Por favor, use este identificador para citar o enlazar este ítem: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/1884
Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
JOSE LUIS HERNANDEZ STEFANONI
MIGUEL ANGEL CASTILLO SANTIAGO
Jean Francois Mas
Charlotte Wheeler
Juan Andrés Mauricio
Fernando de Jesús Tun Dzul
STEPHANIE PATRICIA GEORGE CHACON
GABRIELA REYES PALOMEQUE
BLANCA GUADALUPE CASTELLANOS BASTO
Raúl Vaca
JUAN MANUEL DUPUY RADA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1186/s13021-020-00151-6
CLIMATIC WATER DEFICIT
FOREST BIOMASS
L-BAND SAR
RANDOM FOREST
TEXTURE ANÁLISIS
YUCATAN PENINSULA
Reliable information about the spatial distribution of aboveground biomass (AGB) in tropical forests is fundamental for climate change mitigation and for maintaining carbon stocks. Recent AGB maps at continental and national scales have shown large uncertainties, particularly in tropical areas with high AGB values. Errors in AGB maps are linked to the quality of plot data used to calibrate remote sensing products, and the ability of radar data to map high AGB forest. Here we suggest an approach to improve the accuracy of AGB maps and test this approach with a case study of the tropical forests of the Yucatan peninsula, where the accuracy of AGB mapping is lower than other forest types in Mexico. To reduce the errors in field data, National Forest Inventory (NFI) plots were corrected to consider small trees. Temporal differences between NFI plots and imagery acquisition were addressed by considering biomass changes over time. To overcome issues related to saturation of radar backscatter, we incorporate radar texture metrics and climate data to improve the accuracy of AGB maps. Finally, we increased the number of sampling plots using biomass estimates derived from LiDAR data to assess if increasing sample size could improve the accuracy of AGB estimates.
2020
Artículo
Carbon balance and management, 15(1), 1-17.
Inglés
Hernández-Stefanoni, J. L., Castillo-Santiago, M. Á., Mas, J. F., Wheeler, C. E., Andres-Mauricio, J., Tun-Dzul, F., ... & Dupuy, J. M. (2020). Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Carbon balance and management, 15(1), 1-17.
DESARROLLO VEGETAL
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Investigación Arbitrados

Cargar archivos:


Fichero Tamaño Formato  
2020_Hernández_Stefanoni.pdf5.6 MBAdobe PDFVisualizar/Abrir