Somatic Embryogenesis and plantler regeneration from culture immature and mature embrios of *Picea abies* (L.) Kartes. Comm. Inst For 14, 57–63.
- Cheng M. et al. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology. Vol. 115; p. 971–980.
- Cheng, X.Y. (1998). Agrobacterium transformed rice expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proceedings of the National Academy of Sciences USA. Vol.95; p. 2767–2772.
- Cintron B. B. (1990). Cedrela odorata L. Cedro hembra, Spanish cedar. En: Silvics of North America: 2. Hardwoods. Burns, R. M. y Honkala, B. H., eds. Handb. 654. Washington, DC: U. S. Department of Agriculture, Forest Service: 250–257.
- Comisión Nacional Forestal (CONAFOR) (2005). Manual práctico para la producción de plantas. 197p.
- Crouzet, P. and Hohn, B. (2002). Transgenic plants. Encyclopedia of Life Sciences. Nature Publishing Group, London, UK, pp. 1–7.
- D'Halluin Kathleen,' Bonne EIS, Bossut Martine, Beuckeleer De Marc, and Leemans Jan. (1992). Transgenic Maize Plants by Tissue Electroporation. The Plant Cell, Vol. 4, 1495-1505.
- Daniell H. (1993). Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. *Methods Enzymol.* 217: 536–556.
- Daniell H. (1997). Transformation and foreign gene expression in plants by microprojectile bombardment. *Methods Mol. Biol.* 62: 463–489.
- Daniell H. (2002). Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20 581–586.

- Daniell H., Datta R., Varma S., Gray S., Lee S.B. (1998). Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16: 345–348.
- Daniell H., Krishnan M., McFadden B.A. (1991). Transient expression of b-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep 9:615–619.
- Daniell H., Lee S.B., Panchal T and Wiebe P.O. (2001). Expression of cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311: 1001–1009.
- Daniell H., Lee SB., Grevich J., Saski C., Quesada–Vargas T., Guda C., Tomkins J., Jansen R.K. (2006). Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503–1518.
- Daniell H., McFadden B.A. (1987). Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc Natl Acad Sci USA 84: 6349–6353.
- Daniell H., Ruiz O. N. and Dhingra A. (2005). Chloroplast genetic engineering to improve agronomic traits. *Methods Mol. Biol.* 286: 111–137.
- Daniell H., Singh N.D., Mason H., Streatfield S.J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679.
- Daniell H., Vivekananda J., Nielsen BL., Ye G.N., Tewari KK (1990). Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci USA 87: 88–92.
- Daniell, H. y Parkinson, C. L. (2003). Jumping genes and containment Nat. Biotechnol. 21 374–375.

- De Cosa B., Moar W., Lee S.B., Miller M., Daniell H. (2001). Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71–74.
- De Gray G., Rajasekaran K., Smith F., Sanford J., Daniell H. (2001). Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127: 852–862.
- Dhingra A. and Daniell H. (2005). Chloroplast genetic engineering via organogenesis or somatic embyrogenesis. In: Arabidopsis Protocols II. Sanchez-Serrano, J. J., and Salina, J, Eds., Humana Press, New Jersey. In Press.
- Díaz Maldonado E.R.A., et al. (2004). Diagnóstico de las Condiciones Fitosanitarias de las Plantaciones Forestales en la Península de Yucatán. In 3er Congreso Forestal de Cuba y III Simposio Internacional de Técnicas Agroforestales. Instituto de Investigaciones Forestales. Cuba. 24 p.
- Dowd, P. F., Lagrimini, L. M. and Herms, D. A. (1998). Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase. Cell Mol. Life Sci. 54 712–720.
- Fernandez-San Millan, A., Mingeo-Castel, A. M., Miller, M., and Daniell, H. (2003). A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. *Plant Biotechnol. J.* 1: 71–79.
- Fromm ME, Taylor LP and Walbot V. (1985). Expression of genes transferred into monocot and dicot plant cells by electroporation. Proceedings of the National Academy of Sciences of the USA 80: 4803–4807.
- Fumiaf y SAGARPA (2005). Plan de negocios para el cultivo de la especie forestal comercial Cedro Rojo (*Cedrela odorata* L.) en México. Fundación mexicana para investigación agropecuaria y forestal, A.C.(Fumiaf) y Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). 29 p.

37

- Gelvin, S. (2003). Agrobacterium-mediated plant transformation: the Biology behind the "GENE-Jockeying"TOOL. En: Microbiology and Molecular Biology Reviews. Vol. 67; p. 16–37.
- Gleeson, D., Lelu–Walter MA. and Parkinson, M. (2005). Overproduction of proline in transgenic hybrid larch (Larix x leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Molecular Breeding 15 (1) 21–29.
- Goldschmidt–Clermont M. (1991). Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site–directed transformation of chlamydomonas. Nucleic Acids Res 19: 4083–4089.
- Grijma, P. (1974). Contributions to an integrated control program of *Hypsipyla grandella* (Zeller) in Costa Rica. Doctoral Thesis. State Agric. Univ. Wageningen, Holland.
- Guda C, Lee SB, Daniell H. (2000). Stable expression of a biogradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257-262.
- Hackman I., Von Arnolns S., (1985). Plantlet regeneration through somatic embryogenesis in Picea abies (*Norwuy spruce*). J. Plant Physiol 121, 149–158.
- Hanson MR, Kohler RH (2001). GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539.
- Hooykaas P. JJ. (2001). Plant Transformation. Encyclopedia of Life Sciences. Nature Publishing Group, London, UK, pp. 1–6.
- Hu, J.J., Tian, Y.C., Han, Y.F., Li, L. & Zhang, B.E. (2001). Field evaluation of insectresistant transgeneic *Populus nigra* trees. *Euphytica*, 121: 123–127.
- Huang FC, Klaus S, Herz S, Zou Z, Koop HU, Golds T (2002). Efficient plastid transformation in tobacco using the aphA–6 gene and kanamycin selection. Mol Genet Genomics 268: 19–27.

- INIFAP (2005). El cedro, Establecimiento y Manejo en la Huasteca Potosina. San Luís Potosí: Instituto Nacional de Investigaciones Forestale, Agrícolas y Pecuarias. Tecnología No. 7 http://www.oeidrusslp.gob.mx/modulos/tecnologiasdesc.php.
- Ishida, Y. et al. (1996) High efficiency transformation of maize (Zea mayz L.) metiated by Agrobacterium tumefaciens. Nature Biotechnology. Vol. 4; p. 745–750.
- Israelsson, M., Mellerowicz, E., Chono, M., Gullberg, J. and Moritz, T. (2004). Cloning and Overproduction of Gibberellin 3–Oxidase in Hybrid aspen Trees. Effects on Gibberellin Homeostasis an Development. Plant Physiol. 135 221.
- James, R. R. (1997). Using a social ethic toward the environment in assessing genetically engineered insect–resistance in trees. Agriculture and Human Values 14 (3) 237– 249.

Kaiser, J. (2001). Words (and Axes) Fly Over Transgenic Trees. Science, **292** (5514): 34-36.

- Kellison, R., McCord, S. y Gartland, K. M. A. Eds. (2004). Forest Biotechnology in Latin America. Proceedings from the workshop Biotecnologia Forestal. Institute of Forest Biotechnology – Universidad de Concepción. Global Biotechnology Forum, Concepción, Chile. 126 pp.
- Khan MS, Maliga P (1999). Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17: 910–915.
- Kowalczykowski, S.C. (2000). Initiation of genetic recombination and recombinationdepend replication. Trends Biochem Sci. 25:156–165.
- Kowalczykowski, S.C., D.A. Dixon, A. K Eggleston, S. D. Lauder & W.M Rehrauer. (1994). Biochemistry of homologous recombination in E. coli. Microbiol Rev. 58:401–465.

- Kumar, S., and Daniell, H. (2004). Engineering the chloropalst genome for hyperexpression of human therapeutic proteins and vaccines antigens. *Methods Mol. Biol.* 267: 365–383.
- Kunnimalaiyaan, M., Shi, F., and Nielsen, B. L. (1997). Analysis of the tobacco chloroplast DNA replication origin (*ori*B) downstream of the 23S rRNAgene. *J. Mol. Biol. 268*, 273–283.
- Kuzminov, A. (1995). Collapse and repair of replication forks in E. coli. Mol microbial. 16:373–384.
- Lamb, A. F. A. (1968). Fast growing timber trees of the lowland tropics. *Cedrela odorata.* Commonwealth Forestry Institute, Oxford. 2: 46.
- Lazzeri P.A., Brettschneider R., Liihrs R. and Lfrz H.. (1990). Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet 81:437 444.
- Lee, S. B., Kwon, H. B., Kwon, S. J., Park, S. C., Jeong, M. J., Han, S. E., and Daniell, H. (2003). Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. *Mol. Breeding* 11: 1–13.

Leister, D. (2003). Chloroplast research in the genomic age. Elsevier, 47-56.

- Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13: 245–254.
- Lugo, S. K., Kunnimalayaan, M., Singh, N. K., and Nielsen, B. L. (2004). Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. *Plant Sci.* 166: 151–161.

- Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125: 1585–1590.
- Maliga P (2003) Progress towards commercialization of plastid transformation technology.Trends Biotechnol 21:20-28.
- Maliga P. (2005). New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Plant Biol., 55:289-313.
- May, G. D. et al. (1995) Generations of transgenic banana (*Musa acuminata*) plants via *Agrobacterium*-mediated transformation. Biotechnology. Vol. 13; p. 486–492.

McFadden, G.I. (2001). Chloroplast origin and integration . Plant Physiology. 50-53.

- Molina A, Hervás-Stubbs S, Daniell H, Mingo-Castel A, Veramendi J (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141-153.
- Nagmani R., Bonga J.M., (1985). Embryogenesis in subculture callus of *Larix decidua*. Can J For Res 15, 1088–1091.
- Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K. (2006). Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637-646.
- Palmer JD (1985). Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354.

Paszkowski J, Shillito RD, Saul M et al. (1984). Direct gene transfer to plants. EMBO Journal 3: 2717–2722.

- Patiño, F. (1997). Recursos Genéticos de Swietenia y Cedrela en los Neotrópicos. Propuestas para Acciones Coordinadas. Organización de las Naciones Unidaspara la Agricultura y la Alimentación. Roma –Italia, pág. 58.
- Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In RJ Henry, ed, Diversity and Evolution of Plants-Genotypic and Phenotypic Variation in Higher Plants. CABI Publishers, Cambridge, MA, pp 45–68.
- Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19: 870– 875.

Sanford, J. (1988). The biolistic process. Trends Biotech. 6: 299-302.

- Sanford, J.C., T.M. Klein, E.D. Wolf y N. Allen. (1987). Delivery of substances into cells and tissues using a particlebombardment process. J. Part. Sci. Tech. 5:27-37.
- Santoyo G. (2008). Recombinería en bacterias: ingeniería del ADN usando recombinación homóloga. Revista Latinoamericana de Microbiología. 50: 38-47.
- Saskatchewan Agricultural Biotechnology Information Center (SABIC), (2001). What is genetic transformation?. AgBiotech Infosource. ISSUE 68. Disponible en línea en <u>http://www.agwest.sk.ca/publications/infosource/inf_oct01.pdf</u>
- Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115: 571–590.
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2006). Convocatoria para el otorgamiento de apoyos de los Programas de Desarrollo Forestal de la Comi sión Naci-onal Forestal. Diario Oficial de la Federación del 7 de marzo de 2006.

SEMARNAT (2002). Programa Nacional Forestal 2001–2006.

- Serino G, Maliga P (1997) A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J 12: 697–701.
- Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19: 209–216.
- Simula, M., Siquiera, G. Sosa–Cedillo V. and Synnott, T. (2005). Achieving the ITTO Objective 2000 and sustainable forest management in Mexico. International Tropical Timber Organization. ITTC (XXXIX) / 5. 168pp.
- Singh ND, Ding Y and Daniell H (2009). Chloroplast-derived vaccine antigens and biopharmaceutical: protocols for expression, purification, or oral delivery and functional evaluation. Methods Mol Biol 483: 163-192.
- Styles, B. T. and Khosla, P. K. (1976). Citology and reproductive biology of Meliaceae. In: Tropical trees: variation, breeding and conservation. (eds). Linnean Society Simposium. Series Number 2 : 61–68.
- Svab Z, Maliga P (1993) High–frequency plastid transformation in tobacco byselection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917.
- Szostak, J. W., T.L. Orr-Weaver, R.J Rothstein & F.W. S. tahl. (1983). The doublestrand-break repair model for recombination. Cell. 33:25-35.
- Tang, W. and Tlan Y. (2003). Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified δ–endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. Journal of Experimental Botany 54 (383) 835–844.

- Tullume, C. (2000). Características anatómicas y propiedades físico mecánicas del Cedro (Cedrela odorata L) proveniente de Satipo. Tesis para optar el título de Ingeniero Forestal. UNALM – Perú.
- Tzfira, T.; Vaidya, m. And Citovsky, V. (2002). Increasing plant susceptibility to *Agrobacterium* infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the Natural Academy of Sciences USA. Vol. 99, No.16; p. 10435– 10440.
- Urbina, M. (2000). "Manejo y poda de raíces en árboles de Schinus molle (molle peruano), Jacaranda mimosifolia (Jacaranda), Grevillea robusta (Grevillea) y Cedrela odorata (cedro)". Tesis para optar el Título de Ingeniero Forestal. UNALM –Perú.
- Valderrama F. A. M; Arango I. R; Afanador K. L. (2005). Transformación de Plantas Mediada por Agrobacterium: "Ingeniería Genética Aplicada". Rev.Fac. Nal. Agr. Medellín. Vol.58, No. 1. P. 2569–2585.
- Vázquez–Yanes, C., A. I. Batis Muñoz, M. I. Alcocer Silva, M. Gual Díaz y C. Sánchez Dirzo. (1999). Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico del proyecto J084. CONABIO – Instituto de Ecología, UNAM.
- Verma D. y Daniell H. (2007). Chloroplast Vector Systems For Biotechnology Applications. Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando Florida. *Plant Physiology*, December 2007, vol. 145, pp. 1129–1143.
- Verma D., Samson NP., Koya V and Daniell H. (2008). A protocol for expression of foreign genes in chloroplast. Nat Protoc 3: 739-758.
- Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Escherichia coli ubiC gene reveals

that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048-4060.

- Xiao-Hua, S., Bing-Yu, Z., Qin-Jun, H., Lie-Jian, H., Xiang-Hua, Z. (2003). Advances in tree genetic engineering in China. In: Proceedings of the XII World Forestry Congress, Quebec City, Canada. Disponible en línea en: www.fao.org/docrep/article/wfc/xii/0280-b2.htm
- Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higherplant chloroplasts. Plant Mol Biol 15: 809–819.
- Zhong, R., Morrison, W. H., Himmelsbach, D. S., Poole, F. L. and Ye, Z–H. (2000). Essential Role of Caffeoyl Conezyme A O Methyltransferase in Lignin Biosynthesis in Woody Poplar Plants. PlantPhysiol. 124 563–577.

CAPÍTULO II MATERIALES Y MÉTODOS

2.1 ESTRATEGIA GENERAL DEL PROYECTO

La estrategia general del proyecto consistió en amplificar por separado y mediante PCR las regiones del plastoma de cedro rojo que comprenden al *rrn16S–trn1* (PCR-I) y *trnA–rrn23S* (PCR-II) (figura 2.1). Para realizar la amplificación de estas regiones fue necesario el diseño de oligonucleótidos específicos. Como no se contaba con la secuencia de nucleótidos de esta región en cedro se partió de una secuencia obtenida por Gregorio–Martínez (2010), quien aisló y secuenció un fragmento de ~ 923 pb del gen *rrn23S* de roble (*T. rosea*). Se utilizó esta secuencia por que el roble al igual que cedro es una especie leñosa originaria de América, su distribución geográfica es similar y filogenéticamente deberían estar más estrechamente relacionados en comparación a tabaco que es una especie herbácea, especie de la cual ya existen oligonucleótidos diseñados para amplificar esta región.

Figura 2.1 Representación esquemática de las regiones que se pretenden amplificar del plastoma de cedro rojo. Se muestra el tamaño total de la región *rrn16S_trn1_trnA_rrn23S* en tabaco los cuatro marcos de lectura y las secuencias que se desean amplificar.

Utilizando el fragmento de ~923 pb del gen *rm23S* (de roble) se realizó una búsqueda de secuencias homólogas, en la base de datos GeneBank. Utilizando la herramienta BLAST (por sus siglas en ingles, Basic Local Alignmnent and Search Tool) de nucleótidos (blastn) (Zheng *et al.*, 2000), se seleccionaron las secuencias homólogas en 10 especies (cuadro 3.1) cuya identidad estuvo entre el 98% y 99% con respecto a la secuencia de roble. Después se aislaron *in silico* las regiones *rm16S-trn1-trnA-rrn23S* de las 10 especies seleccionadas y finalmente se realizó un alineamiento utilizando el software Sequencher® versión 4.1.4 (Gene Codes, USA). Del alineamiento se obtuvo una secuencia consenso

. 1

que sirvió para hacer un mapa de restricción *in silico* de la región *rrn16S-trn1-trnA-rrn23S* y para diseñar los oligonucleótidos (cuadro 3.2) a los cuales se les adicionaron sitios de restricción, cuidando que esos sitios no se encontraran en las secuencias *rrn16S-trn1* y *trnA-rrn23S* ni en el vector pUC19. Estos sitios de restricción fueron utilizados para poder insertar los fragmentos en pUC19. Después de que los fragmentos de la región *rrn16S-trn1* (PCR-I) y *trnA-rrn23S* (PCR-II) de cedro fueron amplificados, se insertaron en pUC19, con esto se obtuvieron dos construcciones, las cuales se nombraron pCBL-1 para el fragmento de PCR-I (figura 2.2 a) y pCBL-3 para el fragmento PCR-II (figura 2.2 b).

Figura 2.2 Estructura esquemática de pCBL-1 y pCBL-3. a) *rrn16S–trn1 (*PCR-1) insertado en pUC19, b) PCR-II insertado en pUC19 (pCBL-3). Las flechas representan el sentido de los marcos de lectura *rrn16S–trn1 y trnA–rrn23S*. Se indican los sitios de restricción y las posiciones de los oligonucleótidos utilizados para verificar las construcciones y la secuenciación.

Después de que se obtuvieron pCBL-1 y pCBL-3, se clonó el fragmento *trnA-rrn23S* de pCBL-3 en pCBL-1 y se obtuvo pCBL-4 el cual contiene ambos fragmentos de cedro (*rrm16S-trn1* o PCR-I y *trnA-rrn23S* o PCR-II). El pCBL-4 (figura 2.3), se diseñó de tal

modo que incluyera un sitio de restricción *Notl* en la región intergénica, que fue utilizado para insertar el casete de expresión.

Figura 2.3 Esquema de pCBL-4. Las flechas representan el sentido de los marcos de lectura *rrn16S*-*trn1 y trnA*-*rrn23S.* Se indican los sitios de restricción y las posiciones de los oligonucleótidos utilizados para verificar las construcciones.

El casete de expresión fue diseñado *in silico* a partir de secuencias codificantes y regulatorias reportadas en la base de datos del GeneBank (cuadro 13). El casete contiene el gen reportero *gfp* y el gen marcador de selección *aadA*, los cuales están bajo el control de las secuencias reguladoras del promotor del *rm16S* y las secuencias no traducibles (5'UTR y 3'UTR) que se indican en la figura 2.4. Se adicionaron los sitios de restricción *Notl* flanqueando al casete, para insertar el casete de expresión en pCBL-4, y obtener pCBL-5 (figura 2.4), el cual es el vector para la transformación de cloroplastos de cedro rojo.

Figura 2.4 Esquema de pCBL-5. Las flechas representan el sentido de los marcos de lectura *rm16S–tml* y *trnA–rm23S* y del casete de expresión. Se indican los sitios de restricción y las posiciones de los oligonucleótidos utilizados para verificar la construcción.

2.2 EXTRACCIÓN DE DNA DE CLOROPLASTO (cpDNA)

Para aislar el cpDNA se utilizaron 5 g de hojas maduras de cedro rojo previamente incubadas en oscuridad por 48 h, estas hojas fueron maceradas utilizando 20 mL del amortiguador STE (100 mM NaCl, 10 mM Tris-Cl, pH 8.0, 1 mM EDTA), posteriormente la mezcla fue filtrada con una malla (gasa) y el líquido resultante se centrifugó a 2000 rpm por 20 min, se recuperó el sobrenadante y se desechó el precipitado. Esta nueva fase líquida fue centrifugada a 6000 rpm por 20 min. Se descartó el sobrenadante, el precipitado fue resuspendido en 20 mL de amortiguador STE (la resuspensión debe de realizarse lo más delicadamente posible) y nuevamente se centrifugó a 6000 rpm/ 20 min. Posteriormente se desechó el sobrenadante y se resuspendió la pastilla en 200 µL de amortiguador ST (400 mM sacarosa, 50 mM Tris pH 7.8, 0.1% seroalbúmina) al que se le adicionaron 0.5 U de DNAsa A (Invitrogen) dejándose incubar 30 min a 37 °C (mezclando periódicamente). Para detener la reacción de la DNAsa A se agregó EDTA a una concentración final de 0.2 M. Para limpiar los organelos de la DNAsa se adicionaron 50

mL de amortiguador NETF (1.25 M NaCl, 50 mM Tris pH 8, 50 mM EDTA, 50mM NaF). Esta mezcla fue centrifugada a 6000 rpm por 20 min, al final de la centrifugación se descartó el sobrenadante y se conservó el precipitado a -20 °C. Posteriormente, se resuspendió en 600 µL de amortiguador TEN (100 mM NaCl, 100 mM Tris pH 7.2, 50 mM EDTA, O.2%
B-Mercaptoetanol) a 0 °C y también fueron adicionados 30 mL de SDS al 20%. Después de la lisis se adicionó a la muestra un volumen de fenol equilibrado en el amortiguador TRIS 1M pH 8.0 y se mezcló intensamente por 5 min, para que después fuera centrifugada a 13000 rpm a 4 °C. La fase acuosa fue transferida a un nuevo tubo al cual se le agregó un volumen de una solución (1:1 V/V) de fenol: cloroformo, se mezcló intensamente y se centrifugó 10 min a 13000 rpm a 4 °C (este paso se repitió una vez más), posteriormente se adicionó un volumen de cloroformo: alcohol isoamílico (24:1 V/V) después de mezclar intensamente se centrifugó por 10 min a 13000 rpm a 4 °C. El DNA se precipitó con un décimo de volumen de acetato de amonio 5 M y un volumen de isopropanol, se incubó toda la noche a 4 °C y se centrifugó por 10 min a 13000 rpm. Posteriormente, se desechó el sobrenadante, y el precipitado fue lavado con 1 mL de etanol al 70 %. Por último se centrifugó 5 min a 4 °C, se eliminó el sobrenadante, se dejó secar la pastilla para posteriormente ser resuspendida en 20 µL de amortiguador TE y se almacenó a -20 °C hasta su uso.

2.3 AMPLIFICACIÓN DE LA REGIÓN rrn16S-trnl (PCR-I)

Una vez extraído el cpDNA de cedro rojo (*Cedrela odorata* L.), se procedió a realizar la PCR del fragmento rrn*16S-trn1* (PCR-I), para ello se partió de 20 ng de cpDNA al cual se le adicionaron 20 picomoles de los oligonucleótidos CBL-1 10X y CBL-2 10X del cuadro 3.2, 1µL de los dNTPs 10X (10mM de cada dNTP), 10 µL de amortiguador 5X, 2 µL de MgCl₂ y 0.5 unidades de la DNA polimerasa iProofTM (BIO-RAD) y agua ultrapura para alcanzar un volumen final de 50 µL. Las condiciones del PCR fueron: un ciclo de desnaturalización a 95 °C por 4 min, 34 ciclos de 95 por 30 s, 59 °C por 1 min, 72 °C por 3 min, y un ciclo final de 72 °C por 10 min. Como resultado se esperaba que el producto amplificado fuera de ~ 2480 pb según lo encontrado en tabaco, sin embargo de acuerdo a lo reportado por Rodríguez–López (2010) este fragmento en cedro es de ~ 2700 pb.

2.4 AMPLIFICACIÓN DE LA REGIÓN trnA-rrn23S (PCR-II)

La región *tmA-rm23S* se amplificó por PCR, como templado se utilizaron 20 ng de cpDNA, 20 pmoles de los oligonucleótidos CBL-3 y CBL-4 (cuadro 3.2), 1µL de los dNTPs 10X (10mM de cada dNTP), 10 µL de amortiguador 5X, 2 µL de MgCl₂ y por último 0.5 unidades de DNA polimerasa iProofTM (BIO-RAD), la reacción se llevó a cabo en un volumen final de 50 µL. Las condiciones del PCR fueron: un ciclo de desnaturalización a 95 °C por 4 min, 34 ciclos de 95 por 30 s, 58.4 °C por 1 min, 72 °C por 3 min, y un ciclo final de 72 °C por 10 min. para esta PCR se esperaba que el amplicón fuese de ~ 3000 pb.

2.5 PREPARACIÓN DEL VECTOR pUC19 Y DE LOS INSERTOS

Para realizar la clonación de la región *rm16S-trn1* (PCR-I) se utilizó el vector de clonación pUC19 (figura 2.5), el cual dentro de su sitio de clonación múltiple contiene los sitios *HindIII* y *Pst1*, que fueron utilizados debido a que no cortan la región *rm16S-trn1* (PCR-I) y por tanto los oligonucleótidos utilizados para amplificar el PCR-I adicionan estos sitios de restricción. Se realizó una doble digestión del vector pUC19 y el producto de PCR-I primero se digirieron con *HindIII* según la reacción que se muestra en la cuadro 2.1.

