Por favor, use este identificador para citar o enlazar este ítem: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/3092
Genome-Wide analysis of WRKY and NAC transcription factors in Carica papaya L. and their possible role in the loss of drought tolerance by recent cultivars through the domestication of their wild ancestors
ERICK ARROYO ALVAREZ
ARIANNA CHRISTINE CHAN LEON
AMARANTA GIRON RAMIREZ
Gabriela Fuentes Ortiz
Humberto José Estrella Maldonado
Jorge Manuel Santamaría Fernández
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.3390/plants12152775
CARICA PAPAYA
DOMESTICATION
EXPRESSION ANALYSIS
TRANSCRIPTION FACTORS
A genome-wide analysis for two families of key transcription factors (TF; WRKY and NAC) involved in drought response revealed 46 WRKY and 66 NAC members of the Carica papaya genome. A phylogenetic analysis grouped the CpWRKY proteins into three groups (I, II a, b, c, d, e and III), while the CpNAC proteins were clustered into 15 groups. The conserved domains, chromosomal localization and promoter cis-acting elements were also analyzed. In addition, from a previous transcriptome study of two contrasting genotypes in response to 14 days of water deficit stress (WDS), we found that 29 of the 46 CpWRKYs genes and 25 of the 66 CpNACs genes were differentially expressed in response to the WDS. In the present paper, the native wild genotype (WG) (collected in its center of origin) consistently showed a higher expression (transcripts per million; TPM and fold change; FC) than the commercial genotype (CG) in almost all the members of the CpWRKY and CpNAC gene families. To corroborate this, we selected CpWRKY50 and CpNAC83.1 for further evaluation by RT-qPCR. Consistently, the WG showed higher relative expression levels (REL) after 14 days of WDS than the CG, in both the leaves and roots. The results suggest that the CpWRKY and CpNAC TF families are important for drought tolerance in this species. The results may also suggest that, during the domestication process, the ability of the native (wild) C. papaya genotypes to respond to drought (including the overexpression of the CpWRKY and CpNAC genes) was somehow reduced in the current commercial genotypes.
2023
Artículo
Plants 2023, 12, 2775, 2023.
Inglés
Arroyo-Álvarez, E.; Chan-León, A.; Girón-Ramírez, A.; Fuentes, G.; Estrella-Maldonado, H.; Santamaría, J.M. Genome-Wide Analysis of WRKY and NAC Transcription Factors in Carica papaya L. and Their Possible Role in the Loss of Drought Tolerance by Recent Cultivars through the Domestication of Their Wild Ancestors. Plants 2023, 12, 2775. https://doi.org/10.3390/plants12152775
CITOGENÉTICA
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Investigación Arbitrados

Cargar archivos:


Fichero Tamaño Formato  
2023_Erick_Arroyo.pdf10.32 MBAdobe PDFVisualizar/Abrir