Por favor, use este identificador para citar o enlazar este ítem: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/2258
Application of the Gaussian Model for monitoring scenarios and estimation of SO2 atmospheric emissions in the Salamanca Area, Bajío, Mexico
Amanda Violante
WADI ELIM SOSA GONZALEZ
Ramón del Jesús Palí Casanova
Marcial Alfredo Yam Cervantes
Manuel de Jesús Aguilar Vega
JAVIER CHACHA COTO
JOSE DEL CARMEN ZAVALA LORIA
LUIS ALONSO DZUL LOPEZ
Eduardo García Villena
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.3390/atmos13060874
SIMULATION
GAUSSIAN MODEL
DISPERSION
EMISSIONS
METEOROLOGICAL VARIABLES
COEFFICIENTS
Population and industrial growth in Mexico’s Bajío region demand greater electricity consumption. The production of electricity from fuel oil has severe implications on climate change and people’s health due to SO2 emissions. This study describes the simulation of eight different scenarios for SO2 pollutant dispersion. It takes into account distance, geoenvironmental parameters, wind, terrain roughness, and Pasquill–Gifford–Turner atmospheric stability and categories of dispersion based on technical information about SO2 concentration from stacks and from one of the atmospheric monitoring stations in Salamanca city. Its transverse character, its usefulness for modeling, and epidemiological, meteorological, and fluid dynamics studies, as suggested by the models approved by the Environmental Protection Agency (EPA), show a maximum average concentration of 399 µg/m3, at an average distance of 1800 m. The best result comparison in the scenarios was scenery 8. Maximum nocturnal dispersion was shown at a wind speed of 8.4 m/s, and an SO2 concentration of 280 µg/m3 for stack 4, an atypical situation due to the geography of the city. From the validation process, a relative error of 14.7 % was obtained, which indicates the reliability of the applied Gaussian model. Regarding the mathematical solution of the model, this represents a reliable and low-cost tool that can help improve air quality management, the location or relocation of atmospheric monitoring stations, and migration from the use of fossil fuels to environmentally friendly fuels. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
2022
Artículo
Atmosphere, 13(6), 874, 2022.
Inglés
Violante Gavira, A.E.; Sosa González, W.E.; Pali Casanova, R.d.J.; Yam Cervantes, M.A.; Aguilar Vega, M.; Chacha Coto, J.; Zavala Loría, J.d.C.; Dzul López, L.A.; García Villena, E. Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico. Atmosphere 2022, 13, 874.https://doi.org/10.3390/atmos13060874
PROPIEDADES DE LOS MATERIALES
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Investigación Arbitrados

Cargar archivos:


Fichero Tamaño Formato  
2022_Amanda_Violante.pdf7.46 MBAdobe PDFVisualizar/Abrir