Reactivos	Vector pUC19	Inserto PCR-I	
DNA	5 µL (~1 µg)	20 µL (~800 ng)	
Amortiguador (E) 10X	4 µL	5 µL	
BSA 10X	4 µL	5 µL	
Enzima (HindIII) 37 °C	1.5 U	· 1U	
H ₂ O	25.5 µL	19 µL	
Volumen final	40 µL	50 µL	

Cuadro 2.1 Reacciones de digestión utilizando *HindIII* para preparar el vector pUC19 y el inserto PCR-I

Posteriormente se realizó la digestión con la enzima *PstI*, para lo cual el producto de la digestión con *HindIII* se precipitó adicionando 1/10 de volumen de acetato de sodio 3M pH 5.2 y 2 volúmenes de etanol absoluto, se dejó incubar a -80 °C por 1 h para después centrifugar por 30 min a 13000 rpm. Por último se decantó el sobrenadante y se realizaron

2 lavados con etanol al 70%. Se dejó secar la pastilla, la cual se resuspendió y digirió como se muestra en la cuadro 2.2.

Reactivos	Vector pUC19	Inserto PCR-I	
DNA	Pastilla resuspendida	Pastilla resuspendida	
Amortiguador (NEBs 3) 10X	4 µL	5 µL	
BSA 10X	4 µL	5 µL	
Enzima (Pstl) 37 °C	1.5 U	10	
H ₂ O	30.5 µL	31 µL	
Volumen final	40 µL	40 µL	

Cuadro 2.2 Reacciones de digestión utilizando Pst/ para preparar vector pUC19 e inserto PCR-I

Una muestra de los productos de ambas digestiones se visualizaron por electroforesis en un gel de agarosa al 0.8% para corroborar la integridad del DNA y verificar que se haya llevado a cabo la digestión total del vector.

Para clonar la región *trnA-rrn23S* (PCR-II) en pUC19, se utilizaron los sitios de restricción Sall y Xbal, la estrategia utilizada fue realizar una doble digestión del vector y del inserto como ya se describió para clonar la región *rrn16S-trn1*

Figura 2.5 Vector pUC19. En este diagrama se muestra como está estructurado el esqueleto del vector de clonación utilizado en este trabajo. Se señalan las enzimas que se encuentran en el sitio de clonación múltiple y en círculos se indican las enzimas que se emplearon para clonar PCR-I (rojo) y PCR-II (azul).

2.6 LIGACIÓN DE LAS REGIONES rrn16S-trnI Y trnA-rrn23S En pUC19

La ligación de cada inserto (regiones *rrn16S-trn1* y *trnA-rrn23S*) en pUC19 se realizó de acuerdo a los parámetros que se muestran en los cuadros 2.3 y 2.4.

Reactivos	3:1	6:1	Control	Control
Amortiguador 10X	5 µL	5 µL	5 µL	5 µL
pUC19 (HindIII + Pstl)	5 µL (50 ng)	5 µL (50 ng)	5 µL	5 µL
PCR-I (HindIII + Pstl)	3 µL (150 ng)	6 µL (300 ng)		
T4 DNA ligasa	1 U	1 U	1 U	
H ₂ 0	6 µL	3 µL	9 µL	10 µL
Volumen final	20 µL	20 µL	20 µL	20 µL

Cuadro 2.3 Condiciones para realizar la ligación pUC19 + PCR-I

Cuadro 2.4 Condiciones para realizar la ligación pUC19 + PCR-II

Reactivos	3:1	6:1	Control	Control
Amortiguador 10X	5 µL	5 µL	5 µL	5 µL
pUC19 (Sall + Xbal)	5 µL (50 ng)	5 µL (50 ng)	5 µL	5 µL
PCR-II (Sall + Xbal)	3 µL (150 ng)	6 µL (300 ng)		
T4 DNA ligasa	1 U	10	10	
H ₂ 0	6 µL	3 µL	9 µL	10 µL
Volumen final	20 µL	20 µL	20 µL	20 µL

Las ligaciones fueron incubadas a 4 °C durante toda la noche para posteriormente realizar la transformación de *E. coli.*

2.7 TRANSFORMACIÓN DE E. coli CON LOS PRODUCTOS DE LIGACIÓN

Para llevar a cabo la transformación de la cepa DH5 α de *E. coli* se prepararon placas con medio LB suplementado con 100 µg mL⁻¹ de ampicilina, a las cuales se les agregaron 47 µL de una mezcla total de 160 µL de un stock de X-gal a una concentración de 20 mg mL⁻¹ y 28 µL de un stock 0.1 M de IPTG, esto se hizo con la finalidad de seleccionar colonias blancas, en las cuales no se llevó a cabo la complementación α de la β -galactosidasa y

por tanto fueran posibles clonas positivas. Para realizar la transformación de *E. coli*, se descongelaron en hielo 100 μ L de células quimiocompetentes preparadas por el método de cloruro de rubidio, posteriormente se agregaron 10 μ L de la reacción de ligación.

La mezcla se incubó por 30 min, posteriormente las células se sometieron a un choque térmico (1 min a 42 °C) para rápidamente ser transferidas e incubadas en hielo durante 5 min. Posteriormente se adicionaron 900 μ L de medio LB líquido sin antibiótico y se incubó por 1.5 h a 37 °C con agitación a 150 rpm. Posteriormente se plaquearon 100 μ L del cultivo bacteriano en medio selectivo (con ampicilina), los restantes 900 μ L se centrifugaron durante 2 min a 13000 rpm, el precipitado resultante se resuspendió en 100 μ L de medio LB líquido sin antibióticos y también fue plaqueado. Por último se dejaron incubando a 37 °C toda la noche.

2.8 EXTRACCIÓN DE DNA DE PLÁSMIDO POR EL MÉTODO DE LISIS ALCALINA

Para la discriminación de las posibles clonas positivas con inserto se utilizó el método por coloración azul -blanco [complementación α en presencia de X-gal (Sanbrook y Russell, 2001)]. Como clonas positivas se seleccionaron colonias blancas, como control negativo o de religación del vector se tomó una colonia azul. Se extrajo el DNA plasmídico por el método de lisis alcalina como se describe a continuación: con un palillo de madera estéril se picaron las colonias seleccionadas con las que se inocularon 3 mL de medio LB líquido con 100 µg mL⁻¹ de ampicilina. Este cultivo se incubó toda la noche en un agitador orbital a 37 °C a 250 rpm, las células fueron colectadas centrifugando cada cultivo en un tubo eppendorf de 1.5 mL a 13000 rpm por 2 min a 4 °C, posteriormente se desechó el sobrenadante y el precipitado celular se resuspendió en 100 µL de la solución Birboim I (Sanbrook y Russell, 2001) [glucosa 50 mM, Tris (pH 8]) 25 mM, EDTA (pH 8) 10 mM] y se agitó vigorosamente en el vórtex, para después agregar 200 µL de la solución Birboim II (Sanbrook y Russell, 2001) [NaOH 0.2 M, SDS 1% (p/v)] agitando los tubos gentilmente. Posteriormente fueron agregados 150 µL de la solución Birboim III (Sanbrook y Russell, 2001) (acetato de potasio 5 M, ácido acético glacial, H₂O) a 4 °C. Las muestras fueron incubadas en hielo por 5 min, después se centrifugó la mezcla a 13000 rpm por 5 min a 4 °C. El sobrenadante fue transferido a un tubo nuevo en donde se precipitó el DNA adicionando un volumen de isopropanol a temperatura ambiente e incubando por 2 min,

por último el DNA fue colectado por centrifugación a 13000 rpm por 5 min a 4 °C, retirando el sobrenadante y lavando la pastilla con etanol al 70 %. Se dejó evaporar el etanol y la pastilla se resuspendió en 30 µl de TE 10:1 (Tris-EDTA) y se almacenó a -20 °C hasta su uso.

2.9 DIGESTIONES PARA VERIFICAR LA INSERCIÓN DE LOS INSERTOS

Para verificar la ligación de los insertos en pUC19 se realizaron digestiones. Para cada enzima se utilizó el amortiguador y las condiciones recomendadas por el fabricante (New England Biolabs). Las digestiones se llevaron a cabo en un volumen final de 15 µL con 1 U de enzima por µg de DNA, durante al menos 3 h y a la temperatura óptima de cada enzima de restricción

2.10 ELECTROFORESIS DEL DNA

Para visualizar los resultados de las extracciones de DNA de las posibles clonas transformadas y digestiones, se utilizaron geles de agarosa al 0.8% y 1 % en un volumen de 40 mL. Para hacer los geles se utilizó amortiguador TAE (Tris 2M, ácido acético glacial 1M, 100 mM de EDTA pH 8) al cual se le añadió bromuro de etidio a una concentración final de 10 µg/mL. Para correr la electroforesis se utilizó una cámara BIORAD minisubcell^{MR} aplicando 90 V durante 60 min. El resultado se visualizó en un fotodocumentador marca BIORAD^{MR}.

2.11 SECUENCIACIÓN

Los plásmidos seleccionados que contienen *rm16S-trn1* (pCBL-1) y *trnA-rm23S* (pCBL-3) se enviaron a secuenciar a Clemson University Genomics Institute (CUGI). La secuenciación se llevó a cabo según el método de Sanger *et al.*, 1977, utilizando BygDye en un sistema automático. Para ello se purificó DNA plasmídico de las clonas 3 y 9 de pCBL-1 y pCBL-3 respectivamente por el método de lisis alcalina y columnas de sílica de QIAGEN QIAprep^{MR} miniprep. Este DNA sirvió para realizar las reacciones de secuenciación que consistieron en 50 ng de DNA y 1pmol de oligonucleótidos en un volumen final de 3 µL.

2.12 ANÁLISIS DE SECUENCIAS

Para llevar a cabo los análisis *in silico* realizados en este trabajo se utilizó el software Sequencher® versión 4.1.4 (Gene Codes, USA). Las secuencias obtenidas de la región *rm16S-trn1-trnA-rm23S* de cedro rojo (*Cedrela odorata* L.) fueron comparadas con las secuencias que se encuentran en la base de datos del GenBank, utilizando la herramienta BLAST de nucleótidos (blastn). Los alineamientos múltiples entre secuencias se realizaron utilizando el software ClustalW (Tompson *et al.*, 1994).

BIBLIOGRAFIA

- Gregorio-Martínez. A. C. (2010). Aproximaciones biotecnológicas para la manipulación genética de caoba (*Swietenia macrophylla*) y primavera (*Tabebuia donell-smithii*). Tesis de licenciatura. Instituto Tecnológico Superior de Acayucan. 65 p.
- Rodríguez–López T. (2010). Clonación de regiones cloroplastídicas de cedro rojo (*Cedrela odorata* L.) para la elaboración de vectores de clonación. Tesis de licenciatura. Instituto Tecnológico Superior de Acayucan. México. 53 p.
- Sambrook, J. and Russell, D.S. (2001). Molecular cloning. A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Tork.
- Sanger F., Nicklen S and Coulson A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74(12): 5463–5467.
- Sequencher® version 4.1.4 Sequence Analysis Software, Gene Codes Corporation, Ann Arbor, MI USA http://www.genecodes.com
- Thompson J.D., Higgins D.G., Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22 (22):4673-80.
- Zhang Z., Schwartz S., Wagner L. and Miller W. (2000). "A greedy algorithm for aligning DNA sequences", J Comput Biol; 7(1-2):203-14.

CAPÍTULO III RESULTADOS

3.1 DISEÑO DE OLIGONUCLEÓTIDOS

Dado que la secuencia del cloroplasto de cedro rojo no se encuentra reportada, se obtuvieron secuencias homólogas de la región de interés en especies filogenéticamente cercanas. Tales secuencias fueron alineadas para poder diseñar oligonucleótidos que sirvieron para amplificar la región *rrn16S-trn1* y *trnA-23S* de cedro rojo. Para el análisis se tomó como referencia un segmento de ~ 923 pb que se obtuvo de la secuenciación de un fragmento de la región *rrn23S* de roble (Gregorio–Martínez, 2010). Se decidió utilizar esta secuencia por ser de una especie arbórea originaria de América y encontrase distribuida geográficamente igual a cedro rojo. Tomando esta secuencia como base se procedió a realizar un BLAST de nucleótidos (blastn) (Zhang *et al.*, 2000) en la base de datos del GeneBank, seleccionando las 10 especies que mostraron el puntaje más alto (score) y el mayor porcentaje de identidad con la secuencia de roble, las especies seleccionadas se presentan en el cuadro 3.1.

Cuadro 3.1 Especies utilizadas para realizar el alineamiento y diseño de los oligonucleótidos usados en este trabajo.

Especie	Número de	Score	Score	Cobertura	Identidad
	Accesión	Máximo	total	1.2.2	
Olea europaea	GU228899.1	1652	3304	99%	99%
Daucus carota	DQ898156.1	1600	3200	98%	98%
Lactuca sativa	DQ383816.1	1600	3200	99%	98%
Eucalyptus globulus	AY780259.1	1600	3200	99%	98%
Coffea arabica	EF044213.1	1594	3189	99%	98%
Jatropha curcas	FJ695500.1	1589	3178	99%	98%
N. tabacum	Z00044.2	1589	3178	99%	98%
Morus indica	DQ226511.1	1583	3167	99%	98%
Populus trichocarpa	EF489041.1	1572	3145	99%	98%
Pupulus alba	AP008956.1	1572	3145	99%	98%

. 3

Posteriormente se delimitó en cada una de estas especies la secuencia de la región *rm16S-trnl-trnA-rm23S*, con la cual se hizo un alineamiento utilizando el software Sequencher® versión 4.1.4 (Gene Codes, USA). Como resultado del alineamiento se obtuvo que solo 8 de las 10 secuencias alineaban entre sí, siendo *N. tabacum* y *Daucus carota* las especies que no alinearon. Para el diseño de los oligonucleótidos, solo se utilizaron las 8 secuencias que si alinearon, se seleccionaron secuencias de 18-20 nucleótidos con un 100 % de identidad que se encontraban flanqueando las regiones de interés, con un contenido de GC de 55–65%, evitando que hubiese interacción entre ellas mismas y que se hicieran bucles. Se comprobó que los oligonucleótidos tuvieran una Tm en el rango de 58 a 60 °C [calculada utilizando el algoritmo de "Nearest Neighbor" (Breslauer *et al.*, 1986)], los parámetros utilizados para hacer el cálculo fueron a una con contracción de sal de 50 mM y una concentración de DNA de 200 pM.

En la figura 3.1 se muestra parte del alineamiento y la región a partir de la cual se diseñaron los oligonucleótidos CBL-1 a CBL-4. De este mismo alineamiento se diseñaron los demás oligonucleótidos reportados en el cuadro 3.2.

a)

105_235_Populus_star 105_235_Populus_star 105_235_Populus_tence 105_235_Evolyptus_ 105_235_Evolyptus_ 105_235_Evolyptus_ 105_235_Lotence_ses 105_235_Lotence_ses	CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIAGIIGGACCGIA CAATIRGIIGGACCGEA	GGIGCGAIGATITACII GGIGCGAIGATITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII 70 2780 GGIGCGAIGAIITACII	CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC 2790 228 CACGGGCGAGGIC	ICIGGII AGI ICIGGII AI ICIGGII AGI ICIGGII AGI ICIGGII AGI ICIGGII AGI ICIGGII AGI ICIGGII	CC/GG2 UTC CCAGGATGGCCC/ CCAGGATGGCCC CCAGGTGGCCC/ CCAGGTGGCC/ CCAGGTGGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGC/ CCAGGTGCC/ CCAGGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGC/ CCAGGTGC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGCC/ CCAGGTGC/ CCAGT	CTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC CTGCGCC		
105_235_Populus_star 105_235_Coffee_urab 105_235_Coffee_urab 105_235_Populus_tricr 105_235_Eucetyptes_ 105_235_Licrosyntes_ 105_235_Licrosyntes_urab 105_235_Licrosyntes_curab	CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGAA CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIAGIIGGACCGIA	GGIGCGAIGAIITACII GGIGCGAYGAIITACII GGIGCGAYGAIITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII GGIGCGAIGAIITACII	CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC	ICIGGII AGI ICIGGII I ICIGGII I ICIGGII AGI ICIGGII AGI ICIGGII 700	CCXGGX GGCCCC CCXGGXIGGCCCC CCXGGXIGGCCC CCXGGXIGGCCC CCXGG GGCCC CCXGG GGCCC CCXGG GGCCC CCXGG GGCCC	GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC		
105_235_Populus_stor 105_235_Coffee_arab 105_235_Coffee_arab 105_235_Populus_tricr 105_235_Evostyptus_ 105_235_Honus_indics 105_235_Honus_indics 105_235_Loctuce_sate	CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA CAATIGGIIGGACCGA CAATIGGIIGGACCGIA WB CAATIGGIIGGACCGIA	GGTGCGATGATTTACTT GGTGCGAYGATTTACTT GGTGCGATGATTTACTT GGTGCGATGATTTACTT GGTGCGATGATTTACTT	CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC	ICIGGII ANGI ICIGGII II ICIGGII II ICIGGII AGI ICIGGII AIGI	CCXGGX DGGCC CCXGGX TGGCCC CCXGGX TGGCCC CCXGGX TGGCCC CCXGG TGGCCC	CTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC		
105_235_Populus_stor 105_235_Coffee_arab 105_235_Populus_thic 105_235_Evostyptus_ 105_235_Evostyptus_ 105_235_Evostyptus_	CAAIIGGIIGGACCGIA CAAIIGGIIGGACCGIA CAAIIGGIIGGACCGGA CAAIIGGIIGGACCGGA	GGIGCGAIGAIIIACII GGIGCGAIGAIIIACII GGIGCGAIGAIIIACII GGIGCGAIGAIIIACII	CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC	ICIGGII CAGI ICIGGII ICIGGII CAGI ICIGGII CAGI	CC2662 TGGCCC2 CCAGGATGGCCC2 CCAGGATGGCCC CCAGG2 TGGCCC	GCTGCGCC GCTGCGCC GCTGCGCC GCTGCGCC		
105_235_Populus_alba 105_235_Coffee_anab 105_235_Coffee_anab 105_235_Populus_trice 105_235_Eucetyptus_	CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA P CAATIGGIIGGACCGGA	GGIGCGAIGAIIIACII GGIGCGAIGAIIIACII GGIGCGAIGAIIIACII	CACGGGCGAGGIC CACGGGCGAGGIC CACGGGCGAGGIC	ICIGGII - LGI ICIGGII ICIGGII	CCIGGITEGCCCI CCAGGATGGCCCI CCAGGATGGCCCI	GCTGCGCC GCTGCGCC GCTGCGCC		
 165_235_Populus_albi 165_235_Colfee_arab 165_235_Colfee_arab 165_235_Populus_mon 	CAATIGGIIGGACCGIA CAATIGGIIGGACCGIA	GGIGCGAIGATITACII GGIGCGAIGATITACII	CACGGGCGAGGTC CACGGGCGAGGTC	ICIGGII AGI	CCIGSITOSCES CCRGGRIGGECCI	GCTGCGCC		
105_235_Populus_site	CAATIGGTIGGACCGTA	GGIGCGAIGATITACII	CACGGGGGGAGGTC	ICIGGIIERAGE	CCIGGIICECCE	GCTGCGCC		
165_235_Populus_alba								
	CAATIGGITGGACCGTA	GGIGCGATGATTTACTT	CACGGGCGAGGTC	TCIGGIT		GCTGCGC		
165_235_Olea_duropa	CAATIGGTIGGACCGTA	GGIGCGAIGATITACTI	CACGGGCGAGGTC	TCIGGII	CCAGGATEST	GCTGCGC		
0)				CBL-1				
consensus bases selected	CAAGICOGACOGGAAGIGOIGII	0 190 100 ICCASIGSCGGACGGGIGAGI	AACGCGTA	1120 113 GGA GGA	0 1140 ACAACAGCIGGAAAC	GGCIGCIAAI		
Diff for house \$ 15				Trans. Inc.		L.c.		
106_235_Jacopte_curcus	CAAGICGGACGGGAAGIGGIGII	TCCASTGGCGGACGGGTGAGT.	AACGCGTA	GGA GGA	ACARCAGCIGGAAAC	GGCIGCIAN		
105_235_Lecture_sative	CANGICGGACGGGAAGIGGTGIII	ICCAGIGGCGGACGGGTGAGI	AACGCGTA	GER THERE GGA.	ACAACAGCTGGAAAC	GGCIGCIAAI		
165_235_Norus_rdca	CAAGICGGACGGGAAGIGGIGIII	ICCAGIGGCGGACGGGIGAGI	AACGCGTA	GCELLIGS SHED GGA	ACAACAGCIGGAAAC	GGCIGCTAAL		
105_235_Eucatypus_g	CAAGICGGACGGGAAGIGGIGII	ICCLEIGECGEACGEGIGLEI	AACGCGTA	ICCE III - IGGA	ACAACAGCTGGAAAC	GGCIGCTAAL		
	CANGI COGNEGOGANGI GGIGIII.	ICCAGIGGCGGACGGGIGAGI)	AACGCGTA BODGO	CCC TAL NE GGA	ACAACAGCTGGAAAC	GGCIGCIAA		
THE 238 Populus mood			NUCLES AND	GGGA EGGA	ACRESCIOS AND	ddeldelan.		
105_235_Coffes_arabes	CAAGTEGGAEGGGAAGIGGIGIT	ICCASISSCEGACESEISASI	LCGCGTA	and the second second second	101101007001110			
105_235_Populus_sites 105_235_Coffee_states 105_238_Populus_trate	CANSTEGGAEGGGAAGIGGIGII Cangteggaeggaagiggigii	ICCAGIGGCGGACGGGIGAGI ICCAGIGGCGGACGGGIGAGI	AACGCGTA	CONTRACTORS.	ACAACAGCTGGAAAC	GGCIGCIAA		
105 235 Oles europass	TGACTACTICATG	CATECTCCAC	TIGGCTCGG	SSCATATAGE	ICLOITGGT	ON SCIECCECT	CTIGCAATTG	GGTCGTT
---	--	--	---	---	--	--	--	--
105_235_Populus_alba	TGACTCCTTCATA	CATGCTCCAG	TIGGCICGG	SSG ATATAGC	TCAGTIGGT	SASCICCGCT	CTTGCAATTG	GGTCGTT
105 235 Colles arabica	TGACTACTICATG	CATECTCCAC	TCGGCTCIG	SEEL CATAGO	TCAGTTGGT	E E I CCGCC	CTTGCAATTG	GGTCGTT
105 235 Populus those	TGACTCCITCATA	CATGCICCA	TIGGCTCGG	SES TATAGO	TCASTIGGI	TCCGCT	CTIGCAATIG	GGTCGTT
105 235 Eucelyptus gl	TGACICCTICATO	CATGCICCAO	TIGGCTCGG	GEGETATAGC	TCAGTIGGTA	TECCOT	CITGCAATIG	GGTCGTT
2 105 235 Manus Indica	TGACTICITATG	CATGCTCCA	TIGGCICGG	GGGITATAGC	TCAGINGGT	EL COTCCOCT	CITECANTE	GGTCGTT
165 235 Lactoca saliva	TGACTCCTTCATG	CATGCTCCA	TTGGCTCGG	6351515166	<u>ar sansa</u> .	ELECTCCGCT	CITECANITE	GGICGII
0 200 frag hasas \$ 25		Laura		laur	1	-	Inne	
consensus bases selected	12870		12890	2900	TEAGTTGETA	2920	2930	12940 GGTCGTT
at consensus position 2,897	I GAGI ACTI LATA	CAIGCICCA	110001000	COLUMN AND	CACILOGI	and to the t	CI'SCAR'	0616011
				-				
)								
-								
105_235_01es_europaes	CAGGGGAGCCGGCG	ACCGAAGCC	CCGGTGAACG	GCGGCCGTAAC	THACGGTC	CTAAGGT	AARITCOIT	GICGGGI
185_235_01es_europaes 185_235_Populus_abs	CAGGGGAGCCGGCG CAGGGGAGCCGGCG		CCGGTGAACGO	GCGGCCGTAAC GCGGCCGTAAC	T TAACGGTC	CIAAGGT	AAAIICCII AAAIICCII	GICGGGT GICGGGT
105_235_Oles_europaea 105_233_Populus_abs 105_233_Coffea_arabica 105_235_Coffea_arabica 105_235_Populus_abs	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC	CTAAGGT SI CTAAGGTAGG CTAAGGT SI CTAAGGTAGG	RAAIICCIT RAAIICCIT RAAIICCIT RAAIICCII	GICGGGI GICGGGI GICGGGI GICGGGI
105_235_01es_europaea 105_235_Populus_aba 105_235_Coffes_arabica 105_235_Coffes_arabica 105_235_Populus_trooc 105_235_Eucelyptus_pl	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGCGCG CAGGGGAGCCGCGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGTGAACG CCGGTGAACG CCGGTGAACG CCGGTGAACG CCGGTGAACG	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC	CTAAGGI CTAAGGIAGG CTAAGGIAGG CTAAGGIAGG CTAAGGIAGG	RAAIICCII RAAIICCII RAAIICCII RAAIICCII RAAIICCII	GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
165_235_Oles_europaea 166_235_Populus_aba 165_235_Coffes_arabica 105_235_Coffes_arabica 105_235_Populus_trooc 105_235_Eucelyptes_gi 105_235_Landyptes_gi 105_235_Landyptes_gi	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO	GCGGCCGIAAC GCGGCCGIAAC GCGGCCGIAAC GCGGCCGIAAC GCGGCCGIAAC GCGGCCGIAAC	T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC T TAACGGIC	CIANGGING CIANGGING CIANGGING CIANGGING CIANGGING CIANGGING CIANGGING	AAAIICCIT AAAIICCIT AAAIICCIT AAAIICCIT AAAIICCIT AAAIICCIT	GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
165_235_Oles_europaea 166_235_Populus_abe 105_235_Coffes_arabica 105_235_Coffes_arabica 105_235_Populus_troco 105_235_Eucelyptes_gi 105_235_Sucelyptes_gi 105_235_Lactura_store	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC I AACGGIC T TAACGGIC	CTANGGT 421 CTANGGIAGK CTANGGIAGK CTANGGIAGK CTANGGIAGG CTANGGIAGG	AAAIICCII AAAIICCII GAAIICCII GAAIICCII GAAIICCII GAAIICCII	GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
165_235_Oles_europaea 21 165_235_Populus_abe 21 105_235_Coffse_arabica 21 105_235_Populus_troco 21 105_235_Populus_troco 21 105_235_Eucetyphes_pi 21 105_235_Monus_indica 21 105_235_Lactuce_seturcas 21 105_235_Lactuce_seturcas	CREEGERECCEECE CREEGERECCEECE CREEGERECCEECE CREEGERECCEECE CREEGERECCEECE CREEGERECCEECE CREEGERECCEECE	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC I TAACGGIC	CIARGET 22 CIARGETAGE CIARGETAGE CIARGETAGE CIARGETAGE CIARGETAGE CIARGETAGE	AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII	GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
 185_235_Oles_europaea 185_235_Populus_abe 185_235_Coffee_arabica 185_235_Populus_trooc 185_235_Eucetyptes_gi 185_235_Nonus_mdica 185_235_Lactuce_tabiva 186_235_Labropha_curcas 	CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO CREGERECCEGCO	ACCGAAGCC GACCGAAGCC GACCGAAGCC GACCGAAGCC GACCGAAGCC GACCGAAGCC GACCGAAGCC	CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	T TAACGGTC T TAACGGTC T TAACGGTC T TAACGGTC T TAACGGTC T TAACGGTC T TAACGGTC	CTANGGT/22 CTANGGT/22 CTANGGT/22 CTANGGT/25 CTANGGT/25 CTANGGT/25 CTANGGT/25 CTANGGT/25	ANAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII AAAIICCII	GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
 185_233_Oles_europaea 165_233_Populus_abe 165_233_Populus_arabica 165_233_Populus_troco 165_235_Eucelyphes_gi 165_235_Monus_indica 165_235_Lactuce_setva 165_235_Latropha_curcas 160_frag_bases 4.20 consensus bases selected 	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO CCGGTGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC	CIARGGI 22 CIARGGIAGO CIARGGIAGO CIARGGIAGO CIARGGIAGO CIARGGIAGO CIARGGIAGO		GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI
105_235_Otea_europaea 105_235_Populus_abe 105_235_Coffea_europaea 105_235_Populus_troco 105_235_Eucelyphe.gi 105_235_Monus_indice 105_235_Monus_indice 105_235_Labropha_curcas 106_235_Labropha_curcas 106_735_Labropha_curcas 100 frag_bases 4.20 consensus bases selected st consensus bases for 5,911	CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG CAGGGGAGCCGGCG	ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC ACCGAAGCC	CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO CCGGIGAACGO	GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC GCGGCCGTAAC	TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC TAACGGTC	CTARGGT/22 CTARGGT/25 CTARGGT/25 CTARGGT/50 CTARGGT/50 CTARGGT/50 CTARGGT/50 CTARGGT/50		GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI GICGGGI

