Por favor, use este identificador para citar o enlazar este ítem: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/1820
EffHunter: A tool for prediction of effector protein candidates in fungal proteomic databases
Karla Gisel Carreón Anguiano
Ignacio Rodrigo Islas Flores
Julio Vega-Arreguin
Luis Alfonso Sáenz Carbonell
Blondy Beatriz Canto Canché
Acceso Abierto
Atribución-NoComercial-SinDerivadas
doi:10.3390/biom10050712
COMPUTATIONAL PREDICTION
HOST-PATHOGEN INTERACTION
EFFECTOR PROTEINS
FUNGAL SECRETOME
Pathogens are able to deliver small-secreted, cysteine-rich proteins into plant cells to enable infection. The computational prediction of effector proteins remains one of the most challenging areas in the study of plant fungi interactions. At present, there are several bioinformatic programs that can help in the identification of these proteins; however, in most cases, these programs are managed independently. Here, we present EffHunter, an easy and fast bioinformatics tool for the identification of effectors. This predictor was used to identify putative effectors in 88 proteomes using characteristics such as size, cysteine residue content, secretion signal and transmembrane domains.
2020
Artículo
Biomolecules, 10(5), 712, 2020.
Inglés
BIOLOGÍA MOLECULAR DE PLANTAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos de Investigación Arbitrados

Cargar archivos:


Fichero Tamaño Formato  
2020_Carreón_Anguiano.pdf1.02 MBAdobe PDFVisualizar/Abrir