Por favor, use este identificador para citar o enlazar este ítem:
http://cicy.repositorioinstitucional.mx/jspui/handle/1003/937
Regularization of divergent integrals: A comparison of the classical and generalized-functions approaches | |
VOLODYMYR ZOZULYA | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
DOI: 10.1007/s10444-014-9399-3 | |
BEM BIE DIVERGENT GENERALIZED FUNCTION HYPERSINGULAR | |
This article considers methods of weakly singular and hypersingular integral regularization based on the theory of distributions. For regularization of divergent integrals, the Gauss–Ostrogradskii theorem and the second Green’s theorem in the sense of the theory of distribution have been used. Equations that allow easy calculation of weakly singular, singular, and hypersingular integrals in one- and two-dimensional cases for any sufficiently smooth function have been obtained. These equations are compared with classical methods of regularization. The results of numerical calculation using classical approaches and those based of the theory of generalized functions, along with a comparison for different functions, are presented in tables and graphs of the values of divergent integrals versus the position of the colocation point. | |
2015 | |
Artículo | |
Advances in Computational Mathematics, 41(4), 727-780, 2015 | |
Inglés | |
Zozulya, V. V. (2015). Regularization of divergent integrals: A comparison of the classical and generalized-functions approaches. Advances in Computational Mathematics, 41(4), 727-780. | |
CIENCIAS TECNOLÓGICAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Artículos de Investigación Arbitrados |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
id28727_Zozulya_2015.pdf | 2.5 MB | Adobe PDF | Visualizar/Abrir |