c)

Figura 3.1 Alineamientos de la región *rrn16S-trn1-trnA-rrn23S* del plastoma de 8 especies vegetales utilizados para el diseño de los oligonucleótidos del Cuadro 3.2. a) y b) corresponden a las secuencias flanqueantes de la región *rrn16S-trn1* [sentido (CBL-1) y antisentido (CBL-2)] respectivamente. c y d) secuencia flanqueantes de la región *trnA-rrn23S* CBL-3 y CBL-4 (sentido y antisentido respectivamente).

61

Cuadro	3.2	Oligo	nucleótido	s para	amplificar	la	region	rrn1	6S-trnl	y t	rnA	-rrn23	S de	C.	odorata L	-

Oligo.	Secuencia y características	TM °C	Amplicón
CBL-1	5 [°] <u>aaagctt</u> AGAACCTGCCCTTGGGAGG 3 [°] FW-rrn16S (introduce un sitio <i>HindIII</i>)	61.6	~ 2700 pb Según la
CBL-2	5 [°] <u>ctgcagcggccgc</u> TGGGCCATCCTGGACTTG 3' RV–trnl (introduce un sitio <i>Pstl</i> y <i>Notl</i>)	58.4	secuencia de O. europaea
CBL-3	5' <u>gtcgacgcggccgc</u> GGGGATATAGCTCAGTTGGTAGAGC 3' FW-trnA (introduce un sitio Sall y Not/)	67.4	~ 3000 pb Según la
CBL-4	5' <u>tctaga</u> CGCTACCTTAGGACCGTTAT 3' RV-rrn23S (introduce un sitio Xba/)	58.4	secuencia de O. europaea
CBL-5	5' CCAGCTCCCATAGTGTGAC 3' RV interno de la región rm16S-trnl	59.5	~ 1300 pb
CBL-6	5' ATCGCTAGTAATCGCCGGTC 3' FW interno de la región rrn16S-trnl	60.5	~ 1400 pb
CBL-7	5' GGTCCTTGCTGATTCACAC 3' RV interno de la región <i>trnA</i> -23S	57.3	~ 1300 pb
CBL-8	5' CTCTGACCCGAGTAGCATG 3' FW interno de la región <i>trnA</i> –23S	59.5	~ 1700 pb
CBL-9	5' GGGCGAGGTCTCTGGTTC 3' FW extremo final del gen <i>trni</i>	60.7	~ 1049 pb
CBL-10	5' GCCGACTACCTTGGTGATC 3' RV extremo final del gen aadA del casete de expresión	59.5	

* TM calculada mediante el algoritmo de "Nearest Neighbor" (Breslauer et al., 1986)

3.2 ANÁLISIS DE RESTRICCIÓN DE LA REGIÓN rrn16S-trnl-trnA-rrn23S

Como era necesario adicionar sitios de restricción (a los oligonucleótidos) para poder clonar los fragmentos de PCR en el vector pUC19. Se realizó un análisis de restricción *in silico* a la secuencia consenso obtenida del alineamiento mostrado en la figura 3.1 Con base en el análisis *in silico* se seleccionaron 5 enzimas de restricción que no cortaban la región *rrn16S–trn1–trnA–rrn23S* (*Not1, Pst1, Sal1, Xbal* y *Stu1*), a su vez, se seleccionaron las enzimas *Hind111* y *Sph1*, que de acuerdo al análisis deberían cortar la secuencia pero no interferír con la clonación de los productos de PCR-I y PCR-II. Se utilizó *Hind111* para clonar la región *rrn16S–trn16–trn1* en el vector pUC19.

Para comprobar que los sitios de restricción seleccionados del análisis *in silico* realmente funcionarían para clonar la región *rrn16S_trn1_trnA_rrn23S*, se realizó la digestión del amplicón de 5.7 Kb de cedro, generado con los oligos 16S-F 5' ACGGGTGAGTAACGCGTAAG 3' e IRB23S 5' CGCTACCTTAGGACCGTTATAGTTAC

3' dirigidos contra tabaco, con las enzimas mencionadas. El resultado obtenido se muestra en la figura 3.2.

Figura 3.2 Digestión del amplicón de la región *rrn16S-trn1-trnA-rrn23S* de cedro rojo con las enzimas de restricción seleccionadas del análisis *in silico*. S/D, amplicón de 5.7 Kb sin digerir, cada carril corresponde a la digestión con una enzima de restricción. M, marcador de peso molecular 1 Kb (invitrogene).

Como se puede observar en la figura 3.2, la región rm16S-trnl-trnA-rm23S de cedro sin digerir (S/D) es de ~ 5.7 Kb (Rodríguez–López, 2010). Cuando se digirió con *Hindlll* se observó una disminución en el tamaño del fragmento original (~ 5.7 Kb) obteniéndose una banda de ~ 4500 pb, lo que coincide con el análisis *in silico*. Cuando se digirió con *Sphl* se obtuvo el resultado esperado, es decir, dos bandas de ~ 3000 pb y 2700 pb. Adicionalmente, se esperaba que las enzimas *Notl, Pstl, Sall, Xbal, Stul* no cortaran la secuencia, esto basado en el análisis realizado utilizando el alineamiento de la sección anterior. Como se observa en la figura 3.2, cuando se digirió con estas enzimas se obtuvo que el producto de PCR no se corta con ninguna de esas enzimas indicando que la región rm16S-trnl-trnA-rm23S de cedro rojo, no contiene estos sitios de restricción lo cual coincidió con los análisis *in silico*. Estos resultados sugirieron que estas enzimas de restricción podían ser utilizadas en el diseño de los oligonucleótidos mostrados en el cuadro 3.2.

a)

3.3 SECUENCIA rrn16S-trn1 De CEDRO ROJO CLONADO EN pUC19 (pCBL-1)

Para amplificar la región *rm16S-trn1* de cedro rojo se realizó la PCR-I utilizando el par de oligonucleótidos CBL-1/CBL-2 (cuadro 3.2). El resultado del PCR-I se muestra en la figura 3.3 a.

Figura 3.3 Análisis electroforético del amplicón *rrn16S-trn1* de cedro rojo. a) producto de PCR-I utilizando los oligonucleótidos CBL-1/CBL-2; b) carril 1, PCR-I reamplificado; carril 2, PCR utilizando los oligonucleótidos CBL-1/CBL-5 y como templado DNA del PCR-I; carril 3, PCR utilizando los oligonucleótidos CBL-1/CBL-5 y como templado DNA de cloroplasto de Cedro rojo; carril 4, PCR obtenido con los oligonucleótidos CBL-2/CBL-6 y DNA del PCR-I como templado; carril 5, PCR obtenido con los oligonucleótidos CBL-2 – CBL-6 y DNA de cloroplasto de Cedro rojo como templado; carril 6, control negativo; carril 7, control del templado (misma cantidad de DNA utilizado como templado). M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

Como resultado se obtuvo un amplicón de ~ 2700 pb, (figura 3.3 a), que corresponde al tamaño observado *in silico* en olivo (*O. europaea*) especie con la que se obtuvo mayor identidad en la secuencia de la región *rrn16S-trn1* con roble. Con la intención de verificar que los oligonucleótidos internos, diseñados a partir del alineamiento de las secuencias más cercanas al fragmento *rrn23S* de roble, amplificaran los fragmentos esperados en cedro y pudieran ser utilizados en pasos subsecuentes, se reamplificó utilizando como templado DNA del fragmento del PCR-I (*rrn16S-trn1*). Para realizar la reamplificación se utilizaron las combinaciones de oligonucleótidos CBL-1/CBL-5 y CBL-2/CBL-6 teniendo como control DNA de cloroplasto de cedro rojo. Como se puede observar en la figura 3.3 b, el producto de PCR-I pudo ser reamplificado con los oligonucleótidos CBL-1/CBL-2, se observó una banda tenue de ~ 2700 pb que corresponde al tamaño esperado (carril 1), con lo cual se corroboró que el amplicón obtenido inicialmente, efectivamente corresponde a la región *rrn16S-trn1*. Por otro lado, utilizando los oligonucleótidos CBL-

1/CBL-5 (carril 2) y CBL-2/CBL-6 (carril 4), se obtuvieron los fragmentos de los tamaños esperados, de ~ 1300 pb y ~ 1400 pb respectivamente, aunque el fragmento obtenido con los oligonucleótidos CBL-2/CBL-6 es mayor de ~ 1500 pb, esto puede deberse a que en cedro esta región es de un tamaño mayor. Cuando se utiliza como templado el DNA de cloroplasto de cedro, se obtiene el mismo número de bandas de tamaños equivalentes, con lo cual se concluyó que el fragmento obtenido correspondía a la región *rrn16S-trnl* de cedro rojo.

Para obtener pCBL-1 el vector pUC19 fue digerido con las enzimas *HindIII* y *PstI* mismas con las que fue digerido el fragmento de PCR-I correspondiente a la región del cloroplasto de cedro rrn*16S-tmI* (figura 3.4). Tanto el vector como el inserto fueron purificados y se preparó una reacción de ligación en una relación 3:1 inserto-vector. Se obtuvieron colonias que fueron analizadas por restricción con las enzimas *XbaI, BamHI y AatII. XbaI* lineariza el plásmido generando una banda de ~ 5387 pb; *BamHI* produce tres bandas de ~ 4218 pb, 791 pb y 378 pb, con *AatII* dos bandas de ~ 3203 pb y 2184 pb. Como se observa en la figura 3.5, al digerir la clona 3 se obtuvieron los patrones de restricción esperados por lo cual dicha clona era positiva.

Figura 3.4 Preparación de inserto y vector para pCBL-1. Carril 1, vector pUC19 sin digerir; carril 2, vector pUC19 digerido con *HindIII* y *PstI*; carril 3, PCR-I digerido con *HindIII* y *PstI*. M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene)

3.4 CLONACIÓN DE LA SECUENCIA trnA-rrn23S pCBL-3

Se amplificó la región *tmA*-rrn23S (PCR-II) de cedro rojo con los oligonucleótidos CBL-3/CBL-4 (cuadro 3.2), con un amplicón esperado de ~ 3000 pb (figura 3.6 a) de acuerdo a la secuencia de *Olea europaea*.

Figura 3.6 Análisis electroforético de la región *trnA-rrn23S* de cloroplasto de cedro rojo. a) carril 1, producto de PCR-II utilizando los oligonucleótidos CBL-3/CBL-4, b) carril 1, PCR-II reamplificado; carril 2, PCR utilizando los oligonucleótidos CBL-3/CBL-7 y como templado DNA del PCR-II; carril 3, PCR utilizando los oligonucleótidos CBL-3/CBL-7 y como templado cpDNA de cedro rojo; carril 4, PCR obtenido con CBL-8/ CBL-4 y DNA utilizando como templado el PCR-II; carril 5, PCR obtenido CBL-8/CBL-4 y DNA de cloroplasto de cedro rojo como templado; carril 6, control negativo y carril 7, control del templado (misma cantidad de DNA utilizado como templado). M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

Como resultado se obtuvo el amplicón esperado de ~ 3000 pb (figura 3.6 a). Al igual que la clona anterior se reamplificó el PCR-II utilizando los oligonucleótidos CBL-3/CBL-4, y para verificar que los oligonucleótidos internos fueran funcionales se probaron las combinaciones de oligonucleótidos CBL-3/CBL-7 y CBL-8/CBL-4 empleando como control DNA de cloroplasto de cedro rojo. Como se puede observar en la figura 3.6 b, al utilizar los oligonucleótidos CBL-3/CBL-4 para reamplificar el PCR-II, se observa una banda tenue de ~3000 pb (carril 1), con lo cual se corroboró que el amplicón obtenido inicialmente, efectivamente corresponde a la región *trnA-rrn23S*. Por otro lado, utilizando

los oligonucleótidos CBL-3/CBL-7 (carril 2) y CBL-8/CBL-4 (carril 4), se obtuvieron dos fragmentos de ~ 1400 pb y ~ 1600 pb respectivamente, que corresponden a los tamaños esperados. Cuando se utilizó como templado el DNA de cloroplasto de cedro, se obtuvo el mismo número de bandas de tamaños equivalentes, con lo cual podemos concluir que el PCR-II corresponde a la región *trnA-rrn23S* de cedro rojo.

Se digirieron el vector pUC19 y el PCR-II con las enzimas Sall y Xbal, posteriormente para verificar las digestiones se corrió un gel de agarosa al 0.8% (figura 3.7).

Figura 3.7 Purificación de la digestión con *Sall* y *Xbal* de pUC19 y PCR-II. Carril 1, vector pUC19 sin digerir; carril 2, vector pUC19 digerido con *Sall* y *Xbal*; Carril 3, PCR-II digerido con *Sall* y *Xbal*. M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

Con los productos de digestión purificados se realizó una ligación en una relación 3:1 de inserto y vector, el producto de la ligación sirvió para transformar células competentes de *E. coli*. Dos colonias fueron seleccionadas para ver la presencia del inserto mediante digestión. *Ncol* debía generar dos bandas, de ~ 4895 pb y 782 pb, *Hindll1* tres bandas (~ 3627 pb, 1779 pb y 271 pb) y *BamHI* una banda de ~ 5677 pb. Como se observa (figura 3.8 b) al digerir la clona 9 se obtuvieron los patrones de restricción esperados. Con *Ncol* (carril 1) se obtuvieron dos bandas del tamaño esperado (~ 4895 pb y 782 pb), el patrón de restricción con *Hindll1* (carril 2) también correspondió a lo esperado (tres bandas de ~ 3627 pb, 1779 pb y 271 pb), sin embargo, con *BamHI* (carril 3) se observó un resultado distinto a lo esperado. Como se observa en la figura se obtuvieron 3 bandas de ~ 2980

pb, 2350 pb y 390 pb, aunque la clona pCBL-3 cl:9 no se descartó por esta razón, porque posiblemente en la secuencia de cedro rojo esté presente más de un sitio *BamHI*. Recordando que se partió de la secuencia de olivo para realizar los análisis *in silico*, esta clona se envió a secuenciar.

23

Figura 3.8 Análisis de restricción de pCBL-3. a) diagrama de pCBL-3 y b) análisis de restricción; carril 1, pCBL-3 mas *Ncol*; carril 2, pCBL-3 mas *HindIII*; carril 3, pCBL-3 mas *BamHI*. M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

3.5 SECUENCIACIÓN DE LA REGIÓN rrn16S-trnl-trnA-rrn23S DE CEDRO ROJO

Para secuenciar la región *rm16S-trnl-trnA-rrn23S* de cedro rojo en principio se utilizaron los oligonucleótidos universal y reverso en conjunto con los oligonucleótidos internos CBL-5, 6, 7 y 8. Sin embargo, debido a que el tamaño de la secuencia es muy larga, estas primeras reacciones de secuenciación nos permitieron tener lecturas de fragmentos de ~ 800 pb, dichas secuencias fueron utilizadas para diseñar nuevos oligonucleótidos que nos permitieran secuenciar la región completa. Los oligonucleótidos utilizados para la secuenciación se muestran en el cuadro 3.3.

Reacción	Oligo.	Sentido	Secuencia	Tm °C*	Tamaño pb
M1Uni	Universal	Fw	5' CGCCAGGGTTTTCCCAGTCACGAC 3'	70.4	24
M1Rev	Reverso	Rev	5' AGCGGATAACAATTTCACACAGGA 3'	61.8	24
M1P5	CBL-5	Rev	5' CCAGCTCCCATAGTGTGAC 3'	59.5	19
M1P6	CBL-6	Fw	5' ATCGCTAGTAATCGCCGGTC 3'	60.5	20
M3Uni	Universal	Fw	5' CGCCAGGGTTTTCCCAGTCACGAC 3'	70.4	24
M3Rev	Reverso	Rev	5' AGCGGATAACAATTTCACACAGGA 3'	61.8	24
M3P7	CBL-7	Rev	5' GGTCCTTGCTGATTCACAC 3'	57.3	19
M3P8	CBL-8	Fw	5' CTCTGACCCGAGTAGCATG 3'	59.5	19
M1P27	CBL-27	Rev	5' TTCCCTCTGCCCCTACCG 3'	60.7	18
M1P28	CBL-28	Fw	5' ACCCTCGTGCTTAGTTGCCA 3'	60.5	20
M1P29	CBL-29	Fw	5' GAGCACAGGTTTAGGTTCGG 3'	60.5	20
M3P30	CBL-30	Rev	5' TTCCACTTATTGAGCAGGGT 3'	56.4	20
M3P31	CBL-31	Fw	5' GGATGTCAGCGGTTCGAGT 3'	59.5	19
M3P32	CBL-32	Rev	5' CATTTCACCCCTAACCACAA 3'	56.4	20
M3P33	CBL-33	FW	5' GAGGGACGGAGGAGGCTA 3'	60.7	18

Cuadro 3.3 Oligonucleótidos para secuenciar la región rnn16S-trnl-trnA-rrn23S de C. odorata L.

* Tm calculada mediante el algoritmo de "Nearest Neighbor" (Breslauer et al., 1986)

3.6 SECUENCIACIÓN DE LA REGIÓN rrn16S-trnl DE CEDRO ROJO EN pCBL-1

La secuenciación de pCBL-1 se realizó como se describe en la sección 2.11 de materiales y métodos, los oligonucleótidos utilizados para secuenciar en sentido fueron: reverso, CBL-28, CBL-6, CBL-29; y antisentido: universal, CBL-5 y CBL-27. Los oligonucleótidos se encuentran distribuidos a lo largo de la secuencia *rrn16S-trn1* como se muestra en la figura 3.9.

Figura 3.9 Estrategia utilizada para secuenciar la región *rrn16S-trn1* (pCBL-1). Forma en que se utilizaron los oligonucleótidos para amplificar el *rrn16S-trn1* de cedro rojo.

Como resultado de la secuenciación se obtuvieron fragmentos de secuencias que oscilaban entre ~ 800 pb y 950 pb. Para ensamblar la secuencia completa se realizaron alineamientos entre las regiones secuenciadas en sentido y antisentido, para ello se utilizó el software Sequencher® versión 4.1.4 (Gene Codes, USA). En la figura 3.10 se muestra el alineamiento, en el cual se observa un tamaño de secuencia total de ~2858 pb, sin embargo, posteriormente se eliminaron partes del vector pUC19 y sitios de restricción que se habían adicionado. Después de depurar las secuencias se obtuvo que la región *rm16S-trn1* en cedro rojo es de ~ 2706 pb (anexo 1) aproximándose al tamaño de la secuencia de olivo, que fue la especie que dio el porcentaje de identidad más alto (99%) con respecto a la secuencia de roble.

Figura 3.10 Alineamiento de las secuencias obtenidas en sentido y antisentido para ensamblar la región completa *rrn16S-trn1* de cedro rojo. Las flechas verdes representan secuencias obtenidas en sentido y las rojas en antisentido.

3.7 SECUENCIACIÓN DE LA REGIÓN *trnA-rrn23*S DE CEDRO ROJO EN pCBL-3

La secuenciación de pCBL-3 se realizó de igual manera que pCBL-1, la posición de los oligonucleótidos utilizados en sentido y antisentido se muestran en la figura 3.11.

Figura 3.11 Estrategia para secuenciar la región *trnA-rrn23*S clonada en pCBL-3. Se utilizaron los oligonucleótidos para secuenciar en sentido: reverso, CBL-31, CBL-8, CBL-33; antisentido: universal, CBL-32, CBL-7, CBL-30 para amplificar la región *trnA-rrn23*S de cedro rojo.

Para ensamblar las lecturas obtenidas se realizó un alineamiento entre las secuencias obtenidas en sentido y antisentido (figura 3.12), para realizar esto se utilizó el software mencionado en la sección anterior. Como resultado del ensamblado de las secuencias y posteriormente de haberlas depurado se obtuvo que el tamaño de la región *trnA-rrn23S* en cedro rojo es de ~ 3026 pb (anexo 2) corroborando que este tamaño también concuerda con el de la secuencia de olivo, lo cual corrobora que cedro es más parecido a

olivo que a tabaco, esto considerado solo el tamaño de las secuencias.

Figura 3.12 Alineamiento de las secuencias correspondientes a la región *trnA-rrn23*S de cedro rojo. Las flechas verdes representan secuencias obtenidas en sentido y las rojas en antisentido.

3.8 ANÁLISIS DE LA SECUENCIA rrn16S-trn1-trnA-rrn23S DE CEDRO ROJO

Para tener la secuencia completa correspondiente a la región *rrn16S-trn1-trnA-rrn23S* del cloroplasto de cedro rojo, se ensamblaron las secuencias obtenidas de la secuenciación de pCBL-1 y pCBL-3. El resultado obtenido fue que la región *rrn16S-trn1-trnA-rrn23S* de cedro rojo es de un tamaño de ~ 5732 pb (sin considerar la región intergenica). Posteriormente esta secuencia se comparó contra las que se encuentran en la base de datos del GeneBank para poder identificar posibles genes ortólogos, para ello se realizó un análisis tipo BLAST de nucleótidos, utilizando megablast con las funciones predeterminadas (default) disponible en la página del NCBI (Zhang *et al.*, 2000), con el cual se obtuvo que el mayor puntaje (score) correspondió a *Mangifera indica* con un porcentaje de cobertura de 100% y una identidad del 99 % (cuadro 3.4), también hubo una alta identidad con *Theobroma cacao* y *Citrus sinensis* (del 99%) aunque el porcentaje de cobertura fue de 99%.

Con la secuencia obtenida de cedro rojo también se corroboró que efectivamente existen dos sitios de restricción *BamHI* en las posiciones 2999 y 3389, que no están presentes en la secuencia de olivo, con esto se validó el patrón de restricción obtenido en la figura 3.8 b carril 3.

Otra observación es que la secuencia *rrn16S-trn1-trnA-rrn23S* (~ 5732) de cedro fue ~300 pb mayor que la secuencia de tabaco (~ 5400 pb) que se tomó como referencia para

. ?

diseñar los oligonucleótidos que utilizó Rodríguez–López en el 2010 y que sirvieron en un principio para obtener el amplicón de 5.7 Kb de cedro rojo.

Especie	Número de Accesión	Score Máximo	Cobertura	Identidad
Mangifera indica	EF205595.2	5446	100%	° 99%
Rhodoleia championi	EF207455.1	5330	100%	98%
Hamamelis japonica	EF207445.1	5330	100%	98%
Liquidambar styraciflua	EF207449.1	5284	100%	98%
Daphniphyllum sp.	EF207444.1	5284	100%	98%
Pterostemon rotundifolius	EF207454.1	5280	97%	99%
Ribes americanum	EF207456.1	5262	96%	98%
Heuchera micrantha	EF207446.1	5256	100%	98%
Cercidiphyllum japonicum	EF207443.1	5245	98%	98%
Kalanchoe daigremontiana	EF207448.1	5186	100%	97%
Ceratophyllum demersum	AM712908.1	4946	100%	96%
Citrus sinensis	DQ864733.1	4900	99%	99%
Theobroma cacao	HQ244500.2	4687	99%	99%

Cuadro 3.4 Resultado del BLAST de la región rrn16S-trn1-trnA-rrn23S de cedro rojo

3.8.1 ALINEAMIENTO DE LA SECUENCIA *rrn16S-trn1-trnA-rrn23S* DE CEDRO ROJO CON TABACO, OLIVO Y ROBLE

Con base en la observación realizada al final de la sección anterior, para poder determinar a qué se debía la diferencia de tamaños entre las secuencias correspondientes al *rm16S-trn1-trnA-rm23S* de cedro y tabaco, se realizó un alineamiento entre estas secuencias, adicionando también las secuencias de olivo y roble, las cuales sirvieron de base para desarrollar la estrategia de este trabajo. Para lo anterior se utilizó la herramienta ClustalW (Thompson *et al.*, 1994). Como resultado se encontró que la diferencia en el tamaño entre las secuencias, se debió a indels (inserciones o deleciones) que presenta la secuencia de tabaco con respecto a la de cedro. En la figura 3.13 se muestra esquemáticamente el alineamiento donde se observa que entre los nucleótidos 2179-2418 y 3401-3504 de tabaco existen indels de 239 pb y 103 pb respectivamente (existiendo otras de menor tamaño). Además hay un indel de 37 pb entre los nucleótidos 3351-3388 en la secuencia de *C. odorata* L. la región intergénica se ubica entre los nucleótidos 2727-2790, estos 63 pb no se encuentran en el vector pCBL-5, ya que en esa región se encuentra insertado el casete de expresión.

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
0.europaea C.odorata N.tabacun T.rosea	TAACGO	CGTANGAACC AGAACC AGAACC	TECCCTTEGE	iaggggaacaf iaggggaacaf iaggggaacaf	ICAGCTGGAA ICAGCTGGAA ICAGCTGGAA	RCGGCTGCTAF RCGGCTGCTAF RCGGCTGCTAF	TACCCCGT TACCCCGT TACCCCGT	AGGCTGAGGAG AGGCTGAGGAG AGGCTGAGGAG	CAAAAGGAGI CAAAAGGAGI CAAAAGGAGI	SAATCCGCCC SAATCCGCCC SAATCCGCCC	Gaggaggggct Gaggaggggct Gaggaggggct	TGCGTCTGAT CGCGTCTGAT CGCGTCTGAT	TAGCTAGTT TAGCTAGTT TAGCTAGTT	GETGAGG GETGAGG GETGAGG
Consensus		agaaco	tgcccttggg	aggggaacaa	icagetggaa	acggctgctaa	taccccgt	aggetgaggag	caaaaggagi	aatcogeee	gaggagggggct	gcgtctgat	tagetagtt	gőrősőő
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
O.europaea C.odorata N.tabacun T.rosea	CARTAC CARTAC CARTAC	SCTTRECARG SCTTRECARG SCTTRECARG	IGCARTGATCE IGCGATGATCE IGCGATGATCE	IGTAGCTGGTC IGTAGCTGGTC IGTAGCTGGTC	:CGAGAGGAT :CGAGAGGAT :CGAGAGGAT	GATCAGCCACA Gatcagccaca Gatcagccaca	ICTGGGACT ICTGGGACT ICTGGGACT	GAGACACGGCC GAGACACGGCC GAGACACGGCC	CAGACTECTI CAGACTECTI CAGACTECTI	icgggaggca icgggaggca icgggaggca	geng tegegar Geng tegegar Geng tegegar	ITTTCCGCAF ITTTCCGCAF ITTTCCGCAF	itgggcgaan Itgggcgaan Itgggcgaan	GCCTGAC GCCTGAC GCCTGAC
Consensus	casta	cttaccaag	gc.atgatca	gtagetggte	cgagaggat	gatcagecaci	ctgggact;	gagacacggcc	cagactect	ICEEE6986C9	gcagtggggaa	ttttccgcaa	stgggcgaaa	geetgae
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
0.europaea C.odorata N.tabacun T.rosea	GGAGCI GGAGCI GGAGCI	AATGCCGCGT AATGCCGCGT AATGCCGCGT	GGAGGTAGAA GGAGGTAGAA GGAGGTAGAA	IGGCCCACGGE IGGCCCACGGE IGGCCCACGGE	STCGTGAACT STCGTGAACT STCGTGAACT	TCTTTTCCCG6 TCTTTTCCCG6 TCTTTTCCCG6	AGAAGAAG AGAAGAAG AGAAGAAG	CAATGACGGTA CAATGACGGTA CAATGACGGTA	TCTGGGGAAT TCTGGGGAAT TCTGGGGAAT	TAAGCATCGG TAAGCATCGG TAAGCATCGG	CTAACTCTGTG CTAACTCTGTG CTAACTCTGTG	CCAGCAGCCE CCAGCAGCCE CCAGCAGCCE	CGGTAAGACI CGGTAATACI CGGTAATACI	AGAGGAT Agaggat Agaggat
	391	400	410	420	430	ddû	<i>d</i> 50	450	470	dRO	490	500	510	520
П. сигораса	1	GITRICCE	ARTGATTEGE	CETRARECET	CTETEETE	CTTTTT00C1	11311311		110	corocorec		ABCCTCCACT		COCOCOC
C.odorata M.tabacum T.rosea Consensus	GCAAGO GCAAGO gCaago	CGTTATCCGG CGTTATCCGG CGTTATCCGG	AATGATTGGG AATGATTGGG AATGATTGGG	CGTAAAGCGT CGTAAAGCGT CGTAAAGCGT	CTGTAGGTG ICTGTAGGTG ICTGTAGGTG	GCTTTTTAAGT GCTTTTTAAGT GCTTTTTAAGT	CCGCCGTC	ARATCCCAGGG ARATCCCAGGG BBALCCCAGGG	CTCARCCCTI CTCARCCCTI CTCARCCCTI	GACAGGCGG GACAGGCGG	TGGAAACTACC TGGAAACTACC TGGAAACTACC	AAGCTGGAGT AAGCTGGAGT AAGCTGGAGT	ACGGTAGGGI ACGGTAGGGI ACGGTAGGGI	SCAGAGG GCAGAGG KCARACZ
	521	530	540	550	560	570	580	590	600	610	620	630	640	650
O.europaea C.odorata N.tabacun	GRATTI GRATTI GRATTI	ICCGGTGGAG ICCGGTGGAG ICCGGTGGAG	CGGTGARATE	CGTAGAGATO CGTAGAGATO CGTAGAGATO	GGANAGAAC GGANAGAAC GGANAGAAC	ACCAACGGCGA ACCAACGGCGA ACCAACGGCGA	ARGCACTC ARGCACTC ARGCACTC	TGCTGGGCCGA TGCTGGGCCGA TGCTGGGCCGA	CACTEACACT CACTEACACT CACTEACACT	Teagagacga Teagagacga Teagagacga	AAGCTAGGGGA RAGCTAGGGGA RAGCTAGGGGA	IGCGAATGGGA IGCGAATGGGA IGCGAATGGGA	TTAGATACCI TTAGATACCI TTAGATACCI	CCAGTAG CCAGTAG CCAGTAG
Consensus	gaattt	ccggtggag	cesteaate	cgtagagato	ggaaagaac	accaacggoga	aagcactcl	tgctgggccga	cactgacact	gagagacga	aagct agggga	gegaatggga	tagatacco	cagteg
	651	660	670	680	690	700	710	720	730	740	750	760	770	780
O.europaea C.odorata N.tabacun T.rosea	TCCTRO TCCTRO TCCTRO	CCGTAAACG CCGTAAACG CCGTAAACG	ATGGATACTA Atggatacta Atggatacta	IGGCGCTGTGC IGGCGCTGTGC IGGCGCTGTGC	GTATCGACC GTATCGACC GTATCGACC	CGTGCAGTGCT CGTGCAGTGCT CGTGCAGTGCT	GTAGCTAR GTAGCTAR GTAGCTAR	CGCGTTAAGTA CGCGTTAAGTA CGCGTTAAGTA	TCCCGCCTGA TCCCGCCTGA TCCCGCCTGA	GGAGTACGT GGAGTACGT GGAGTACGT	TCGCANGAATG TCGCANGAATG TCGCANGAATG	AAACTCAAAA AAACTCAAAA AAACTCAAAA	GAATTGACG GAATTGACG GAATTGACG	GGGGCCC GGGGCCC GGGGCCC
Consensus	tecta	rcetaaace	atggatacta	egegetete	gtategace	cgtgcagtgct	gtagetaa	cgcgttaagta	tecegectg	ggagtacgt	Logoaagaate	aaactcaaag	gaattgacg	SSESCCC
	781	790	800	810	820	830	840	850	860	870	880	890	900	91 0
O, europaea C, odorata N, tabacun T, rosea	gCRCAF GCRCAF GCRCAF	IGCGGTGGAG IGCGGTGGAG IGCGGTGGAG	CATGTGGTT1 CATGTGGTT1 CATGTGGTT1	ARTTCGATGO ARTTCGATGO ARTTCGATGO	:RAAGCGARG :RAAGCGARG :RAAGCGARG	RACCTTACCAG RACCTTACCAG RACCTTACCAG	iggettgrei Iggettgrei Iggettgrei	ATGCCGCGAAT Atgccgcgaat Atgccgcgaat	CCTCTTGAAN CCTCTTGAAN CCTCTTGAAN	igagaggggt Igagaggggt Igagaggggt	GCCTTCGGGAR GCCTTCGGGAR GCCTTCGGGAR	ICGCGGACACA ICGCGGACACA ICGCGGACACA	IGGTGGTGCA IGGTGGTGCA IGGTGGTGCA	IGGCTGT IGGCTGT IGGCTGT
Consensus	gcacaa	agcggtggag	catgtggttt	aattogatgo	aaagogaag	nacettaccag	ggettgac	atgccgcgaat	cctcttgaa	ogagaggggti	gccttcgggaa	icgcggacaca	ggtggtgcal	getet
	911	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040
O.europaea C.odorata M.tabacun T.rosea	CGTCA CGTCA CGTCA	GCTCGTGCCG GCTCGTGCCG GCTCGTGCCG	TARGETETTE TARGETETTE TARGETETTE	GGTTAAGTCC GGTTAAGTCC GGTTAAGTCC	CGCAACGAG CGCAACGAG CGCAACGAG	CGCAACCETCE CGCAACCETCE CGCAACCETCE	TGTTTAGT TGCTTAGT TGTTTAGT	TGCCATCGTTG TGCCACCGTTG TGCCATCGTTG	AGTTTGGAAC AGTTTGGAAC AGTTTGGAAC	CCTGAACAG CCTGAGCAG CCTGAACAG	ACTECCEGTER ACTECCEGTER ACTECCEGTER	TRAGCCGGAG TRAGCCGGAG TRAGCCGGAG	GAAGG TGAG GAAGG TGAG GAAGG TGAG	GATGACG GATGACG GATGACG
Lonsensus	cgtca	screatece	taaggtgttg	ggttaagtco	cgcaacgag	cgeaaceeteg	tg.ttagt	tgcca.cgttg	agtitggaad	cctga.cag	actgccggtga	taagcoggag	rgaaggtgag	gatgacg
	1041	1050	1050	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170
U.europaea C.odorata N.tabacun T.rosea	TCAAG TCAAG TCAAG	ICATCATGCO ICATCATGCO ICATCATGCO	CCTTATGCCC CCTTATGCCC CCTTATGCCC	TGGGCGACAC TGGGCGACAC TGGGCGACAC	ACGTGCTAC ACGTGCTAC ACGTGCTAC	ARTGGCCGGGF ArtggCCGGGF ArtggCCGGGF	icaanagggti Icaanagggti Icaanagggti	CGCGATCCCGC CGCGATCCCGC CGCGATCCCGC	GAGGGTGAGU GAGGGTGAGU GAGGGTGAGU	TARCECCAR TARCTECAR TARCECCAR	ARACCCGTCCT RAACCCGTCCT RAACCCGTCCT	CAGTICGGAI CAGTICGGAI CAGTICGGAI	TGCAGGCTG TGCAGGCTG TGCAGGCTG	CARCTCG Carctcg Carctcg
rouseneus	Ccaage	Learcargeo	ccuargeed	resectaco	acgigciac	acggccggga	caaagggt	cgcgatcccgc	eagegreage	taac.ccaa	aaaccegteet	cagticggat	Lecagerte	caactog
0	11/1	1180	1130	1200	1210	1220	1230	1240	1250	1260	1270	1580	1230	1300
C.odorata N.tabacun T.rosea Consensus	CCTGC	ITGANGLCGG ITGAAGCCGG ITGAAGCCGG	AATCGCTAGT AATCGCTAGT AATCGCTAGT	AATCGCCGGT AATCGCCGGT AATCGCCGGT	CAGCCATAC CAGCCATAC	Gecegteaatt Gecegteaatt	CGTTCCCG	GGCCTTGTACA GGCCTTGTACA GGCCTTGTACA	CACCGCCCG1 CACCGCCCG1 CACCGCCCG1	CACACTATG	GERGE TEGELCH GERGE TEGELCH GERGE TEGELCH	ITGCCCGAAGT	CGTTACCTT	AACCGCA AACCGCA
	1301	1310	1320	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430
O.europaea C.odorata N.tabacun	AGGAGG AGGAGG AGGAGG	GGGGATGCCG GGGGATGCCG GGGATGCCG	AAGGCAGGGC AAGGCAGGGC AAGGCAGGGC	TAGTGACTGG TAGTGACTGG TAGTGACTGG	AGTGAAGTC AGTGAAGTC AGTGAAGTC	GTRACAAGGTA GTAACAAGGTA GTAACAAGGTA	IGCCGTACT IGCCGTACT IGCCGTACT	GGAAGGTGCGG GGAAGGTGCGG GGAAGGTGCGG	CTGGATCACI CTGGATCACI CTGGATCACI	TCCTTTTCA	GGGAGAGCTAR GGGAGAGCGAA GGGAGAGCCTAR	TGCTTGTTGG TGCTTGTTGG TGCTTGTTGG	GTATTTTGG GTATTTTGG GTATTTTGG	TTTGACA TTTGACA TTTGACA
Consensus	aggagg	rseg.Lgccg	aaggcagggg	tagtgactgg	agtgaagtc	gtaacaaggta	gccgtact	gaaggtgcgg	ctggatcac	tcttttca	gggagagc.ad	tgettgttgg	gtatttgg	ittgaca
	1431	1440	1450	1460	1470	1480	1490	1500	1510	1520	1530	1540	1550	1560
O.europaea C.odorata N.tabacun T.rosea	CTGCT1 CCGCT1 CTGCT1	TCACACCCAA TCACACCCAA TCACACCCCAA	IARCANAFAGE IAR IARRANAFAGE	AGGGAGCTAC AGCGAGCTAC AGGGAGCTAC	GTCTGAGTT GCCTGAGTG GTCTGAGTT	AAACTTGGAGA AAACTTGGAGA AAACTTGGAGA	ITGGAAGTC ITGGAAGTC ITGGAAGTC	TICTITCGTIT TICTITCGTTT TICTITCCTTT	CTCGACGTTC CTCGACGGTC CTCGACGGTC	SRAGTAAGACI SRAGTAAGACI SRAGTAAGACI	CAAGCTCATGA CAAGCCCATGA CAAGCTCATGA	IGCTTATTATO IGCTTATTATO IGCTTATTATO	CTAGGTCGG CTAGGTCGG CTAGGTCGG	AACAAGT BACAAGT BACAAGT
Consensus	c.gctt	cacacce	aaaga	ag.gagctac	g.ctgagt.	aaacttggaga	tggaagtc	ttettte.ttt	ctcgacg.tg	gaagtaagac	caagc.catga	agettattate	ctaggtogg	aacaagt
	1561	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1680	1690
C.ouropaea C.odorata N.tabacum T.rosea Consensus	TGATAC TGATAC TGATAC Lgalas	GATCCCCTT GATCCCCCT GACCCCCCTT gga.cccc.t	TTITACGICG TTITACGICG TTITACGICG	CCATG1-CCC CCATG1-CGC CCATG1-CGC CCATG1TCCC	CCCCGTGTG CACACGGGA CCCCGTGTG CCCCGTGTG	GCGACATGGGG GGGACATGGGG GCGACATGGGG g.gacatgggg	igcgaaaaa igcg.aaaa igcg.aaaa	AGGAAAGAGAGA AGGAAAGAGAGA AGGAAAGAGAGAG	GGATGGGGTT GGATGGGGTT GGATGGGGTT ggatggggtI	ITCTCTCGCT ITCTCTCGCT ITCTCTCGCT	TTTGGCATAGC TTTGGCATAGT TTTGGCATAGC tttggcatag.	GGGCCCCCAG GGGCCCCCAG GGGCCCCCAG gggcccccag	STGGGAGGCTI SCGGGAGGCCI STGGGAGGCCI 2+828a88c+1	CGCACGA CGCACGA CGCACGA CGCACGA

	1691	1700	1710	1720	1730	1740	1750	1760	1770	1780	1790	1800	1810	1820
O.europaca C.odorata N.tabacun T.cosea	CGGGC CGGGC CGGGC	TATTAGCTCI TATTAGCTCI TATTAGCTCI	AGTGGTAGAGC Agtggtagagc Agtggtagagc	GCGCCCCTGF GCGCCCCTGF GCGCCCCTGF	TAATTGCGT TAATTGCGT TAATTGCGT	CGTTGTGCCTC CGTTGTGCCTC CGTTGTGCCTC	GGCTGTGA GGCTGTGA GGCTGTGA	GGGCTCTCAGI GGGCTCTCAGI GGGCTCTCAGI	CACATGGATI CCACATGGATI CCACATGGATI	AGT TCAATGT AGT TCAATGT AGT TCAATGT	GCTCATCEGCO GCTCATCEGCO GCTCATCEGCO	CCTGACCCTG CCTGACCCTG CCTGACCCTG	AGATGTGGAT GAGATGTGGAT GAGATGTGGAT	CATCCA
Consensus	CEREC	tattagete	agtggtagago	gegeccetga	staattgogt	cgttgtgcctg	ggctgtga	gggctctcage	cacatggat	agttcaatgt	gctcatc.gcg	cctgaccctg	ragat gt gg at	catcca
	1821	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930	1940	1950
O.europaea C.odorata N.tabacun T.rosea	AGGCA AGGCA AGGCA	CATTAGCATI CATTAGCATI CATTAGCATI	GGCGTACTCCT GGCGTACTTCT GGCGTACTCCT	CCTGTTCGAR CCTGTTCGAR CCTGTTCGAR	ICCGGGG TT ICCGGGGGTT ICCGGGG TT	TGAAACCAAAC TGAAAACAAAA TGAAACCAAAA		AGGAGGATAGI AGGAGGATAGI AGGAGGATAGI	TGGGGCGAT TGGGGGCGAT	ICGGGTGAGA ICAGGTGAGA ICGGGTGAGA	TCCAATGTAGA TCCARTGTAGA TCCAATGTAGA	ITCCAACTITC ITCCAACTITC ITCCAACTITC	CGATTCACTCO CTATTCACTCO CGATTCACTCO	TGGGAT TGGGAT TGGGAT
Consensus	aggca	cattagcat	ggcgtact.ct	cctgttcgaa	sccgggg, tt	tgaaa.caaad	cteete	aggaggataga	stggggggati	.c.ggtgagai	tccaatgtaga	stccaactttc	atteactes	teggat
	1951	1960	1970	1980	1990	2000	2010	2020	2030	2040	2050	2060	2070	2080
0.europaea C.odorata N.tabacun T.rosea	CCGGG CCGGG CCGGG	CGGTCCGGGG CGGTCCGGGG CGGTCCGGGG	GGGGACCACCA GGGGACCACCA GGGGACCACCA	CGGCTCCTCT CGGCTCCTCT CGGCTCCTCT	ICTTCTCGAG ICTTCTCGAG ICTTCTCGAG	RATCCATACAT RATCCATACAT RATCCATACAT		AGTGTATGGAC AGTGTATGGAC AGTGTATGGAC	AGCTATCTCI AGCTATCTCI AGCTATCTCI	TCGAGCACAG TCGAGCACAG TCGAGCACAG	GTTTAGGTTCC GTTTAGGTTCC GTTTAG	GCCTCAATGO GCCTCAATGO CAATGO	GAARACRAAC GAARACRAAC GAAAATRAAC	TGGAGC TGGAGC TGGAGC
GUNADINADA	DOBEE	00000				adoctocococa		afritarita	agutatutt	regagraragi	CCColletter	1111	190000_0000	ones
	2081	2090	2100	2110	2120	2130	2140	2150	2160	2170	2180	2190	2200	2210
O. europasa C. odorata N. tabacun T. rosea Consensus	ACCTA ACCTA ACCTA ACCTA	ACAACGCATC ACAACGTATC ACAACGCATC ACAACGCATC	CTTCACAGACC CTTCACAGACC CTTCACAGACC CLLcacagacc	Angaactacg Angaactacg Angaactacg	GAGATCACCC GAGATCGCCCC GAGATCGCCCC GAGATCGCCCC	CTTTCATT CTTTCATTTCA CTTTCATT CTTTCATT	CTGGGG ITTCTGGGG CTGGGG ctgggg	TGACGGAGGG TGACGGAGGG TGACGGAGGGG Lgacggaggga	ITCGTACCATI ITCGTACCATI ITCGTACCATI	ICGAGCOGT ICGAGCOGT ICGAGCOGT	TTTTTTCATE	CTTTTCCCGG	AGGTCTGGAG AGGTCTGGAG	AAAGCT
	2211	2220	2230	2240	2250	2260	2270	2280	2290	2300	2310	2320	2330	2340
П. енгораса	[ARGAGGAT	TECETRATEC	TECETTEEE		CCTGBBBTTC	TTTTTTTTT	TTerret	resserre	GAGATTEGA	стародан	GAAGAATGCI	TEET-RTRE	тарате
C.odorata	GCRAT	CARTAGGATT	TTTCCTAATCC	TCCCTTCCCG	AAAAGGAAGA	ACGTGARATTO	TITTICCT	TTTCCTTTCCC	CAGGGACCA	GAGATTEGAT	TCTAGCCGTAA	GAAGAATGCT	TEECTEATAR	ATAACT
T.rosea					- de tier als tiet dat aufeur au aure							ren en all de núclei de all de la		
Consensus	*****	•••••	• • • • • • • • • • • • •	•••••	*******		*******	•••••	•••••	•••••		********	*******	
	2341	2350	2360	2370	2380	2390	2400	2410	2420	2430	2440	2450	2460	2470
O.curopaca C.odorata N.tabacun T.rosea	CRCTT	CTTGGTCTTC	CGACCCCCTCA	GTCRCTACGA GTCRCTACGA	IACGCCCCCG	ATCAGTGCAAT Ataggtgcaat	GGGATGTG GGGATGTG	TCTATTTATCI	ATCTCTTGAC ATCTCTTGAC CTTGAC	CTCGAAATGG CTCGAAATGG CTCGAAATGG	GAGCAGGTTTG GAGCAGGTTTG GAGCRGGTTTG	IRAAAAGGATC IAAAAAGGATC IARAAAGGATC	TTAGAGTGTC TTAGAGTGTC TTAGAGTGTC	TAGGGT TAGGGT TAGGGT
Consensus	*****	********	• • • • • • • • • • • • •	•••••	*******	*******	*******		cttgad	tcgaaatgg	gagcaggtttg	aaaaaggatc	ttagagtgtc	tagggt
	2471	2460	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2600
0.suropaea C.odorata N.tabacun T.cosea	TEGEC TEGEC TEGEC	CAGGAGGGT(CGGGAGGGT(CAGGAGGGT(CTCTTAACGCC CTCTTAACGCC CTCTTAACGCC		TTCTCATCG	GAGTTATTTCA Gagttatttcc Gagttatttca	CAAAGACT CAAATACT CAAAGACT	CGC-AGGGTAN TGCCATGATAN TGCCAGGGTAN	iggragaaggi Iggragaaggi Iggragaaggi	igggaacaagi igggaacaagi igggaacaagi	CACACTTGGAG Cacacttggag Cacacttggag	AGCGCAGTAC AGCGCAGTAC AGCGCAGTAC	RACGGAGAGT RACGGAGAGT RACGGAGAGT	TGTATG TGTATG TGTATG
Consensus	Leeec	c,ggagggto	ctcttaacgcc	ttc.tttttc	ttctcatcg	gagttatttc.	caaa, act	.gc.a.g.taa	ggaagaaggi	gggaacaag	cacacttggag	jagogoagtad	aacggagagt	tgtatg
	2601	2610	2620	2630	2640	2650	2660	2670	2680	2690	2700	2710	2720	2730
O.europaea C.odorata N.tabacum T.rosea	CTECE CTECE CTECE	TTCGGGAAGO TTCGGGAAGO TTCGGGAAGO	GATGAATCGCT Gatgaatcgct Gatgaatcgct	CCCGARAAAGG CCCGARAAGG CCCGARAAAGG	AATCCATTG AATCCGTTG AATCCATTG	ATTETETECCA ATTETETECCCA ATTETETECCCA	ATTGGTTG ATTGGTTG ATTGGTTG	GACCGTAGGTO GACCGTAGGTO GACCGTAGGTO	CGATGATTTI	ICTTCACGGG ICTTCACGGG ICTTCACGGG	CGAGGTCTCTC CGAGGTCTCTC CGAGGTCTCTC	GTTCAAGTCC GTTCAAGTCC GTTCAAGTCC	AGGATGGCCC AGGATGGCCC AGGATGGCCC	RECTEC RECTEC
Consensus	ctgcg	ttcgggaagg	gatgaatcgct	cccgaaaagg	aatcttg	attetetecea	attggttg	gaccgtaggtg	cgatgatti	octtcacgggg	cgaggtetetg	gttcaagtco	aggatggccc	ag
	2731	2740	2750	2760	2770	2780	2790	2800	2810	2820	2830	2840	2850	2860
O.europaea C.odorata N.tabacun T.rosea	GCCAG	GAAAAGAAT GAAAAGAAT	Tagaagaagga Tagaagaagca	TCTGACTACT TCTGACTACT	TCATECATE	CTCCACTT6GC CTCCACTT6GC	TC666 GGG TC660 GGG	ATATAGCTCAG Atatagctcag Atatagctcag	TTGGTAGAGG TTGGTAGAGG TTGGTAGAGG	TCCGCTCTTC	SCRATTGGGTC SCAATTGGGTC SCAATTGGGTC	GTTGCGATTA GTTGCGATTA GTTGCGATTA	IC666TT66AT IC666TT66AT IC666TT66AT	GTCTAA GTCTAA GTCTAA
LUNSONSUS	*****							araragereag	urskragase	ACCECTCUL	rease geet	Rechangere	ngggrt 659r	striad
	2861	2870	2880	2890	2900	2910	2920	2930	2940	2950	2960	2970	2980	2990
O, suropasa C, odorata N, tabacun T, rosea	TIGIC TIGIC TIGIC	CAGGCGGTAF CAGGCGGTAF CAGGCGGTAF	ITGATAGTATC Itgatagtatc Itgatagtatc	TTGTACCTGA TTGTACCTGA TTGTACCTGA	ACC66T66C1 ACC66T66C1 ACC66T66C1	ICACTTITICI ICACTTITICI ICACTTITICI	AAGTAATG AAGTAATG AAGTAATG	gggaagagga gggaagagga gggaagagga gggaagagga	CGARACA TGO CGARACA TGO CGARACG TGO	CACTGAAAGI CACTGAAAGI CACTGAAAGI	ACTETACTORE ACTETACTORE ACTETACTORE	ACARAGATGG ACARAGATGG ACARAGATGG	GCTGTCAAGA GCTGTCAAGA GCTGTCAAGA	ACGTAG ACGTAG ACGTAG
Consolisos	Cuguu			cegearcega	INCOME CONTRACTOR		ougroury.	£££an£a££ar	-ritagarit	.corcgoodge	occceatiges	areaagargg	SecSeconSe	argrag
O.europasa C.odorata N.tabacun	2991 AGGAG AGGAG	3000 GTAGGATGGC GTAGGATGGC GTAGGATGGC	3010 GCRGTTGGTCR GCGGTTGGTCR GCAGTTGGTCR	3020 GATCTAGTAT GATCTAGTAT GATCTAGTAT	3030 GGATCATACI GGATCGTACI GGATCGTACI	3040 Atggacggtag Atggacggtag Atggacggtag	3050 TTGGRGTC TTGGRGTC TTGGRGTC	3060 GGCGGCTCTCC GGCGGCTCTCC GGCGGCTCTCC	3070 CAGGGGTCCC TAGGGTTCCC CAGGGTTCCC	3080 CTCRTCTGAGI CTCRTCTGAGI CTCRTCTGAGI	3090 ATCCCTGGGGA ATCCCTGGGGA ATCCCTGGGGA	3100 Ingregatora Ingregatora Ingregatora	3110 GTTGGCCCTT GTTGGCCCTT GTTGGCCCTT	3120 GCGAAC GCGAAC GCGAAC
Consensus	a.gag	staggatees	ec.gttggtca	gatctagtat	ggatc.tac	stggacggtag	tiggagto	ggcggctctc.	.aggg.tccd	tcatctg.g	atc.ctgggga	agaggatcaa	gttggccctt	gegaac
	3121	3130	3140	3150	3160	3170	3180	3190	3200	3210	3220	3230	3240	3250
O. suropasa C. odorata M. tabacun T. rosea	AGCTTI AGCTTI AGCTTI	GATGCACTAT GATGCACTAT GATGCACTAT	ICTECETTERA ICTECETTERA ICTECETTERA	CCCTTTEREC CCCTTTEREC CCCTTTEREC	GAAATGCGGI GAAATGCGAU GAAATGCGGU	CAAAAGAAAAG CAAAAG CAAAAGAAAAAG	GAAGGAAA GAAGGAAA GAAGGAAA	ATCCATGGACC ATCCATGGACC ATCCATGGACC	GACCCCATC	TCTCCACCCI TCTCCACCCI TCTCCACCCI	CGTAGGAACTA CGTAGGAACTA CGTAGGAACTA	CGAGATCACC ICGAGATCACC ICGAGATCACC	CCAAGGGCGC CCAAGGACGC CCAAGGACGC	
LUNSONSUS	agett	tor Bracrat	LUCCCULCAA	CCCLLEBASC	gagaraca'	geooog	Raaggaaa	accatggaco	gaccccatc,	LCLCCACCC	glaggaacta	cgagatcacc	ccaagg.cgc	56.110
	3251	3260	3270	3280	3290	3300	3310	3320	3330	3340	3350	3360	3370	3380
O.suropasa C.odorata N.tabacun T.rosea	CATCCI TATCCI CATCCI	IGGGGTCACC IGGGGTCGCC IGGGGTCACC	SGACCGACCAT SGACCGACCAT SGACCGACCAT	AGAACCCTGT Agaaccctgc Agaaccctgt	TCAATAAGTI TCAATAAGTI TCAATAAGTI	GGAACGCATTA GGAATGCATTA GGAACGCATTA	GCTGTCTG GCTGTCCA GCTGTCCG	TTCTCAGGTTG CTCTCAGGTTG CTCTCAGGTTG	GGCAGTAAGO GGCAGTAAGO GGCAGTCAGO	GTCGGAGAAA GTCGGAGAAA GTCGGAGAAA	GGGCAAT GGGCAATTACT GGGCRAT	CATTCTTANA	ACCT6C66TC	GGAGAA
Consensus	. atcca	ngeggtc.cg	gaccgaccat	agaaccetg.	tcaataagt	ggaa.gcatta	getgte	.tctcaggttg	ggcagt.agg	gtcggagaaq	ggcaat			

	3381	3390	3400	3410	3420	3430	3440	3450	3460	3470	3480	3490	3500	3510
0.europaea C.odorata	GGAGC	CACTCA	TTCTTPRARC TTCTTPRARC	CAGCGTTCTTI	IAGACCAAAGI IAGACCAAAGI	AGTCGGG-CG Agtggggggg	gaaa-ggggg gaaaaggggg	GGARAGCTCTC GGARAGCTCTC	CGTTCCT66	ITCTCCTGTA	GCTGGAACCTC GCTGGATCCTC	CGGAACCAC	AAGAATCCTTA AAGAATTCTTA	GTTAGA GTTAGA CTTAGA
T,rosea Consensus		actca	ttetta								•••••			gttaga
	3511	3520	3530	3540	3550	3560	3570	3580	3590	3600	3610	3620	3630	3640
O.europaea C.odorata N.tabacun	ATGGG ATGGG ATGGG	ATTCCAACT ATTCCAACT ATTCCAACT	CRGCACCTTT CAGCACCTTT CAGCACCTTT	TGAG <mark>TGAG</mark> ATT TGAG TGAGTGAGATT	ittgagaaga Ittgagaaga Ittgagaaga	GTTGCTCTTT GTTGCTCTTT GTTGCTCTTT	GGAGAGCACI GGAGAGCACI GGAGAGCACI	RGTACGATGAF Agtacgatgaf Agtacgatgaf	AGTTGTAAGO AGTTGTAAGO AGTTGTAAGO	CTGTGTTTCGG CTGTGTGTTCGG CTGTGTTTCGG	GGGGGGAGTTA1 GGGGGGAGTTA1 GGGGGGAGTTA1	TGTCTATCG TGTCTATCG TGTCTATCG	TCGGCCTCTAT TTGGCCTCTAT TTGGCCTCTAT	rggtaga rggtaga rggtaga
Consensus	atggg	attecaact	cagcaccttt	tgagatt	ttgagaaga	gttgctcttt	ggagagcaca	agtacgatgaa	agttgtaag	ctgtgttcgg	gggggagttat	tgtctatcg	t.ggcctctat	rggtaga
	3641	3650	3660	3670	3680	3690	3700	3710	3720	3730	3740	3750	3760	3770
D.ouropaea C.odorata N.tabacun T.rosea	ATCAG ATCAG ATCAG	TCEGGGGGC T-GGGGGC TCEGGGGAC	CTGAGAGGCG CTGAGAGGGCG CTGAGAGGGCG	GTGGTTTACCO GTGGTTTACCO GTGGTTTACCO	TGCGGCGGA TGTGGCGGA TGCGGCGGA	TGTCAGCGGT TGTCAGCGGT TGTCAGCGGT	TCGAGTCCGG TCGAGTCCGG TCGAGTCCGG	CTTATCTCCA CTTATCTCCA CTTATCTCCA	CTCRTGAACT CTCGTGAACT CTCGTGAACT	TAGCCGATA TAGCCGATA TAGCCGATA	CARAGCTATAT CRARGCTATAT CRARGCTATAT	GA GATATGA GA	AGCACCCAATI AGCACCCAATI AGCACCCAATI	
Lonsensus	atcag	C. Bass.c	ctgagaggcg	gtggtttacco	ctg.ggcgga	tgtcagcggt	tcgagtccg	cttatctccaa	etc.tgaaci	itageogata	caaagct.tat	ga	agcacccaatt	LULCCS
	3771	3780	3790	3800	3810	3820	3830	3840	3850	3860	3870	3880	3890	3900
0.europaea C.odorata N.tabacun T.rosea	ATTCG	GCGGTTCGA GCAGTTCGA GCGGTTCGA	TCTATGATTI TCTATGGTTT TCTATGATTT	ATCATTCATG ATTATTCATG ATCATTCATG ATCATTCATG	ACGTTGATA ACGTTGATA ACGTTGATA	AGATCCATCC Agatccttcc Agatccatcc	ATTTAGCAGI ATTTAGCAGI ATTTAGCAGI	CACCTTAGGAT CACCTTAGGAT CACCTTAGGAT	GGCATAGCC GGCATAGCC GGCATAGCC	TAGA TAAAGTCAA TAAA	GTTARGGGCGF GTGARGGGCGF	IGGTTCAAAC IGGTTCAAAC IGGTTCAAAC	Gaggaaaggc1 Raggaaaggc1 Gaggaaaggc1	TACGGT TACGGT TACGGT
Consensus	attcg	gc.gttcga	tctatg.ttt	at.attcatg	acgttgata	agatec.tec	atttagcago	caccttaggat	ggcatagcci	ita.a	···· pgggcgs	ggttcaaac.	. aggaaagget	Lacggt
	3901	3910	3920	3930	3940	3950	3960	3970	3990	3990	4000	4010	4020	4030
D.europasa C.odorata N.tabacun T.rosea	GGATA GGATA GGATA	CCTAGGCAC CCTAGGCAC CCTAGGCAC	CCAGAGACGA CCAGAGACGA CCAGAGACGA	GGAAGGGC6TI GGAAGGGC6TI GGAAGGGC6TI	IGTAATCGACI IGTAAGCGACI IGTAATCGACI	GRARTGCTTC GARATGCTTC GARATGCTTC	GGGGAGTTGA GGGGAGTTGA GGGGAGTTGA	AAAATAAGCAT AAAATAAGCGT AAAATAAGCAT	AGATCCGGA AGATCCGGA AGATCCGGA	GATTCCCGAA GATTCCCGAA GATTCCCGAA	TAGGGCAACCT TAGGTCAACCT TAGGGCRACCT	TTCGAACTGI TTCGAACTGI TTCGAACTGI	CTGCTGRATCO CTGCTGRATCO CTGCTGRATCO	CATGGGC CATGGGC CATGGGC
Consensus	ggata	cctaggcac	ccagagacga	ggaagggcgt	igtaa.cgac	gaaatgette	eggenette	saaataagc.t	agatoogga	attoccaa	Lagg.caacct	ttcgaactg	ctgctgaatco	catgggc
	4031	4040	4050	4060	4070	4080	4090	4100	4110	4120	4130	41.40	4150	4160
O.europaea C.odorata N.tabacun T.rosea	AGGCA AGGCA AGGCA	AGAGACAAC AGAGACAAC AGAGACAAC	CTG6CGAACT CTG6CGAACT CTG6CGAACT	GAAACATCTTI GAAACATCTTI GAAACATCTTI GAAACATCTTI	ngtagccaga Ngtagccaga Ngtagccaga Ngtagccaga	ggaaaargaaa ggaaaagaaa ggaaaagaaa ggaaaagaaa	gcaaaagcgi Gcaaaagcgi Gcaaaagcgi	ATTCCCGTAGI ATTCCCGTAGI ATTCCCGTAGI	AGCGGCGAGI AGCGGCGAGI AGCGGCGAGI	CGRAATGGGA CGRAATGGGA CGRAATGGGA	GCAGCCTAAAO GCAGCCTAAAO GCAGCCTAAAO	CGTGAAAACI CGTGAAAAACI CGTGAAAAACI	GGGGTTGTGGG GGGGTTGTGGG GGGGTTGTGGG	AGAGCA Agagca Agagca
Consensus	aggca	agagacaac	ctggcgaact	gaaacatotti	igtagccaga	gaaaagaaa	Scooos6c81	attoccgtagt	ascascass	cgaaatggga	gcagcctaaad	cgtgaaaac	regetteters	lagagca
	4161	4170	4180	4190	4200	4210	4220	4230	4240	4250	4260	4270	4280	4290
O.europaea C.odorata N.tabacun T.rosea	ATACA ATACA ATACA	AGCGTCGTG RGCGTCGTG RGCGTCGTG	CTGCTAGGCG CTGCTAGGCG CTGCTAGGCG	Angcagcacg Angcagta-gi Angcagcccg	ATECTECACI GTECTECACI ATECTECACI	CCTAGATGGC CCTAGATGGC CCTAGATGGC	GARAGTCCA GAGAGTCCA GARAGTCCA	STAGCCGAAAC Stagccgaaac Stagccgaaac	CATCACTAGI Catcactagi Catcactagi	CTTREGETET CTTREGETET CTTREGETET	GACCCGAGTAG GACCCGAGTAG GACCCGAGTAG	CATGGGACA CATGGGGCA CATGGGGCA	CGTGGAATCCC CGTGGAATCCC CGTGGAATCCC	CGTGTGA CGTGTGA CGTGTGA
Consensus	ataca	agegtegtg	ctgctaggeg	aagc.gg	.tgctgcac	cctagatggc	ga.agtcca	gtagccgaaag	catcactage	ctta.gctct	gaccogagtag	catggg.ca	cgtggaatcco	cgtgtga
	4291	4300	4310	4320	4330	4340	4350	4360	4370	4380	4390	4400	4410	4420
O.europaea C.odorata N.tabacum T.rosea	ATCAG Atcag Atcag	CRAGGACCA CRAGGACCA CRAGGACCA	ICCTTECRAGE ICCTTECRAGE ICCTTECRAGE	CTARATACTCI CTARATACTCI CTARATACTCI	TGGGTGACCI TGGGTGACCI TGGGTGACCI	GATAGCGAAG GATAGCGAAG GATAGCGAAG	TRGTACCGTO TRGTACCGTO TRGTACCGTO	Gagegaaggg Gagegaaggg Gagegaaggg	igaaaagaaci igaaaagaaci igaaagaaci	CCCCATCGGG CCCCATCGGG CCCCATCGGG	GAGTGRAATAG GAGTGRAATAG GAGTGRAATAG	artatgara Arcatgara Arcatgara	CCGTAAGCTCI CCGTAAGCTCI CCGTAAGCTCI	CCAAGCA CCAAGCA CCAAGCA
Lonsensus	atcag	caaggacca	ccttgcaagg	ctaaatactco	tgggtgacc	gatagogaag	tagtaccgt	safafaafaat	gaaaagaacu	cccatcggg	gagtgaaata	taa.acgaaa	ccgraageree	ccaagca
	4421	4430	4440	4450	4460	4470	4480	4490	4500	4510	4520	4530	4540	4550
O. europaea C. odorata N. tabacun T. rosea	GTGGG GTGGG GTGGG	AGGAGCCAG AGGAGCCCG AGGAGCCAG	igt ctctgac iggsctctgac igg-ctctgac	CECETECCTET CECETECCTET CECETECCTET	TGAAGAATG TGAAGAATG TGAAGAATG	AGCCGGCGAC AGCCGGCGAC AGCCGGCGAC	TCATAGGCA TCATAGGCA TCATAGGCA	GTGGCTTGGTT GTGGCTTGGTT GTGGCTTGGTT	TAAGGGAACCI TAAGGGAACCI TAAGGGAACCI	CACCGGAGCC EACCGGAGCC EACCGGAGCC	GTAGCGAAAGC GTAGCGAAAGC GTAGCGAAAGC	GAGTCTTCA GAGTCTTCA GAGTCTTCA	TREGECARTTE TREGECARTTE TREGECARTTE	STCACTG STCACTG STCACTG
Consensus	gtege	aggagec.g	gctctgac	egegtgeetgi	tgaagaatga	agcoggogac	tcataggca	stggettggtt	aagggaacco	caceggagee	gtagegaaage	gagtetteal	Lagggcaatts	stcactg
	4551	4560	4570	4580	4590	4600	4510	4620	4630	4640	4650	4660	4670	4680
O.europaea C.odorata N.tabacun T.rosea	CTTAT CTTAT CTTAT	GGACCCGAA GGACCCGAA GGACCCGAA	ICCTGGGTGAT ICCTGGGTGAT ICCTGGGTGAT	CTATCCATGAN CTATCCATGAN CTATCCATGAN	CAGGATGAN CAGGATGAN CAGGATGAN	GCTTGGGTGA GCTTGGGTGA GCTTGGGTGA	AACTAAGTG AACTAAGTG AACTAAGTG	GAGGTCCGAAC GAGGTCCGAAC GAGGTCCGAAC	CGACTGATG CGACTGATG CGACTGATG	TTGAAGAATC TTGAAGAATC TTGAAGAATC	AGCGGATGAGT AGCGGATGAGT AGCGGATGAGT	TGTGGTTAG TGTGGTTAG TGTGGTTAG	GGGTGAAATGO GGGTGAAATGO GGGTGAAATGO	CRCTCG
Consensus	cttat	ggacccgaa	cctgggtgat	ctatccatga	caggatgaa	gcttgggtga	aactaagtg	gaggtocgaad	cgactgatgi	ttgaagaatc	agoggatgagt	tgtggttag	rggtgaaatgo	ccactog
	4681	4690	4700	4710	4720	4730	4740	4750	4760	4770	4780	4790	4800	4810
0, europaea C, odorata N, tabacun T, rosea Consensus	RACCC RACCC ARCCC	RGAGCTAGC AGAGCTAGC AGAGCTAGC AGAGCTAGC	TGGTTCTCCC TGGTTCTCCC TGGTTCTCCC	CGAAATGCGT CGAAATGCGT CGAAATGCGT Cgaaatgcgt	TEAGECGCAG TEAGECGCAG TEAGECGCAG	CAGTTGACTG CAGTTGACTG CAGTTGACTG CAGTTGACTG	GACATCTAG GACATCTAG GACATCTAG GACATCTAG	GGG TAAAGCAG GGG TAAAGCAG GGG TAAAGCAG RANT ABARCAG		CCGGCCCGCG CCGGGCCGCG CCGGGCCGCG	AGAGCGGTACC AGAGCGGTACC AGAGCGGTACC agagcggtacc	CARATCGAGG CARATCGAGG CARATCGAGG CARATCGAGG	CAAACTCTGA CAAACTCTGA CAAACTCTGA Caaactctga	ATACTAG ATACTAG ATACTAG ATACTAG
	4811	4820	4830	dRdQ	4850	4860	4870	4880	4890	4900	4910	4920	4930	4940
D, europaea C, odorata N, tabacum T, rosea	ATATG ATATG ATATG	ACCTCRAAR ACCTCRAAR ACCTCRAAR	TAACAGGGGT TAACAGGGGT TAACAGGGGT	CAAGGTCGGC CAAGGTCGGC CAAGGTCGGC	Cagtgagacg Cagtgagacg Tagtgagacg	ATGGGGGGATA Atgggggata Atgggggata	AGCTTCATCI AGCTTCATCI AGCTTCATCI	GTCGAGAGGGG GTCGAGAGGGG GTCGAGAGGGG	IARCAGCCCA IARCAGCCCG IARCAGCCCG	GATCACCAGC Gatcaccagc Gatcaccagc	TAAGGCCCATH TAAGGCCCCTH TAAGGCCCCTH TAAGGCCCCTH GATTH	ARATGATCGC ARATGATCGC ARATGATCGC ARATGATCGC	TCAGTGATAAA TCAGTGATAAA TCAGTGATAAA TCAGTGATAAA	AGGAGGT AGGAGGT AGGAGGT AGGAGGT
Consensus	atatg	acctcaaaa	Laacaggggt	caagetcggc.	agtgagacg	atgggggata	agetteate	gtcgagaggga	aacagccc.	gatcaccago	taaggccc.Tf	INATGALCGC	TCAGTGATAA	RGGAGGT
	4941	4950	4960	4970	4980	4990	5000	5010	5020	5030	5040	5050	5060	5070
O, europaea C.odorata N,tabacun T.rosea Consensus	A66666 A66666 A66666 666666 a66666	TGCAGAGAGAC TGCAGAGAC TGCAGAGAC TGCAGAGAC TGCAGAGAC	AGCCAGGAGG AGCCAGGAGG AGCCAGGAGG AGCCAGGAGG AGCCAGGAGG	TTTGCCTAGA TTTGCCTAGA TTTGCCTAGA TTTGCCTAGA TTTGCCTAGA TTTGCCTAGA	AGCAGCCACC AGCAGCCACC AGCAGCCACC AGCAGCCACC AGCAGCCACC	CTTGAAAGAG CTTGAAAGAG CTTGAAAGAG CTTGAAAGAG CTTGAAAGAG	TGCGTAATA TGCGTAATA TGCGTAATA TGCGTAATA TGCGTAATA	GCTCACTGATO GCTCACTGATO GCTCACTGATO GCTCACTGATO GCTCACTGATO	CGAGCGCTCT CGAGCGCTCT CGAGCGCTCT CGAGCGCTCT CGAGCGCTCT	TGCGCCGAAG TGCGCCGAAG TGCGCCGAAG TGCGCCGAAG TGCGCCGAAG	ATGAACGGGG Atgaacgggg Atgaacgggg Atgaacggggg Atgaacggggg	CTAAGCGATC CTAAGCGATC CTAAGCGATC CTAAGCGATC CTAAGCGATC	TECCERRECTI TECCERRECTI TECCERRECTI TECCERRECTI TECCERRECTI	GTGGGAT GTGGGAT GTGGGAT GTGGGAT GTGGGAT

. 1

77

Figura 3.13 Alineamiento múltiple de las secuencias *rrn16S-trn1-trnA-rrn23S* de cedro rojo con tabaco, olivo y roble. La secuencia *rrn16S-trn1* se encuentra del nucleótido 10-2726, la región intergenica *trn1-trnA* del 2727-2790 y *trnA-rrn23S* del 2791-5828. Los símbolos (–) dentro de los rectángulos indican indels en algunas de las secuencias alineadas. Color azul: representa identidad entre tres secuencias y rojo: identidad entre las cuatro secuencias.

Como se muestra en la figura 3.13, a partir del nucleótido 4910 a 5832 la secuencia de ~ 923 pb correspondiente al *rrn23S* de roble alineó con las otras tres secuencias. A partir de este alineamiento se obtuvieron los porcentajes de identidad entre la secuencia de cedro y roble que fue de 98 %, y de de cedro con respecto a olivo y tabaco (cuadro 3.5). Entre cedro y tabaco existe 97 % de identidad, sin embargo, el porcentaje de cobertura es de 91 %. En contraste entre cedro y olivo también existe 97 % de identidad pero el porcentaje de cobertura es de 91 mucleótidos idénticos entre cedro y porque existe un número mayor de nucleótidos idénticos entre cedro y porque existe un indel en la secuencia de tabaco.

Cuadro 3.5 Porcentajes de identidad	y cobertura de la secuencia de	e cedro vs tabaco, olivo	y roble
-------------------------------------	--------------------------------	--------------------------	---------

Secuencias alineadas	rrn16	S-trnl	trnA-rrn23S				
	% de identidad	% de cobertura	% de identidad	% de cobertura			
Cedro vs Tabaco	97 %	91 %	97 %	95 %			
Cedro vs Olivo	97 %	100 %	97 %	100 %			
Olivo vs Tabaco	99 %	91%	98 %	100 %			

3.9 CLONACIÓN DE LA REGIÓN trnA-rrn23S EN pCBL-1 PARA OBTENER pCBL-4

Para obtener pCBL-4, se utilizó como vector pCBL-1, cuyo inserto ya había sido secuenciado, el cual fue digerido con las enzimas de restricción *Xbal* y *Notl*. El inserto se tomó de la clona 9 de pCBL-3 que al ser digerida con las enzimas antes mencionadas debía liberar una banda de ~ 3000 pb que corresponde a la secuencia *trnA-rrn23S* de cedro rojo (figura 3.14). Esta secuencia se clonó en pCBL-1 (clona 3) para obtener la región completa *rrn16S-trn1-trnA-rrn23S* del cloroplasto de cedro rojo, a este plásmido se le dio el nombre de pCBL-4.

Figura 3.14 Doble digestión de pCBL-1 y pCBL-3 con Xbal y Notl. Carril 1, pCBL1 digerida con Xbal y Notl; carril 2, pCBL-3 digerida con Xbal y Notl. M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

Después de digerir el vector y el inserto con *Xbal-Notl* (figura 3.14), se purificaron del gel, después al vector se le dio un tratamiento con fosfatasa alcalina (CIP) para evitar religación, y posteriormente se llevó a cabo la ligación en una relación inserto-vector 3:1 utilizando ligasa T4. De esta reacción se seleccionaron 15 clonas que fueron analizadas por ensayos de restricción y PCR.

El ensayo de restricción consistió en un principio en utilizar una enzima que linearizara las clonas, para ello se utilizó la enzima *Xbal*. De este primer ensayo de restricción se seleccionaron 10 clonas que al ser linearizadas daban el tamaño esperado, el cual era de

~ 8358 pb. Posteriormente se seleccionaron 2 clonas para un segundo análisis de restricción utilizando la enzima *Notl* (la cual solo debía linearizar la construcción ya que debía ser un sitio único) esperando obtener una banda de ~ 8358 pb. También se realizó una doble digestión con las enzimas *Xbal* y *Notl* que fueron utilizadas para la clonación, de la cual se esperaban obtener dos bandas de ~ 5367 pb y 2991 pb. Adicionalmente se utilizó la enzima *BamHI* con la cual se esperaba un patrón de restricción de 5 bandas (de ~ 4218 pb, 2300 pb, 1115 pb, 378 pb y 398 pb). Por último se utilizó la enzima *AatII* con la cual se esperaban obtener dos bandas (de ~ 5155 pb y 3203 pb), el resultado de estas digestiones se muestra en la figura 3.15.

Figura 3.15 Ensayo de restricción de las clonas pCBL-4. Carriles 3, clona 3 de pCBL-1; carriles 8 y 10, posibles clonas pCBL-4. M, corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

Como se observa en la figura 3.15 las dos posibles clonas seleccionadas 8 y 10 al ser analizadas por digestión mostraron el patrón de restricción esperado como un control se utilizó DNA de la clona 3 de pCBL-1. Para estar totalmente seguros de tener la región *rm16S-trnl-trnA-rrn23S* se realizó una prueba de PCR utilizando los oligonucleótidos CBL-6/CBL-7 este par de oligonucleótidos debería producir un amplicón de ~3000 pb, la PCR podía solo funcionar únicamente si se tenía la región completa. Como se puede observar en la figura 3.16 b cuando se utilizó la clona 10 de pCBL-4 como templado para la PCR se obtuvo el amplicón del tamaño esperado. Con este resultado y después de haber realizado el ensayo de restricción podemos concluir que se logró clonar la región completa de *rrn16S-trn1-trnA-rrn23S* de cedro rojo.

Figura 3.16 Análisis por PCR de pCBL-4. a) posición de los oligonucleótidos CBL-6/CBL-7 dentro de la construcción pCBL-4 y b) PCR utilizando los oligonucleótidos CBL-6/CBL-7, carril 1, Vector pUC19; carril 2, clona 3 de pCBL-1; carril 3, clona 9 de pCBL-3; carril 4, clona 10 de pCBL-4 y carril 5, control negativo. M corresponde al marcador de peso molecular de 1 Kb (Invitrogene).

3.10 DISEÑO Y CONSTRUCCIÓN DEL CASETE DE EXPRESIÓN

Se diseñó un casete de expresión monocistrónico que contiene dos genes, uno de ellos es el gen de selección *aadA* que se encuentra bajo el control del promotor del RNA ribosomal *16S* (*Prrn16S*) junto con su secuencia 5' UTR, además del terminador del gen *psbA* junto con su secuencia *3' UTR*. El otro gen es el de la proteína verde fluorescente *gfp* el cual se encuentra regulado por el promotor *G10* del fago *77* y como terminador el gen *rps16*, ambos con su secuencia 5' UTR y 3'UTR respectivamente. En la figura 3.17 a se pueden observar de forma esquemática la estructura del casete y los sitios de restricción incluidos para poder escindir los genes *aadA* o *gfp*, en caso de ser necesario. También se muestra la posición de los sitios *Notl*, que se utilizaron para insertar el casete de expresión dentro del vector pCBL-4.

Figura 3.17 Casete de expresión. a) Componentes del casete, el casete está flanqueado por dos sitios *Notl* en los extremos 5'y 3', el gen *aadA* está flanqueado por los sitios *Sall* y *Stul*; el gen *gfp* por *Sphl* y *Pstl*, b) pCBL-4 muestra el sitio único Notl utilizado para clonar el casete de expresión.

El casete de expresión se diseñó a partir de secuencias ya reportadas en la base de datos del GeneBank, para ello se realizó una búsqueda minuciosa de los componentes que debía llevar. Todas estas secuencias ya habían sido utilizadas en otros vectores de transformación de plástidos (cuadro 3.6).

Cuadro 3.6 Secuencias, número de accesión y tamaño de las secuencias utilizadas para construir el casete de expresión.

Secuencia	Número de accesión	Tamaño en pb	Referencia
Prrn16S 5' UTR	EU520587	117	Ferran et al., 2008
Gene aadA	AY895148	795	Dufourmantel et al., 2005
TpsbA 3' UTR	AY895148	394	Dufourmantel et al.,2005
Pg10 T7 5' UTR	EU450674	50	Oey et al., 2009
Gene gfp	AB199889	756	Tomizawa et al., 2005
Trps16 3'UTR	EU520589	149	Ferran et al., 2008

Después de haber ensamblado los fragmentos *in silico* se obtuvo una secuencia de ~ 2361 pb, la cual se mando a sintetizar a la empresa BIOMATIC quien envió la secuencia clonada en el vector pBMH (figura 3.18). Para corroborar que dicho vector contenía el casete expresión, se decidió analizarlo por restricción utilizando la enzima *Sphl*, la cual linearizaría el vector y con *Notl*, la cual liberaría el casete de expresión.

Figura 3.18 Mapa del vector pBMH. Las flechas representan el sentido de los marcos de lectura. Se indican los sitios de restricción y las partes que constituyen el casete de expresión.

Al digerir el vector pBMH con *Sphl* el vector se linearizó (figura 3.19, carril 2) dando una banda de ~ 5295 pb correspondiente al tamaño esperado, al digerir con *Notl* se liberó un fragmento de un tamaño de ~2361 pb (figura 3.19, carril 3) que correspondía al casete de expresión, el cual fue purificado y posteriormente clonado en pCBL-4.

Figura 3.19 Análisis de restricción del casete de expresión. Carril 1) vector pBMH + casete de expresión sin digerir, Carril 2) vector pBMH digerido con *SphI*, Carril 3) pBMH digerido con *NotI*. M marcador de peso molecular 1 Kb (Invitrogene).

3.11 CONSTRUCCIÓN DEL VECTOR FINAL DE TRANSFORMACIÓN DE CLOROPLASTO DE CEDRO ROJO (pCBL-5)

Antes de iniciar la construcción del vector final de transformación de cloroplasto para cedro rojo (pCBL-5) se realizó un análisis de restricción de la clona pCBL-4, para lo cual se utilizaron las enzimas *Pstl, Sall, Stul y Sphl*, esto se hizo para demostrar que estos sitios de restricción son únicos en el casete de expresión y no están presentes en pCBL-4 (figura 3.20, carriles 3, 4, 5 y 6). Como control se utilizó la clona pCBL-3 digerida con la enzima *Pstl*, este sitio de restricción debería estar presente en la clona 9 de pCBL-3 pero no en pCBL-4

Figura 3.20 Ensayo de restricción de pCBL-4 con enzimas presentes solo en el casete de expresión. Carril 1, pCBL-3 digerida con *Pstl*; carril 2, pCBL-4 sin digerir; Carril 3, pCBL-4 con *Pstl*; carril 4, pCBL-4 con *Sall*; carril 5, pCBL-4 con *Stul* y carril 6, pCBL-4 digerida con *Sphl*. M marcador de peso molecular 1 Kb (Invitrogene).

Posteriormente se digirió pCBL-4 con *Notl*, este sitio fue introducido en la región intergénica de *trnl-trnA*, la digestión con *Notl* se utilizó para clonar el casete de expresión (figura 3.21).

Como resultado de la digestión de pCBL-4 se obtuvo una banda de ~ 8358 pb (figura 3.21 b, carril 1) esto se debe a que *Notl* es un sitio único, en el carril 2 se muestra la banda que corresponde al casete de expresión. Después se realizó la ligación entre el casete de expresión y el vector; como resultado se obtuvieron ~ 300 colonias de las cuales se seleccionaron 46 para realizar análisis de restricción.

Figura 3.21 Construcción de pCBL-5. a) Forma esquemática de la construcción de la clona pCBL-5. b) carril 1, pCBL-4 cl: 10 digerida con Notl y carril 2, casete de expresión digerido con *Notl*. M marcador de peso molecular 1 Kb (Invitrogene).

Se extrajo DNA plasmídico de las 46 clonas seleccionadas, al ser observado en un gel de agarosa se seleccionaron 6 que migraban diferente al perfil electroforético de pCBL-4, estas clonas se sometieron a un análisis de restricción utilizando a la enzima Notl, ya que si al digerir estas clonas con esta enzima se liberaba un fragmento de ~2361 pb era porque se había logrado cionar el casete de expresión. Las 6 cionas seleccionadas liberaron una banda de ~ 2361 pb por lo cual se pudo concluir que todas contenían el casete de expresión (figura 3.22, carril 2-7). Era necesario determinar que el casete de expresión se hubiese insertado en el sentido correcto, por lo cual se realizó un análisis de restricción utilizando las enzimas Xbal y Pstl las cuales son únicas en pCBL-5. Si el casete de expresión se había clonado en forma correcta se deberían liberar dos bandas (de ~7561 pb y 3140 pb), si el casete se había clonado en la dirección contraria entonces se liberarían dos bandas de ~5528 pb y 5173 pb. Cuatro de las 6 clonas pCBL-5 analizadas por digestión presentaban el patrón de restricción esperado de dos bandas de ~7561 pb y 3140 pb (figura 3.23, carriles 2, 3, 4, 6) con lo cual se concluyó que contenían el casete de expresión en el sentido correcto. Adicionalmente se realizó un PCR utilizando el par de oligonucleótidos CBL-9/CBL-10, los cuales debían de producir un fragmento de ~ 1048 pb. Como resultado de la PCR utilizando como templado DNA de las cuatro cionas seleccionadas, de pCBL-5 se obtuvo un amplicón de ~ 1048 pb (figura 3.24b, carril 1-4) con lo cual se demostró que el casete de expresión se encuentra en sentido correcto.

Figura 3.22 Análisis de restricción de las posibles clonas positivas de pCBL-5. Carril 1, clona 10 de pCBL-4 digerida con *Notl;* carriles 2-4) posible clona pCBL-5 digerida con *Notl.* M marcador de peso molecular 1 Kb (Invitrogene).

Figura 3.23 Análisis de restricción para verificar la inserción correcta del casete de expresión. a) posición de las enzimas *Xbal* y *Pstl* en la construcción pCBL-5. b) carril 1 clona pCBL-4 cl: 10, carril 2-7 clonas pCBL-5. M, marcador de peso molecular 1 Kb (Invitogene).

Figura 3.24 Análisis por PCR de la orientación del casete en las clonas pCBL-5 con los oligonucleótidos CBL-9/CBL-10. a) Posición de los oligonucleótidos CBL-9/CBL-10 (encerrados en el círculo rojo) en pCBL-5, b) PCR de las clonas pCBL5, Carril 1-4) clonas pCBL-5 con casete de expresión en sentido correcto, Carril 5) clona pCBL-5 con casete de expresión en sentido incorrecto, Carril 6) control negativo. M, marcador de peso molecular 1 Kb (Invitrogene).

Con base en estos resultados se concluye que se logró construir un vector de transformación plastídica para cedro rojo, el cual tiene como secuencias flanqueantes de recombinación la región *16S-trnl* y *trnA-23S*. La estructura del vector se muestra esquemáticamente en la figura 3.24 a y en el anexo 3 se muestra la secuencia y las partes que lo constituyen.

87

BIBLIOGRAFÍA

- Breslauer K. J., Frank R., Blöcker H.and Marky L. A. (1986). Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA. 83; 3746-3750.
- Gregorio-Martinez A. C. (2010). Aproximaciones biotecnológicas para la manipulación genética de caoba (Swietenia macrophylla) y primavera (Tabebuia donell-smithii). Tesis de licenciatura. Instituto Tecnológico Superior de Acayucan. 65 p.
- Rodríguez–López T., (2010). Clonación de regiones cloroplastídicas de cedro rojo (Cedrela odorata L.) para la elaboración de vectores de clonación. Tesis de licenciatura. Instituto Tecnológico Superior de Acayucan. México. 53 p.
- Thompson J.D., Higgins D.G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22 (22):4673-80.

Zhang Z., Schwartz S., Wagner L. and Miller W. (2000). "A greedy algorithm for aligning DNA sequences", J Comput Biol; 7(1-2):203-14.

CAPÍTULO IV DISCUSIÓN GENERAL

En este trabajo se diseñó y construyó un vector de transformación genética para el cloroplasto de cedro rojo (Cedrela odorata L.). La transformación del cloroplasto ofrece grandes ventajas sobre la transformación convencional del núcleo, entre ellas podemos mencionar los altos niveles de proteínas solubles totales -de hasta 46 % - cuando el transgén es insertado establemente (De Cosa et al., 2001), se pueden introducir múltiples genes en un solo evento de transformación (Quesada Vargas et al., 2005), se logra la contención de los transgenes debido a la estricta heredabilidad materna de los cloroplastos (Daniell et al., 2002), no se ha reportado silenciamiento génico (De Cosa et al., 2001), no existe el problema de efecto de posición (Daniell et al., 2005) y no hay efectos pleiotrópicos debido a la compartamentalización sub-celular de los productos de los transgenes (Daniell et al., 2001). Todas estas ventajas hacen vislumbrar un futuro prometedor para realizar la transformación de los cloroplastos de cedro rojo ya que uno de los mayores obstáculos para poder liberar organismos transgénicos es el riesgo del escape del transgén, la construcción de un vector de este tipo evitaría este problema, aunado a que también se podría obtener alta estabilidad y altos niveles de expresión del transgén, lo que sería esencial para expresar genes de resistencia a insectos y proporcionar una solución al problema del insecto barrenador Hypsipyla grandella.

Hasta el año 2002 la transformación de cloroplastos en plantas superiores solo había sido reportada en tabaco (Svab y Maliga, 1993), *N. plumbaginifolia* (O'Neil *et al*, 1993), *A. thaliana* (Sikdar *et al.*, 1998), papa (Sidorov *et al.*, 1999), arroz (Khan y Maliga, 1999) y tomate (Ruf *et al.*, 2001). El primer reporte de transformación de un árbol fue realizado por Okumura *et al.* (2006) quienes lograron transformar cloroplastos de álamo blanco (*Populus alba*), obteniendo tres líneas homoplásticas. Este reporte abre la posibilidad de experimentar en otras especies de árboles como es el caso del cedro rojo.

Para que la transformación de plástidos sea eficiente es necesario tener un sistema eficiente de regeneración del tejido que se desea transformar. Recientemente se han reportado dos protocolos eficientes de propagación por medio de organogénesis (Peña-Ramírez *et al.*, 2010) y embriogénesis somática de cedro rojo (Peña-Ramírez *et al.*, 2011), por lo cual la regeneración no sería un problema para realizar la transformación de plástidos en esta especie forestal; también se necesita contar con un vector de

transformación que contenga secuencias de recombinación homóloga —de la especie que se desea transformar— que flanqueen al casete de expresión, el cual debe contener los genes de interés así como sus secuencias reguladoras, esto es necesario porque la inserción de genes dentro del genoma de los cloroplastos se lleva a cabo por un mecanismo de recombinación homóloga sitio-específica, entre el vector y el cpDNA (Stub y Maliga, 1992; Zoubenco *et al.*, 1994). Se ha observado que la eficiencia de la recombinación depende del porcentaje de identidad y del tamaño de las secuencias a recombinar, una recombinación eficiente implica que se logrará una transformación eficiente de los cloroplastos (Zoubenco *et al.*, 1994).

Daniell et al. (1998) propusieron utilizar un vector universal para la transformación de plástidos, este contenía secuencias de recombinación de tabaco, el vector fue utilizado exitosamente solo en plástidos de papa y tomate (Sidorov et al., 1999; Ruf et al., 2001). Sin embargo, se observó que la eficiencia de transformación se veía disminuida considerablemente aun siendo especies de la misma familia y teniendo 98 % de identidad entre sus secuencias (Fernandez-San Millan et al., 2003). Esta misma reducción de eficiencia de transformación fue observada cuando se utilizaron secuencias de petunia para flanquear el casete de expresión y transformar tabaco (De Gray et al., 2001). Debido a lo antes planteado podemos argumentar que el concepto de vector universal no es del todo cierto ya que aunque se lograron transformar otras especies (papa y tomate) utilizando las secuencias de tabaco, la disminución en la eficiencia de transformación hace ver que no es conveniente utilizar la secuencia de una especie para transformar otra. Esto se ha confirmado recientemente ya que los plastomas que se han secuenciado dan evidencia de la gran variabilidad que existe entre los genomas de plástidos (Kanamoto et al., 2005; Kim et al., 2006; Daniell et al., 2006). Por lo cual, para obtener una alta eficiencia de transformación de cloroplastos se requiere generar vectores de transformación especie-específica (Daniell et al., 2006). Por estas razones para realizar la transformación de los cloroplastos de cedro rojo era necesario generar un vector con secuencias de recombinación homóloga propias del cloroplasto, por lo que, en este trabajo se propuso generar un vector de transformación para cloroplastos de cedro rojo utilizando como secuencias de recombinación homóloga, las secuencias de la región de los genes rrn16S-trnl y trnA-rrn23S.

Algunas regiones del cloroplasto se han propuesto como sitios de recombinación homóloga adecuados para flanquear los casetes de expresión y así lograr la inserción de transgenes entre sus regiones intergénicas, dos de ellas son: *trnV-rps12/*7 (Zoubenco *et al.*, 1994; McBride *et al.*, 1995), y *trnl-trnA* (De cosa *et al.*, 2001). La región intergénica de los genes *trnl-trnA* ha sido utilizada con éxito para expresar varias proteínas de interés, obteniendo altos valores de expresión (Molina *et al.*, 2004, Viitanen *et al.*, 2004, De cosa *et al.*, 2001). McNutt (2006) realizó una caracterización de esta región entre 34 especies de plantas superiores encontrando que las secuencias tienen una identidad mayor al 95 %.

A diferencia de las secuencias *rbcL-accD* que se encuentran localizadas en la región grande de una sola copia (LSC), la cual fue utilizada por Okumura *et al.* (2006). En el presente trabajo se utilizaron como secuencias de recombinación homóloga las regiónes *rrm16S-trn1 y trnA-rrn23S* para flanquear el casete de expresión, ya que esta región se encuentra en los invertidos repetidos (IR) del cloroplasto y permite obtener hasta 20,000 copias del transgén por célula, lo cual se vería reflejado en una alta expresión de los transgenes, además de que esta secuencia facilitaría la replicación del vector dentro del cloroplasto debido a la existencia de un origen de replicación río abajo al gen *rrn23S* (Lugo *et al.*, 2004; Kunnimalaiyaan, 1997). Debido a estas observaciones, se esperaría obtener una alta eficiencia de transformación y una alta expresión de los transgenes al utilizar la región *rrn16S-trn1 y trnA-rrn23S* al transformar cedro rojo con pCBL-5.

En relación a la estrategia empleada en este trabajo para amplificar la región *rm16S-tml-trnA-rm23S* de cedro rojo, comúnmente se utilizan oligonucleótidos diseñados con la secuencia de tabaco para aislar las secuencias conservadas de los cloroplastos de las especies de las cuales se desconoce la secuencia del plastoma, los cuales permiten la amplificación en otras especies. Un ejemplo de éxito obtenido utilizando esta estrategia fue lograr amplificar la región *rm16S-tml-trnA-rm23S* de algodón y zanahoria utilizando la secuencia de tabaco (Kumar *et al.*, 2004a; Kumar *et al.*, 2004b). Sin embargo, resultados previos utilizando oligonucleótidos diseñados a partir de tabaco para amplificar la región *rm16S-tml-trnA-rm23S* de cedro y tabaco existen diferencias de tabaco se esperaba un amplicón de ~ 4.5 Kb y se obtuvo uno de ~ 5.7 Kb (Rodríguez–López, 2010), lo cual implica que existen

indels entre la secuencia de tabaco y cedro. Por lo anterior, en este trabajo se planteó una estrategia diferente para amplificar la región rrn16S-trn1-trnA-rrn23S de cedro. Se partió de una secuencia de roble, una especie que se esperaría estuviera filogenéticamente más relacionada a cedro rojo por ser una especie arbórea originaria de América. Nuestro grupo de trabajo contaba con un fragmento de ~ 923 pb del gen rrn23S de roble, con el cual se realizaron alineamientos para obtener la secuencia consenso para el diseño de los oligonucleótidos. Los cuales funcionaron correctamente ya que se obtuvieron los productos de PCR-I (rrn16S-trnl) y PCR-II (trnA-rrn23S) del tamaño esperado ~ 2700 pb y \sim 3000 pb respectivamente (los cuales fueron clonados y secuenciados). Esto por lo tanto implica que la secuencia consenso obtenida de los alineamientos resultó adecuada para el diseño de los oligonucleótidos utilizados en este trabajo. Con esto no se descarta la posibilidad de utilizar la secuencia de tabaco para el diseño de oligonucleótidos que puedan ser funcionales en otras especies, sin embargo según se mostró en este trabajo se puede utilizar una especie filogenéticamente más relacionada a la especie que se desea transformar, por las variaciones que presentan las secuencias de los genomas plastídicos (Kanamoto et al., 2005; Kim et al., 2006; Daniell et al., 2006).

Al ensamblar las secuencias obtenidas de la secuenciación (2706 pb para el *rrn16S-trn1* y 3026 pb para el *trnA-rrn23S* del cloroplasto de cedro rojo) se obtuvo que la región *rrn16S-trn1-trnA-rrn23S* del cloroplasto de cedro rojo es de 5732 pb. El análisis BLAST dió como resultado que existe un 99 % de identidad entre la secuencia de cedro con otras especies de interés económico como Mango, Naranja y Cacao, lo cual abre la posibilidad de que el vector pCBL-5 pueda ser utilizado para la transformación genética de cloroplastos en estas especies.

El alineamiento realizado para comparar la secuencia obtenida de cedro con respecto a tabaco, olivo y roble (figura 3.13) reveló que las diferencias de tamaño entre el amplicón de cedro y el de tabaco se deben probablemente a indels en la secuencia de tabaco de 239 pb y 103 pb, y un indel en la de cedro de 37 pb. Aunque el orden de los genes en los cloroplastos es muy conservado, en las regiones espaciadoras existen secuencias variables las cuales son muy frecuentes causando diferencias de tamaño, a demás hay mutaciones las cuales se traducen en cambios en sitios de restricción (Heinze, 1998; Turkec *et al.*, 2006). En cedro se encontró que existe un sitio de restricción *BamHI* (figura 3.8 b carril 3) el cual podría ser efecto de una de estas mutaciones; según Palmer, en

92

1985, encontró que una de las razones más prominentes en cuanto a la variación en tamaño y estructura de esta región es debido a los intrones. Estas observaciones corroboran que es mejor utilizar vectores especie-específicos ya que como el mecanismo de integración es por recombinación homóloga y las variaciones en las secuencias disminuye la eficiencia de transformación.

Adicionalmente, la identidad entre los las secuencias de cedro y tabaco es del 97 % al igual que entre las secuencias de cedro y olivo (cuadro 3.5), sin embargo, el porcentaje de cobertura entre las secuencias de cedro y olivo es del 100 % mientras que entre cedro y tabaco es del 91 %. Esta variación en el porcentaje de cobertura se debe a los indels que existen entre las secuencias alineadas. Adicionalmente los porcentajes de identidad entre el *rrn23S* de roble comparado con cedro, tabaco y olivo no son muy variables ya que el fragmento de ~ 923 pb corresponde a una secuencia codificante y estas están muy conservadas entre estas especies (figura 3.13, del nucleótido 4913 a 4828).

Los casetes de expresión para cloroplastos deben estar compuestos por un promotor, un marcador de selección y secuencias 5'/3' UTR las cuales sirven para regular la eficiencia de transcripción y traducción de los genes insertados (Verma y Daniell, 2007). Dos de los principales problemas que había enfrentado la transformación de plástidos eran la pérdida de la expresión de los transgenes en plástidos no verdes (Bogorad, 2000) y la inhabilidad de generar plantas transplastómicas a partir de embriones somáticos. Sin embargo, Kumar et al., 2004b lograron solucionar esta problemática utilizando secuencias regulatorias apropiadas para la expresión del los genes aadA y badh. Como existe un protocolo de regeneración de cedro rojo a partir de embriones somáticos (Peña-Ramírez et al., 2011) sería buena opción utilizar estos embriones para realizar la transformación genética de los plástidos, por ello utilizando las secuencias reportadas por Kumar et al., 2004b se construyo el casete de expresión que permitirá la transformación de embriones somáticos de cedro rojo. El casete de expresión contiene al promotor ribosomal 16S (Prrn16S) el cual es un promotor constitutivo fuerte en cloroplastos (Shinozaki et al., 1986) junto con su secuencia regulatoria 5' UTR, este promotor contiene los sitios de unión de las RNA polimerasas de cloroplasto y nuclear lo cual facilita la expresión en tejidos verdes y no verdes. El promotor Prm16S 5' UTR y el terminador TpsbA 3'UTR dirigen la expresión del gen aadA que confiere resistencia a espectinomicina (Goldschmidt-Clermont, 1991) aunque también pudo haberse utilizado el gen neo, que confiere

resistencia a kanamicina, sin embargo, se ha reportado que la recuperación de plantas transformadas utilizando este agente de selección es muy baja (Carrer *et al.*, 1993). El promotor G10 T7 y su región 5'UTR es de origen viral pero ha funcionado bien en cloroplastos ya que también facilita la expresión en tejidos verdes y no verdes (Guda *et al.*, 2000; Staub *et al.*, 2000; Dingra *et al.*, 2004). Este promotor así como el terminador Trps16 3'UTR dirigieron la expresión del gen reportero *gfp*, el cual ha sido utilizado ampliamente para realizar transformación transitoria y estable (Hibberd *et al.*, 1998; Limaye *et al.*, 2006). Con las secuencias utilizadas en este trabajo para la construcción del casete de expresión se espera que sea posible tanto la transformación de embriones somáticos como de tejidos organogénicos aunque se corre el riesgo de obtener quimeras, las cuales no son útiles cuando se regeneran a plantas completas.

En este trabajo se describe la generación del vector pCBL-5 para la transformación de plástidos de Cedrela odorata L. el cual es el segundo trabajo que se realiza utilizando una especie forestal leñosa de interés económico (Lamb, 1968), siendo Populus alba la primera (Okumura et al., 2006). Una de las ventajas de trabajar con esta especie es que se cuenta con protocolos eficientes para la regeneración tanto por organogénesis como por embriogénesis somática (Peña-Ramírez et al., 2010; Peña-Ramírez et al., 2011), lo cual es un punto importante para desarrollar estrategias de transformación. El vector pCBL-5 constituye una herramienta novedosa para aplicaciones biotecnológicas en cedro rojo. La tecnología de la transformación de plástidos no solo podría ser utilizada para realizar la insercione de genes de resistencia contra en barrenador Hysipyla grandella como podría ser la integración de genes que codifican proteínas CRY1 (De Cosa et al., 2001); realizar ingeniería metabólica (Madoka et al., 2002). Además, con los resultados obtenidos del 99% de identidad de la secuencia de cedro con especies de interés económico como mango, naranja y cacao, se abre la posibilidad de utilizar este vector para realizar transformación de los cloroplastos de estas especies con todos los beneficios ya mencionados.

BIBLIOGRAFÍA

- Bogorad L. (2000) Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol. 18: 257–263.
- Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet. 241: 49–56.
- De Cosa B, MoarW, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71–74.
- DeGray, G., Kanniah, R., Franzine, S., John, S., and Daniell, H. (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127, 852–862.
- Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol, 311:1001-1009.
- Daniell H, Khan M, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 2002, 7:84-91.
- Daniell H, Kumar S, Duformantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops.Trends Biotechnol 2005, 23:238-245.
- Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503–1518.
- Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16: 345–348.
- Dhingra A, Portis AR Jr, Daniell H (2004) Enhanced translation of a chloroplast expressed RbcS gene restores SSU levels and photosynthesis in nuclear antisense RbcS plants. Proc Natl Acad Sci USA 101:6315–6320.

- Fernandez-San Millan, A., Mingo-Castel, A., and Daniell, H. (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J. 1, 71–79.
- Goldschmidt-Clermont M. (1991).Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site directed transformation of Chlamydomonas. Nucleic Acids Res. 19:4083–4089.
- Guda C, Lee SB, Daniell H (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262.
- Heinze B. (1998). PCR-based chloroplast DNA assays for the identification of native Populus nigra and introduced poplar hybrids in Europe. *Forest Genetics*. 5:31-38.
- Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16: 627–632.
- Kanamoto H, Yamashita A, Okumura S, Hattori M, Tomizawa K (2005) The complete genome sequenceof the Lactuca sativa (lettuce) chloroplast. Unpublished.
- Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25:334–340.
- Khan MS and Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nature Biotechnol. 17: 910-915.
- Kumar S., Dhingra A., Daniell H. (2004a). Stable transformation of the cotton plastid genome and maternal inheritance of transgene. Plant Mol. Biol. 56:203-216.
- Kumar S., Dhingra A., Daniell H. (2004b).Plastid-Expressed Bataine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, And Leaves Confers Enhanced Salt Tolerance. Plant physiology. 136:2843-2854.
- Kunnimalaiyaan, M., Shi, F., and Nielsen, B. L. (1997). Analysis of the tobacco chloroplast DNA replication origin (oriB) downstream of the 23S rRNAgene. J. Mol. Biol. 268, 273–283.
- Lamb AFA (1968) Fast growing timbers of the lowland tropics, no. 2 Cedrela odorata L. Commonwealth Forestry Institute, University of Oxford, Oxford.
- Limaye A, Koya V, Samsam M, Daniell H (2006) Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. FASEB J 20:959–961.
- Lugo, S. K.,Kunnimalayaan, M., Singh, N. K., and Nielsen, B. L. (2004). Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci. 166: 151–161.
- Madoka Y, Tomizawa K, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol. 43:1518–152.
- Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, translation. Plant Physiol.138:1746-1762.
- Rodriguez L. T., (2010). Clonación de regiones cloroplastídicas de cedro rojo (Cedrela odorata L.) para la elaboración de vectores de clonación. Tesis de licenciatura. Instituto Tecnológico Superior de Acayucan. México. 53 p.
- Ohme M, Kamogashira T, Shinozaki K, Sugiura M (1985), : Structure and cotranscription of tobacco chloroplast genes for tRNAGlu(UUC), tRNATyr(GUA) and tRNAAsp(GUC). Nucleic Acids Res 13:1045-1056.
- Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K. (2006). Transformation of poplar (*Populus alba*) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637-646.

97

CAPÍTULO IV

- O'Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3: 729-738.
- Peña-Ramírez Y.J., García-Sheseña I., Hernández-Espinoza A., Domínguez-Hernández A., Barredo-Pool F.A., Gonzáles-Rodríguez J.A., Robert M.L. (2011) Induction of somatic embryogenesis and plant regeneration in the tropical timber tree Spanish red cedar [Cedrela odorata L. (Meliaceae)]. Plant Cell Tiss Organ Culd. 105:203-209.
- Peña-Ramírez Y.J., Juárez-Gómez J., Gómez-López L., Jerónimo-Pérez J.L., García-Sheseña I., Gonzáles-Rodríguez J.A., Robert M.L. (2010) Multiple adventitious shoot formation in Spanish red cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cell.Dev.Biol 46:149-160.
- Ruf S, Hermann M, Berger IJ, Carrer H and Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19: 870–875.
- Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM and Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19: 209–216.
- Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, YamaguchiShinozaki K. (1986). The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049.
- Sikdar SR, Serino G, Chaudhuri S and Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24.
- Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18: 333–338.

- Svab Z and Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917.
- Turkec A, Sayar M, Heinze B. (2006). Identification of sweet cherry cultivars (Prunus avium L.) and analysis of their genetic relationships by chloroplast sequencecharacterised amplified regions (cpSCAR). Genetic Resourcess and Crop Evolution. 53:1635-1641.
- Vera A, Sugiura M (1995) Chloroplast rRNA transcription from structurally different tandem promoters: an additional novel-type promoter. Curr Genet 27: 280–284.
- Verma D. y Daniell H. (2007). Chloroplast Vector Systems For Biotechnology Applications. Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando Florida. *Plant Physiology*, December 2007, vol. 145, pp. 1129–1143.

CAPÍTULO V CONCLUSIONES Y PERSPECTIVAS

Partiendo de un fragmento de ~ 923 pb del gen *rrn23S* de roble (*T. roseae*) una especie arbórea originaria de América, al igual que *C. odorata,* se logró obtener una secuencia consenso que permitió el diseño de oligonucleótidos, para aislar las regiones *rrn16S-trn1* y *trnA-23S* de *C. odorata*.

Se aisló, clonó y secuenció un fragmento de ~ 2706 pb correspondiente a la región *rrn16S-trn1* del cloroplasto de *C. odorata* L., también se obtuvo otro fragmento correspondiente al *trnA-rrn23S* de ~ 3026 pb. El tamaño de la región *rrn16S-trn1-trnA-rrn23S* del cloroplasto de *C. odorata* L. es de ~ 5732 pb

La región *rrn16S-trn1-trnA-rrn23S* de *C. odorata* L. comparte 99% de identidad con especies de interés económica como *Mangifera indica, Citrus sinensis y Theobroma cacao*

Se generó un vector de transformación para el cloroplasto de cedro rojo pCBL-5, utilizando como secuencias de recombinación homóloga las regiones *rrn16S-trnl* y *trnA-23S* de *C. odorata* para flanquear un casete de expresión que contiene el gen de selección a espectinomicina *aadA* y el gen reportero de la proteína verde fluorescente *gfp.*

La estrategia desarrollada para construir el vector de transformación pCBL-5 del cloroplasto de cedro rojo a partir de la secuencia de ~ 923 pb del fragmento del gen *rm23S* de roble fue exitosa ya que todos los análisis realizados *in silico* fueron comprobados experimentalmente.

Una etapa importante en el diseño y construcción de los vectores para la transformación del cloroplasto, es comprobar su funcionalidad ya que esto permitiría evaluar la eficiencia de transformación así como la funcionalidad de los elementos reguladores utilizados para la construcción. Por lo cual sería necesario realizar eventos de transformación utilizando el vector pCBL-5 de *Cedrela odorata* L. en tejidos organogénicos o embriogénicos de cedro rojo y comprobar la inserción del casete de expresión en tejidos transformados.

Debido al diseño del casete de expresión el gen *gfp* está flanqueado por sitios de restricción que permiten sustituirlo por cualquier otro gen de interés y extender la aplicación del vector hacia otras áreas de interés.

El vector pCBL-5 podría ser patentado y ser utilizado en un futuro para la inserción de genes de resistencia contra *Hypsipyla grandella*, estos genes podrían ser los genes que codifican para proteínas *cry* de *Bacillus thuringiensis*. Este vector además podría ser utilizado para realizar la transformación de plástidos en *Mangifera indica*, *Citrus sinensis* y *Theobroma cacao*, debido al alto porcentaje de identidad (99 %) de la región *rrn16S-trn1-trnA-rrn23S* del plastoma de *C. odorata* con el de estas especies.

ANEXOS

1. Secuencia parcial correspondiente a la región rrn16S-trnl de Cedrela odorata L.

>rrn16S-trnl

AGAACCTGCCCTTGGGAGGGGAACAACAGCTGGAAACGGCTGCTAATACCCCCGTAGGCTGAGGAGCAAAAGGA GGAATCCGCCCGAGGAGGGGGCTCGCGTCTGATTAGCTAGTTGGTGAGGCAATAGCTTACCAAGGCGATGATCA GTAGCTGGTCCGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGÅGGCAGCAGT GGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGGAGCAATGCCGCGTGGAGGTAGAAGGCCCACGGGTCGTGA ACTTCTTTTCCCGGAGAAGAAGCAATGACGGTATCTGGGGGAATAAGCATCGGCTAACTCTGTGCCAGCAGCCG CGGTAATACAGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCC GCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACCAAGCTGGAGTACGGTAGGGGCAGAGG GAATTTCCGGTGGAGCGGTGAAATGCGTAGAGATCGGAAAGAACACCAACGGCGAAAGCACTCTGCTGGGCCG ACACTGACACTGAGAGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGA TGGATACTAGGCGCTGTGCGTATCGACCCGTGCAGTGCTGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGT ACGTTCGCAAGAATGAAACTCAAAGGAATTGACGGGGGCCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGA TGCAAAGCGAAGAACCTTACCAGGGCTTGACATGCCGCGAATCCTCTTGAAAGAGAGGGGGTGCCTTCGGGAAC GCGGACACAGGTGGTGCATGGCTGTCGTCAGCTCGTGCCGTAAGGTGTTGGGTTAAGTCCCGCAACGAGCGCA ACCCTCGTGCTTAGTTGCCACCGTTGAGTTTGGAACCCTGAGCAGACTGCCGGTGATAAGCCGGAGGAAGGTG AGGATGACGTCAAGTCATCATGCCCCTTATGCCCTGGGCGACACACGTGCTACAATGGCCGGGACAAAGGGTC GCGATCCCGCGAGGGTGAGCTAACTCCAAAAACCCGTCCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCAT GAAGCCGGAATCGCTAGTAATCGCCGGTCAGCCATACGGCGGTGAATTCGTTCCCGGGCCTTGTACACACCGC GCTAGTGACTGGAGTGAAGTCGTAACAAGGTAGCCGTACTGGAAGGTGCGGCTGGATCACCTCCTTTTCAGGG AGAGCGAATGCTTGTTGGGTATTTTGGTTTGACACCGCTTCACACCCAAAAAGAAGCGAGCTACGCCTGAGTG AAACTTGGAGATGGAAGTCTTCTTTCGTTTCTCGACGGTGAAGTAAGACCAAGCCCATGAGCTTATTATCCTA TATTAGCTCAGTGGTAGAGCGCGCCCCTGATAATTGCGTCGTTGTGCCTGGGCTGTGAGGGCTCTCAGCCACA TGGATAGTTCAATGTGCTCATCAGCGCCTGACCCTGAGATGTGGATCATCCAAGGCACATTAGCATGGCGTAC TTCTCCTGTTCGAACCGGGGGTTTGAAAACAAACTCCTCCTCAGGAGGATAGATGGGGCGATTCAGGTGAGAT TCTCGATAATCCATACATCCCTTATCAGTGTATGGACAGCTATCTCTCGAGCACAGGTTTAGGTTCGGCCTCA ATGGGAAAAAAATGGAGCACCTAACAACGTATCTTCACAGACCAAGAACTACGAGATCGCCCCCTTTCATTTC ATTCTGGGGTGACGGAGGGATCGTACCATTCGAGCCTTTTTTTCATGCTTTTCCCGGAGGGTCTGGAGAAAGC AATGGGAGCAGGTTTGAAAAAGGATCTTAGAGTGTCTAGGGTTGGGCCGGGAGGGTCTCTTAACGCCTTCATT TTTCTTCTCATCGGAGTTATTTCCCAAAATACTTGCCATGATAAGGAAGAAGGGGGGGAACAAGCACACTTGGAG AGCGCAGTACAACGGAGAGTTGTATGCTGCGTTCGGGAAGGATGAATCGCTCCCGAAAAGGAATCCGTTGATT CTCTCCCAATTGGTTGGACCGTAGGTGCGATGATTTACTTCACGGGCGAGGTCTCTGGTTCAAGTCCAGGATG GCCCA

2. Secuencia parcial correspondiente a la región trnA-rrn23S de Cedrela odorata L.

>trnA-rrn23S

GGGGATATAGCTCAGTTGGTAGAGCTCCGCTCTTGCAATTGGGTCGTTGCGATTACGGGTTGGATGTCTAATT GTCCAGGCGGTAATGATAGTATCTTGTACCTGAACCGGTGGCTCACTTTTTCTAAGTAATGGGGAAGAGGACC GAAACATGCCACTGAAAGACTCTACTGAGACAAAGATGGGCTGTCAAGAACGTAGAAGAGGTAGGATGGGCGG TTGGTCAGATCTAGTATGGATCGTACATGGACGGTAGTTGGAGTCGGCGGCTCTCTTAGGGTTCCCTCATCTG GGATCCCTGGGGAAGAGGATCAAGTTGGCCCTTGCGAACAGCTTGATGCACTATCTCCCTTCAACCCTTTGAG CGAAATGCGACAAAAGGAAGGAAAATCCATGGACCGACCCCATCGTCTCCACCCCGTAGGAACTACGAGATCA GCTGTCCACTCTCAGGTTGGGCAGTAAGGGTCGGAGAAGGGCAATTACTCATTCTTAAAACCTGCGGTCGGAG AAGGAGCAATCACTCATTCTTAAAAACCAGCATTCTTAAGACCAAAGAGTGGGGGGGAAAAGGGGGGAAAGCT CAGCACCTTTTGAGATTTTGAGAAGAGTTGCTCTTTGGAGAGCACAGTACGATGAAAGTTGTAAGCTGTGTTC GGGGGGGGAGTTATTGTCTATCGTTGGCCTCTATGGTAGAATCAGTGGGGGCCTGAGAGGCGGTGGTTTACCCT GTGGCGGATGTCAGCGGTTCGAGTCCGCTTATCTCCCAACTCGTGAACTTAGCCGATACAAAGCTATATGAATA TGATAGCACCCAATTTTTCCGATTCGGCAGTTCGATCTATGGTTTATTATTCATGGACGTTGATAAGATCCTT CCATTTAGCAGCACCTTAGGATGGCATAGCCTTAAAGTCAAGTTAAGGGCGAGGTTCAAACAAGGAAAGGCTT ACGGTGGATACCTAGGCACCCAGAGACGAGGAGGAGGCGTAGTAAGCGACGAAATGCTTCGGGGAGTTGAAAAT GAAATGGGAGCAGCCTAAACCGTGAAAACGGGGTTGTGGGAGAGCAATACAAGCGTCGTGCTGCTAGGCGAAG CGGTGGAGTGCTGCACCCTAGATGGCGAGAGTCCAGTAGCCGAAAGCATCACTAGCTTACGCTCTGACCCGAG TAGCATGGGGCACGTGGAATCCCGTGTGAATCAGCAAGGACCACCTTGCAAGGCTAAATACTCCTGGGTGACC GATAGCGAAGTAGTACCGTGAGGGAAGGGTGAAAAGAACCCCCCATCGGGGAGTGAAATAGAACATGAAACCGT AAGCTCCCAAGCAGTGGGAGGAGCCCCGGGGCTCTGACCGCGTGCCTGTTGAAGAATGAGCCGGCGACTCATAG GCAGTGGCTTGGTTAAGGGAACCCACCGGAGCCGTAGCGAAAGCGAGTCTTCATAGGGCAATTGTCACTGCTT ATGGACCCGAACCTGGGTGATCTATCCATGACCAGGATGAAGCTTGGGTGAAACTAAGTGGAGGTCCGAACCG CTCCCCGAAATGCGTTGAGGCGCAGCAGTTGACTGGACATCTAGGGGTAAAGCACTGTTTCGGTGCGGGCCGC GAGAGCGGTACCAAATCGAGGCAAACTCTGAATACTAGATATGACCTCAAAATAACAGGGGTCAAGGTCGGCC AGTGAGACGATGGGGGATAAGCTTCATCGTCGAGAGGGAAACAGCCCGGATCACCAGCTAAGGCCCCCTAAATG ACCGCTCAGTGATAAAGGAGGTAGGGGTGCAGAGACAGCCAGGAGGTTTGCCTAGAAGCAGCCACCCTTGAAA GAGTGCGTAATAGCTCACTGATCGAGCGCTCTTGCGCCGAAGATGAACGGGGCTAAGCGATCTGCCGAAGCTG TGGGATGTAAAAATGCATCGGTAGGGGAGCGTTCCGCCTTAGAGGGAAGCACCCGCGCGAGCGGCGGTGGACG AAGCGGAAGCGAGAATGTCGGCTTGAGTAACGCAAACATTGGTGAGAATCCAATGCCCCGAAAAACCCAAGGGT TCCTCCGCAAGGTTCGTCCACGGAGGGTGAGTCAGGGCCTAAGATCAGGCCGAAAGGCGTAGTCGATGGACAA CAGGTGAATATTCCTGTACTACCCCTTGTTGGTCCCGAGGGACGGAGGAGGCTAGGTTAGCCGAAAGATGGTT ATCGGTTCAAGGACGCAAGGTGCCCCTGCTTTTTCAGGGTAAGAAGGGGTAGAAAAATGCCCCCGAGCCAATG TTCGAGTACCAGGCGCTACGGCGCTGAAGTAACCCATGCTATACTCCCAGGAAAAGCTCGAACGACCTTCAAC CTAAGGAACTCGGCAAAATAGCCCCGTAACTTCGGGAGAAGGGGTGCCTCCTCACAAAGGGGGTCGCAGTGAC CAGGCCCGGGCGACTGTTTACCAAAAACACAGGTCTCCGCAAAGTCGTAAGACCATGTATGGGGGGCTGACGCC GGCGGCCGTAACTATAACGGTCCTAAGGTAGCG

3. Secuencia del vector de transformación para cloroplastos de Cedrela odorata L. pCBL-5.

Nombre: pCBL-5

Tamaño de la secuencia: 10751 bp dsDNA circular Definición: Vector de transformación para cloroplastos de cedro rojo *Cedrela odorata* L. Localización de las secuencias que lo constituyen:

- 1..2234= Vector pUC19
- 2235..2240= Sitio de restricción HindIII
- 2241..4946= Secuencia de la región rrn16S-trnl de Cedrela odorata L.
- 4947..4954= Sitio de restricción Notl
- 4955..5165= Prm16S
- 5166..5171= Sitio de restricción Sall
- 5172..5966= Gene aadA
- 5967..5972= Sitio de restricción Stul
- 5973..6366= TpsbA
- 6367..6416= Pg10T7
- 6417..6422= Sitio de restricción Sphl
- 6419..7135= Gene gfp
- 7136..7141= Sitio de restricción Pstl
- 7142..7289= Trps16
- 7290..7297= Sitio de restricción Not!
- 7298..10323= Secuencia de la región trnA-rrn23S de Cedrela odorata L.
- 10324..10329= Sitio de restricción Xbal
- 10330..10751= Vector pUC19

Inicio

1	GACGAAAGGG	CCTCGTGATA	CGCCTATTTT	TATAGGTTAA	TGTCATGATA	ATAATGGTTT
61	CTTAGACGTC	AGGTGGCACT	TTTCGGGGAA	ATGTGCGCGG	AACCCCTATT	TGTTTATTTT
121	TCTAAATACA	TTCAAATATG	TATCCGCTCA	TGAGACAATA	ACCCTGATAA	ATGCTTCAAT
181	AATATTGAAA	AAGGAAGAGT	ATGAGTATTC	AACATTTCCG	TGTCGCCCTT	ATTCCCTTTT
241	TTGCGGCATT	TTGCCTTCCT	GTTTTTGCTC	ACCCAGAAAC	GCTGGTGAAA	GTAAAAGATG
301	CTGAAGATCA	GTTGGGTGCA	CGAGTGGGTT	ACATCGAACT	GGATCTCAAC	AGCGGTAAGA
361	TCCTTGAGAG	TTTTCGCCCC	GAAGAACGTT	TTCCAATGAT	GAGCACTTTT	AAAGTTCTGC
421	TATGTGGCGC	GGTATTATCC	CGTATTGACG	CCGGGCAAGA	GCAACTCGGT	CGCCGCATAC
481	ACTATTCTCA	GAATGACTTG	GTTGAGTACT	CACCAGTCAC	AGAAAAGCAT	CTTACGGATG
541	GCATGACAGT	AAGAGAATTA	TGCAGTGCTG	CCATAACCAT	GAGTGATAAC	ACTGCGGCCA
601	ACTTACTTCT	GACAACGATC	GGAGGACCGA	AGGAGCTAAC	CGCTTTTTTG	CACAACATGG
661	GGGATCATGT	AACTCGCCTT	GATCGTTGGG	AACCGGAGCT	GAATGAAGCC	ATACCAAACG

721	ACGAGCGTGA	CACCACGATG	CCTGTAGCAA	TGGCAACAAC	GTTGCGCAAA	CTATTAACTG
781	GCGAACTACT	TACTCTAGCT	TCCCGGCAAC	AATTAATAGA	CTGGATGGAG	GCGGATAAAG
841	TTGCAGGACC	ACTTCTGCGC	TCGGCCCTTC	CGGCTGGCTG	GTTTATTGCT	GATAAATCTG
901	GAGCCGGTGA	GCGTGGGTCT	CGCGGTATCA	TTGCAGCACT	GGGGCCAGAT	GGTAAGCCCT
961	CCCGTATCGT	AGTTATCTAC	ACGACGGGGA	GTCAGGCAAC	TATGGATGAA	CGAAATAGAC
1021	AGATCGCTGA	GATAGGTGCC	TCACTGATTA	AGCATTGGTA	ACTGTCAGAC	CAAGTTTACT
1081	CATATATACT	TTAGATTGAT	TTAAAACTTC	ATTTTTAATT	TAAAAGGATC	TAGGTGAAGA
1141	TCCTTTTTGA	TAATCTCATG	ACCAAAATCC	CTTAACGTGA	GTTTTCGTTC	CACTGAGCGT
1201	CAGACCCCGT	AGAAAAGATC	AAAGGATCTT	CTTGAGATCC	TTTTTTTTCTG	CGCGTAATCT
1261	GCTGCTTGCA	ААСААААААА	CCACCGCTAC	CAGCGGTGGT	TTGTTTGCCG	GATCAAGAGC
1321	TACCAACTCT	TTTTCCGAAG	GTAACTGGCT	TCAGCAGAGC	GCAGATACCA	AATACTGTCC
1381	TTCTAGTGTA	GCCGTAGTTA	GGCCACCACT	TCAAGAACTC	TGTAGCACCG	CCTACATACC
1441	TCGCTCTGCT	AATCCTGTTA	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	TGTCTTACCG
1501	GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA	ACGGGGGGGTT
1561	CGTGCACACA	GCCCAGCTTG	GAGCGAACGA	CCTACACCGA	ACTGAGATAC	CTACAGCGTG
1621	AGCATTGAGA	AAGCGCCACG	CTTCCCGAAG	GGAGAAAGGC	GGACAGGTAT	CCGGTAAGCG
1681	GCAGGGTCGG	AACAGGAGAG	CGCACGAGGG	AGCTTCCAGG	GGGAAACGCC	TGGTATCTTT
1741	ATAGTCCTGT	CGGGTTTCGC	CACCTCTGAC	TTGAGCGTCG	ATTTTTTCTCA	TGCTCGTCAG
1801	GGGGGGGGAG	CCTATCGAAA	AACGCCAGCA	ACGCGGCCTT	TTTACGETTC	CTGGCCTTTT
1861	CCTCCCCTTT	TCCTCACATC	THETTE	CGTTATCCCC	TCATTCTCTC	GATAACCGTA
1001	TTACCCCCTT	TCACTCACCT	CATACCCCTC	GCCGCAGCCG	AACCACCCAC	CGCAGCGAGT
1921	CAGTGACCCA	CCAACCCCAA	GALACCOCIC	TACCCAAACC	CCCTCTCCCCC	CCCCCTTCCC
2041	CCATTCATTA	ATCCACCTCC	CACCACACCT	TACGCAAACC	GAAACCCCCC	ACTCACCCCA
2101	ACCONTENT	TCTCACTTAC	CHCGACAGGI	ACCCACCCCA	CCCTTTTACAC	TTTTATCCTTC
2161	CCCCTCCTAT	CURCHCHCCA	ATTCACICATI	CATTACAATT	TCACACACCA	AACACCTATC
2201	ACCAMCAMMA	GIIGIGIGGA	ALIGIGAGCG	CHUCCCACCC	CARCACAGGA	TCCADACCCC
2221	TCCTTATIA	CGCCAAGCII	AGAACCIGCC	CIIGGGAGGG	GAACAACAGC	CCCCTCCCCT
2201	CIICATATACC	ACMMCCMCAC	AGGAGCAAAA	DCCDDCCCCD	GCCCGAGGAG	CTCCTCCCAC
2341	CTGATTAGCT	AGTTGGTGAG	GLAATAGETT	ACCAAGGCGA	TGATCAGIAG	CIGGICCGAG
2401	AGGATGATCA	GCCACACIGG	GACIGAGACA	CGGCCCAGAC	CCCCCCCCCC	GGCAGCAGIG
2401	GGGAATTTTC	CGCAATGGGC	GAAAGUUTGA	CUGGAGCAATG	CCGCGTGGAG	GTAGAAGGCC
2521	CACGGGTCGT	GAACTICITT	ACCCCGGAGAA	GAAGCAATGA	CGGTATCTGG	GGAAIAAGCA
2001	TUGGUTAAUT	LIGIGUCAGC	AGCCGCGGTA	ATACAGAGGA	TGCAAGCGIT	ATCCGGAAIG
2041	ATTGGGGCGTA	AAGCGTCTGT	AGGTGGCTTT	TTAAGTCCGC	CGTCAAATCC	CAGGGCTCAA
2701	CCCTGGACAG	GCGGTGGAAA	CTACCAAGCT	GGAGTACGGT	AGGGGCAGAG	GGAATTTCCG
2761	GTGGAGCGGT	GAAATGCGTA	GAGATCGGAA	AGAACACCAA	CGGCGAAAGC	ACTUTGUTGG
2821	GCCGACACTG	ACACTGAGAG	ACGAAAGCTA	GGGGGAGCGAA	TGGGATTAGA	TACCCCAGTA
2881	GTCCTAGCCG	TAAACGATGG	ATACTAGGCG	CTGTGCGTAT	CGACCCGTGC	AGTGCTGTAG
2941	CTAACGCGTT	AAGTATCCCG	CCTGGGGAGT	ACGTTCGCAA	GAATGAAACT	CAAAGGAATT
3001	GACGGGGGCC	CGCACAAGCG	GTGGAGCATG	TGGTTTAATT	CGATGCAAAG	CGAAGAACCT
3061	TACCAGGGCT	TGACATGCCG	CGAATCCTCT	TGAAAGAGAG	GGGTGCCTTC	GGGAACGCGG
3121	ACACAGGTGG	TGCATGGCTG	TCGTCAGCTC	GTGCCGTAAG	GTGTTGGGTT	AAGTCCCGCA
3181	ACGAGCGCAA	CCCTCGTGCT	TAGTTGCCAC	CGTTGAGTTT	GGAACCCTGA	GCAGACTGCC
3241	GGTGATAAGC	CGGAGGAAGG	TGAGGATGAC	GTCAAGTCAT	CATGCCCCTT	ATGCCCTGGG
3301	CGACACACGT	GCTACAATGG	CCGGGACAAA	GGGTCGCGAT	CCCGCGAGGG	TGAGCTAACT
3361	CCAAAAACCC	GTCCTCAGTT	CGGATTGCAG	GCTGCAACTC	GCCTGCATGA	AGCCGGAATC
3421	GCTAGTAATC	GCCGGTCAGC	CATACGGCGG	TGAATTCGTT	CCCGGGCCTT	GTACACACCG
3481	CCCGTCACAC	TATGGGAGCT	GGCCATGCCC	GAAGTCGTTA	CCTTAACCGC	AAGGAGGGGG
3541	GTGCCGAAGG	CAGGGCTAGT	GACTGGAGTG	AAGTCGTAAC	AAGGTAGCCG	TACTGGAAGG
3601	TGCGGCTGGA	TCACCTCCTT	TTCAGGGAGA	GCGAATGCTT	GTTGGGTATT	TTGGTTTGAC
3661	ACCGCTTCAC	ACCCAAAAAG	AAGCGAGCTA	CGCCTGAGTG	AAACTTGGAG	ATGGAAGTCT
3721	TCTTTCGTTT	CTCGACGGTG	AAGTAAGACC	AAGCCCATGA	GCTTATTATC	CTAGGTCGGA
3781	ACAAGTTGAT	AGGATCCCCC	TTTTACGCCC	CCATGTCGCC	ACACGGGAGG	GACATGGGGG
3841	CGTAAAAAGG	AAAGAGAGGG	ATGGGGTTTC	TCTCGCTTTT	GGCATAGTGG	GCCCCCAGCG
3901	GGAGGCCCGC	ACGACGGGCT	ATTAGCTCAG	TGGTAGAGCG	CGCCCCTGAT	AATTGCGTCG

3961	TTGTGCCTGG	GCTGTGAGGG	CTCTCAGCCA	CATGGATAGT	TCAATGTGCT	CATCAGCGCC
4021	TGACCCTGAG	ATGTGGATCA	TCCAAGGCAC	ATTAGCATGG	CGTACTTCTC	CTGTTCGAAC
4081	CGGGGGGTTTG	AAAACAAACT	CCTCCTCAGG	AGGATAGATG	GGGCGATTCA	GGTGAGATCC
4141	AATGTAGATC	CAACTTTCTA	TTCACTCGTG	GGATCCGGGC	GGTCCGGGGG	GGACCACCAC
4201	GGCTCCTCTC	TTCTCGATAA	TCCATACATC	CCTTATCAGT	GTATGGACAG	CTATCTCTCG
4261	AGCACAGGTT	TAGGTTCGGC	CTCAATGGGA	AAAAAATGG	AGCACCTAAC	AACGTATCTT
4321	CACAGACCAA	GAACTACGAG	ATCGCCCCTT	TCATTTCATT	CTGGGGTGAC	GGAGGGATCG
4381	TACCATTCGA	GCCTTTTTTT	TCATGCTTTT	CCCGGAGGTC	TGGAGAAAGC	TGCAATCAAT
4441	AGGATTTTCC	TAATCCTCCC	TTCCCGAAAG	GAAGAACGTG	AAATTCTTTT	TCCTTTTTCCT
4501	TTCCGCAGGG	ACCAGGAGAT	TGGATCTAGC	CGTAAGAAGA	ATGCTTGGCT	GATAAATAAC
4561	TCACTTCTTG	GTCTTCGACC	CCCTCAGTCA	CTACGAACGC	CCCCGATAGG	TGCAATGGGA
4621	TGTGTCTATT	TATCTATCTC	TTGACTCGAA	ATGGGAGCAG	GTTTGAAAAA	GGATCTTAGA
4681	GTGTCTAGGG	TTGGGCCGGG	AGGGTCTCTT	AACGCCTTCA	TTTTTCTTCT	CATCGGAGTT
4741	ATTTCCCAAA	TACTTGCCAT	GATAAGGAAG	AAGGGGGGAA	CAAGCACACT	TGGAGAGCGC
4801	AGTACAACGG	AGAGTTGTAT	GCTGCGTTCG	GGAAGGATGA	ATCGCTCCCG	AAAAGGAATC
4861	CGTTGATTCT	CTCCCAATTG	GTTGGACCGT	AGGTGCGATG	ATTTACTTCA	CGGGCGAGGT
4921	CTCTGGTTCA	AGTCCAGGAT	GGCCCAGCGG	CCGCGGATCC	TCCCTACAAC	TAGTGATATC
4981	GCCCGGAGTT	CGCTCCCAGA	AATATAGCCA	TCCCTGCCCC	CTCACGTCAA	TCCCACGAGC
5041	CTCTTATCCA	TTCTCATTCA	ACGACGGCGA	ATTGTATTGA	TTGGTGAGCT	AATCAATATC
5101	ADATATCADA	CCCAAATCCT	TAAATTATTC	ATTOINTON	TAATTCAATA	ATTTAACAAT
5161	AATTACTCCA	CATCCATCCC	CAACCCCTCA	TCCCCCAACT	ATCCACTCAA	CTATCACACC
5221	TACTTCCCCT	CATCGATCCC	CATCTCCAAC	CCACCUTCCT	CCCCCCTACAT	TTCTACCCCT
5201	CCCCACTCCA	TCCCCCCCCCC	AACCOACACA	CUCAUGIIGCI	GGCCGIACAI	ACCCECACCC
52/1	TAACCOUNCA	TGGCGGCCIG	AAGCCACACA	GIGAIAIIGA	CCUMUMCCAA	ACGGIGACCG
5401	CCCCCCCCCC	CACCCACADO	CUCCCCCCCCCC	TGATCAACGA	CAMECTER	ACTICGGCII
5461	CCCCTGGAGA	GAGCGAGATT	CICCGCGCIG	TAGAAGICAC	CATIGITIGIG	CACGACGACA
5521	ACAMECOMCC	ACCUATATCCA	GUIAAGUGUG	AACTGCAATT	TGGAGAAIGG	AGCGCAATG
SJZI EE01	ACATTCTTGC	AGGIAICIIC	GAGCCAGCCA	CGATCGACAT	TGATCIGGCI	ATCTTGCTGA
5361	CAAAAGCAAG	AGAACATAGC	GTTGCCTTGG	TAGGTCCAGC	GGCGGAGGAA	CTCTTTGATC
5041	CGGTTCCTGA	ACAGGATCTA	TTTGAGGCGC	TAAATGAAAC	CTTAACGCTA	TGGAACTCGC
5701	CGCCCGACTG	GGCTGGCGAT	GAGCGAAATG	TAGTGCTTAC	GTTGTCCCGC	ATTTGGTACA
5/01	GCGCAGTAAC	CUGCAAAATC	GUGUUGAAGG	ATGTUGUTGU	CGACTGGGCA	ATGGAGCGCC
5021	TGCCGGCCCA	GTATCAGCCC	GTCATACTTG	AAGCTAGACA	GGCTTATCTT	GGACAAGAAG
5001	AAGATCGCTT	GGUUTUGUGU	GCAGATCAGT	TGGAAGAATT	TGTCCACTAC	GTGAAAGGCG
5941	AGATCACCAA	GGTAGTCGGC	AAATAAAGGC	CTGATCCTGG	CCTAGTCTAT	AGGAGGTTTT
6001	GAAAAGAAAG	GAGCAATAAT	CATTTTCTTG	TTCTATCAAG	AGGGTGCTAT	TGCTCCTTTC
6061	TTTTTTTCTT	TTTATTATT	TACTAGTATT	TTACTTACAT	AGACTTTTTT	GTTTACATTA
6121	TAGAAAAAGA	AGGAGAGGTT	ATTTTCTTGC	ATTTATTCAT	GATTGAGTAT	TCTATTTGA
0181	TTTTGTATTT	GTTTTAAAATT	GTAGAAATAG	AACTTGTTTC	TCTTCTTGCT	AATGTTACTA
6241	TATCTTTTTG	ATTTTTTTTT	TCCAAAAAAA	AAATCAAATT	TTGACTTCTT	CTTATCTCTT
6301	ATCTTTGAAT	ATCTCTTATC	TTTGAAATAA	TAATATCATT	GAAATAAGAA	AGAAGAGCTA
6361	TATTCGCCAT	GGGTATATCT	CCTTCTTAAA	GTTAAACAAA	ATTATTTCTA	GGATCCGCAT
6421	GCGTAAAGGA	GAAGAACTTT	TCACTGGAGT	TGTCCCAATT	CTTGTTGAAT	TAGATGGTGA
6481	TGTTAATGGG	CACAAATTTT	CTGTCAGTGG	AGAGGGTGAA	GGTGATGCAA	CATACGGAAA
6541	ACTTACCCTT	AAATTTATTT	GCACTACTGG	AAAACTACCT	GTTCCATGGC	CAACACTTGT
6601	CACTACTTTC	GGTTATGGTG	TTCAATGCTT	TGCGAGATAC	CCAGATCATA	TGAAACAGCA
6661	TGACTTTTTC	AAGAGTGCCA	TGCCCGAAGG	TTATGTACAG	GAAAGAACTA	TATTTTTCAA
6721	AGATGACGGG	AACTACAAGA	CACGTGCTGA	AGTCAAGTTT	GAAGGTGATA	CCCTTGTTAA
6781	TAGAATCGAG	TTAAAAGGTA	TTGATTTTAA	AGAAGATGGA	AACATTCTTG	GACACAAATT
6841	GGAATACAAC	TATAACTCAC	ACAATGTATA	CATCATGGCA	GACAAACAAA	AGAATGGAAT
6901	CAAAGTTAAC	TTCAAAATTA	GACACAACAT	TGAAGATGGA	AGCGTTCAAC	TAGCAGACCA
6961	TTATCAACAA	AATACTCCAA	TTGGCGATGG	CCCTGTCCTT	TTACCAGACA	ACCATTACCT
7021	GTCCACACAA	TCTGCCCTTT	CGAAAGATCC	CAACGAAAAG	AGAGACCACA	TGGTCCTTCT
7081	TGAGTTTGTA	ACAGCTGCTG	GGATTACACA	TGGCATGGAT	GAACTATACA	AATAACTGCA
7141	GAAATTCAAT	TAAGGAAATA	AATTAAGGAA	ATACAAAAAG	GGGGGTAGTC	ATTTGTATAT

-

107

e

7201	AACTTTGTAT	GACTTTTCTC	TTCTATTTTT	TTGTATTTCC	TCCCTTTCCT	TTTCTATTTG
7261	TATTTTTTA	TCATTGCTTC	CATTGAATTG	CGGCCGCGGG	GATATAGCTC	AGTTGGTAGA
7321	GCTCCGCTCT	TGCAATTGGG	TCGTTGCGAT	TACGGGTTGG	ATGTCTAATT	GTCCAGGCGG
7381	TAATGATAGT	ATCTTGTACC	TGAACCGGTG	GCTCACTTTT	TCTAAGTAAT	GGGGAAGAGG
7441	ACCGAAACAT	GCCACTGAAA	GACTCTACTG	AGACAAAGAT	GGGCTGTCAA	GAACGTAGAA
7501	GAGGTAGGAT	GGGCGGTTGG	TCAGATCTAG	TATGGATCGT	ACATGGACGG	TAGTTGGAGT
7561	CGGCGGCTCT	CTTAGGGTTC	CCTCATCTGG	GATCCCTGGG	GAAGAGGATC	AAGTTGGCCC
7621	TTGCGAACAG	CTTGATGCAC	TATCTCCCTT	CAACCCTTTG	AGCGAAATGC	GACAAAAGGA
7681	AGGAAAATCC	ATGGACCGAC	CCCATCGTCT	CCACCCCGTA	GGAACTACGA	GATCACCCCA
7741	AGGACGCCTT	CGGTATCCAG	GGGTCGCGGA	CCGACCATAG	AACCCTGCTC	AATAAGTGGA
7801	ATGCATTAGC	TGTCCACTCT	CAGGTTGGGC	AGTAAGGGTC	GGAGAAGGGC	AATTACTCAT
7861	TCTTAAAACC	TGCGGTCGGA	GAAGGAGCAA	TCACTCATTC	TTAAAACCAG	CATTCTTAAG
7921	ACCAAAGAGT	GGGGGGGGAA	AAGGGGGGAA	AGCTCTCCGT	TCCTGGTTCT	CCTGTAGCTG
7981	GATCCTCCGG	AACCACAAGA	ATTCTTAGTT	AGAATGGGAT	TCCAACTCAG	CACCTTTTGA
8041	GATTTTGAGA	AGAGTTGCTC	TTTGGAGAGC	ACAGTACGAT	GAAAGTTGTA	AGCTGTGTTC
8101	GCGCGCCAGT	TATTCTCTAT	CGTTGGCCTC	TATCCTACAA	TCAGTGGGGGG	CCTGAGAGGC
8161	CCTCCTTTAC	CCTCTCCCCCC	ATCTCACCCC	THICGAGTCCC	CTTATCTCCA	ACTCCTCAAC
9221	TTACCCCATA	CAAACCTATA	TCAATATCAT	ACCACCCAAT	THEFT	CCCCACTTCC
0221	AMCMAMCCMM	CAAAGCIAIA	CCACCUMCAU	AGCACCCAAI	CAMMUACCAC	CACCUMACCA
0201	ATCTATGGTT	TATTATTCAT	GGACGTTGAT	AAGATCUTTU	ATTTAGCAG	CACCITAGGA
0341	TGGCATAGCC	TTAAAGTCAA	GTTAAGGGCG	AGGITCAAAC	AAGGAAAGGC	TIACGGIGGA
84UI	TACCTAGGCA	CCCAGAGACG	AGGAAGGGCG	TAGTAAGCGA	CGAAATGCTT	CGGGGGAGTTG
8461	AAAATAAGCG	TAGATCCGGA	GATTCCCGAA	TAGGTCAACC	TTTCGAACTG	CTGCTGAATC
8521	CATGGGCAGG	CAAGAGACAA	CCTGGCGAAC	TGAAACATCT	TAGTAGCCAG	AGGAAAAGAA
8281	AGCAAAAGCG	ATTCCCGTAG	TAGCGGCGAG	CGAAATGGGA	GCAGCCTAAA	CCGTGAAAAC
8641	GGGGTTGTGG	GAGAGCAATA	CAAGCGTCGT	GCTGCTAGGC	GAAGCGGTGG	AGTGCTGCAC
8701	CCTAGATGGC	GAGAGTCCAG	TAGCCGAAAG	CATCACTAGC	TTACGCTCTG	ACCCGAGTAG
8761	CATGGGGCAC	GTGGAATCCC	GTGTGAATCA	GCAAGGACCA	CCTTGCAAGG	CTAAATACTC
8821	CTGGGTGACC	GATAGCGAAG	TAGTACCGTG	AGGGAAGGGT	GAAAAGAACC	CCCATCGGGG
8881	AGTGAAATAG	AACATGAAAC	CGTAAGCTCC	CAAGCAGTGG	GAGGAGCCCG	GGGCTCTGAC
8941	CGCGTGCCTG	TTGAAGAATG	AGCCGGCGAC	TCATAGGCAG	TGGCTTGGTT	AAGGGAACCC
9001	ACCGGAGCCG	TAGCGAAAGC	GAGTCTTCAT	AGGGCAATTG	TCACTGCTTA	TGGACCCGAA
9061	CCTGGGTGAT	CTATCCATGA	CCAGGATGAA	GCTTGGGTGA	AACTAAGTGG	AGGTCCGAAC
9121	CGACTGATGT	TGAAGAATCA	GCGGATGAGT	TGTGGTTAGG	GGTGAAATGC	CACTCGAACC
9181	CAGAGCTAGC	TGGTTCTCCC	CGAAATGCGT	TGAGGCGCAG	CAGTTGACTG	GACATCTAGG
9241	GGTAAAGCAC	TGTTTCGGTG	CGGGCCGCGA	GAGCGGTACC	AAATCGAGGC	AAACTCTGAA
9301	TACTAGATAT	GACCTCAAAA	TAACAGGGGT	CAAGGTCGGC	CAGTGAGACG	ATGGGGGATA
9361	AGCTTCATCG	TCGAGAGGGA	AACAGCCCGG	ATCACCAGCT	AAGGCCCCTA	AATGACCGCT
9421	CAGTGATAAA	GGAGGTAGGG	GTGCAGAGAC	AGCCAGGAGG	TTTGCCTAGA	AGCAGCCACC
9481	CTTGAAAGAG	TGCGTAATAG	CTCACTGATC	GAGCGCTCTT	GCGCCGAAGA	TGAACGGGGC
9541	TAAGCGATCT	GCCGAAGCTG	TGGGATGTAA	AAATGCATCG	GTAGGGGAGC	GTTCCGCCTT
9601	AGAGGGAAGC	ACCCGCGCGA	GCGGCGGTGG	ACGAAGCGGA	AGCGAGAATG	TCGGCTTGAG
9661	TAACGCAAAC	ATTGGTGAGA	ATCCAATGCC	CCGAAAACCC	AAGGGTTCCT	CCGCAAGGTT
9721	CGTCCACGGA	GGGTGAGTCA	GGGCCTAAGA	TCAGGCCGAA	AGGCGTAGTC	GATGGACAAC
9781	AGGTGAATAT	TCCTGTACTA	CCCCTTGTTG	GTCCCGAGGG	ACGGAGGAGG	CTAGGTTAGC
9841	CGAAAGATGG	TTATCGGTTC	AAGGACGCAA	GGTGCCCCTG	CTTTTTCAGG	GTAAGAAGGG
9901	GTAGAGAAAA	TGCCCCGAGC	CAATGTTCGA	GTACCAGGCG	CTACGGCGCT	GAAGTAACCC
9961	ATGCTATACT	CCCAGGAAAA	GCTCGAACGA	CCTTCAACAA	AAGGGTACCT	GTACCCGAAA
10021	CCGACACAGG	TGGGTAGGTA	GAGAATACCT	AGGGGCGCGA	GACAACTCTC	TCTAAGGAAC
10081	TCGGCAAAAT	AGCCCCGTAA	CTTCGGGAGA	AGGGGTGCCT	CCTCACAAAG	GGGGTCGCAG
10141	TGACCAGGCC	CGGGCGACTG	TTTACCAAAA	ACACAGGTCT	CCGCAAAGTC	GTAAGACCAT
10201	GTATGGGGGC	TGACGCCTGC	CCAGTGCCGG	AAGGTCAAGG	AAGTTGGTGA	CCTGATGACA
10261	GGGGAGCCGG	CGACCGAAGC	CCCGGTGAAC	GGCGGCCGTA	ACTATAACGG	TCCTAAGGTA
10321	GCGTCTAGAG	GATCCCCCGC	TACCGAGCTC	GAATTCACTG	GCCGTCGTTT	TACAACGTCG
10381	TGACTGGGAA	AACCCTGGCG	TTACCCAACT	TAATCGCCTT	GCAGCACATC	CCCCTTTCGC

. 1

10441 CAGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATCGCCCT TCCCAACAGT TGCGCAGCCT 10501 GAATGGCGAA TGGCGCCTGA TGCGGTATTT TCTCCTTACG CATCTGTGCG GTATTTCACA 10561 CCGCATATGG TGCACTCTCA GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGCCCCG 10621 ACACCCGCCA ACACCCGCTG ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA 10681 CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC CGTCATCACC 10741 GAAACGCGCG A//